Team software project – one of the steps students take towards career in software industry

Sanja Čandrlić, sanjac@inf.uniri.hr
Martina Ašenbrener Katić, masenbrener@inf.uniri.hr
Presentation outline

• Introduction
• Industry expectations and requirements
• Software engineering course
• Software development project
• Evaluation process
• Students questionnaire
• Conclusion
• Future work
Introduction

• Job offers – employers require/prefer previous development experience or at least teamwork experience
• 10 years of Department of informatics – discussions with software industry representatives (round tables)
• Team collaboration in large software development

• Students prefer practical assignments
• Based on feedback during and after their study
Motivation for team software project

• To simulate real-world situation in educational environment
• Create opportunities for students to experience real life software development

• Software engineering course, Department of Informatics, UNIRI
• Students actively participate in team assignments: share knowledge, learn, discuss, explore
• Students get feedback from their peers
Software engineering course

• 1st year of graduate study of informatics
• 6 ECTS
• Mandatory for BI students (14), Elective for ICS students (2)
• 16 students in winter semester 2017./2018.

• In this course:
• To define concepts from the field of software engineering and software systems development
• To experience professional team software development within given time and budget
• To develop software based on the project
Grading points

- Software project with presentation 60 points (threshold 40%)
- Theory exam 30 points (threshold 40%)
- Quizzes 5 points
- Active participation 5 points
Software engineering course - topics

• Ethics in software engineering
• Management of user requirements
• Team organization
• Planning and project control
• Risk management
• Cost estimation
• Software tools, CASE tools
• UI/UE
• Tools for team software development

Students already have previous knowledge about tools and methods for software development (Introduction to SE, Data modelling, Process modelling, Programming, …)
Assignments & software artefacts

- Software specification
- Process model
- Data model
- ToDo list
- Effort estimation
- Roles and responsibilities
- Software
- User manual and instructions
- Presentation for the peers
- Analysis/comparison of the plan and reality
• Software specification
• Process model
• Data model

• ToDo list
• Effort estimation
• Roles and responsibilities

• Software
• User manual and instructions

• Presentation for the peers
• Analysis/comparison plan vs. reality

• Evaluation – 4 levels
Specification

• General instructions (general requirements) on 2 applications
• 2 teams – dorm management (students applications, rent for students, rent for visiting professors)
• 2 teams – tire shop (sale and replacement with reservations)

• Students add some features (analysis of the market, creative approach, …)
• Promise to the customer
• Different specifications from 2 teams!

• Process model
• Data model
General instructions - example

- Student dorm has several buildings. Rooms are 2- 3- and 4-bed. There are some single use bedrooms available only for visiting teachers, these rent for the selected number of days based on a daily fee. Some single bed rooms are apartments (with kitchen and private bathroom). Some multi-bed rooms have private bathroom as well.
- For students rooms are available only during the entire year, except for finishing students who can rent it for a shorter period.
- Payment is monthly based. Receipt is issued to each student, except for students which have a free stay – for all of them a single receipt is issued and payed by Student Support Centre.
- During the application process for the dorm, students register in the application, enter their data and average grade. In the end of application period a list is formed and rooms are assigned by their preferences.
ToDo list

• Activities extracted from the specification
• Roles and responsibilities
• Effort estimation
• Workload evenly shared, complexity too
• Execution plan
• Dependencies
• Deadline for each activity (set of activities)
Software development, presentation & test

- Students choose development environment
- Specification & models → development
- Testing
- User manual

- Presentation to the peers / customers

- Comparison of estimated effort and deadline for the activities from the plan and their realization – did not affect the grade
Evaluation

• Grading the team is OK
• How to grade team members individually?

• 4 levels of assessment: teacher, team, self, peers

Teacher
• Specification compared with the final software
• Responsibilities are taken into account
• Workload share
• Correctness and complexity
• User experience and interface design
Evaluation

Team
• A variant of Michaelsen method
 – assign other members of their team a score. A number of points are divided among teammates (without evaluating herself or himself)
• Precise contribution of each team member
• What could he/she do to contribute more

Self
• My contribution to the team
• How could I contribute more
• How would I grade myself

Peers
• Test software to the specification (teams switch in testing)
• General impression and details, comments
Questionnaire

- 33 questions, Likert scale
- 5 more open questions
- 11 students filled in the questionnaire

- Software development as main assignment 4,1
- You knew what was expected from you 4,2
- Motivation for software development 4
- Team choses members 3,7
- Team chose development environment 4,5
- 4th year student able to use any environment 4,1
- Team approach 4,5
Questionnaire

- Lack of time 3,6
- Responsibilities from Todo didn’t change 3,3
- Responsible person was really in charge 3,7
- Easy to assess team member contribution 4,1
- This course was useful for me 4,1
- I invested a lot of effort 4
- ECTS points are correctly set 4,2
- Project should be kept for the next years 4
Questionnaire

• Open questions:
 – Biggest problem: time management/ lack of experience / technical problems with the tool
 – Personal satisfaction with the final product?: Yes/partially/no
 – Additional topics for lectures?: None
 – Preferred development tool?: Visual studio
 – How to improve the course?: No suggestions
Conclusion

- Students’ opinion received by questionnaire and informal discussion
 - Students participated very actively
 - Students were satisfied with the project
 - Insight to problems and challenges of team development
 - Feedback from other students (team members and peers)
 - Learning by doing

- Students are aware that team software project brings them closer to their future career in software industry

- Students’ opinion regarding assignments and course organization is positive

- Interesting:
 - Teacher: not easy to assess individual student’s contribution
 - Student: easy to evaluate team member’s contribution
Conclusion

- Main goal – to simulate team software development environment
- Challenging for students and teachers
- Students built a reference for their future job applications and interviews
- To enforce the connection with the industry – future work
Future work

• To emphasize the connection with software industry
• If possible, to include industry representatives in the development process
 – Definition of the field of application
 – Suggesting / choosing development tools
 – Team mentors – mentoring team activities
 – Not as team members!
• To improve the assessment process – participation in the jury of experts
• To improve the self-assessment process – recognize their mistakes and how to improve
• Students will become more familiar with business environment and requirements which will be set for them in team software industry development
• Additional assignments – not necessary
• Thank you for your attention!

• Questions?