Anfragesprachen mit Rekursion — Datalog

- 3.1 Syntax und Semantik
- 3.2 Statische Analyse
- 3.3 Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negation

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 1

Anfragesprachen mit Rekursion — Datalog

Erreichbarkeits-Anfrage in SQL

Im SQL (ab SQL-99 Standard) kann die Anfrage "Gib alle Stationen aus, die von "Bockenheimer Warte" aus ohne Umsteigen zu erreichen sind" folgendermaßen ausgedrückt werden:

```
WITH RECURSIVE Erreichbar(Linie, Start, Ziel)
AS (
   SELECT Linie, Halt, NaechsterHalt
   FROM U-Bahn-Netz
 UNION ALL
   SELECT Erreichbar.Linie,
          Erreichbar.Start,
          U-Bahn-Netz.NaechsterHalt
   FROM Erreichbar, U-Bahn-Netz
   WHERE Erreichbar.Linie = U-Bahn-Netz.Linie AND
         Erreichbar.Ziel = U-Bahn-Netz.Halt
SELECT Ziel
FROM Erreichbar
WHERE Start="Bockenheimer Warte"
```

Beispiel: Frankfurter U-Bahn-Netz

Hier vereinfacht: Eine Relation *U-Bahn-Netz* mit Attributen *Linie*. Halt. nächsterHalt

U-Bahn-Netz		
Linie	Halt	nächsterHalt
U4	Bockenheimer Warte	Festhalle/Messe
U4	Festhalle/Messe	Hauptbahnhof
U4	Hauptbahnhof	Willy-Brandt-Platz
U4	Willy-Brandt-Platz	Dom/Römer
U7		
U7	Kirchplatz	Leipziger Str.
U7	Leipziger Str.	Bockenheimer Warte
U7	Bockenheimer Warte	Westend

Anfrage:

Gib alle Stationen aus, die von "Bockenheimer Warte" aus ohne Umsteigen zu erreichen sind.

(1) mit max. 1 Zwischenhalt:

```
\{\langle x_{S} \rangle : \exists x_{L} (U\text{-Bahn-Netz}(x_{L}, \text{``Bockenheimer Warte''}, x_{S}) \lor \}
               \exists x_Z(U\text{-Bahn-Netz}(x_L, \text{``Bockenheimer Warte''}, x_Z) \land U\text{-Bahn-Netz}(x_L, x_Z, x_S)))
```

- (2) mit max. 2 Zwischenhalten: analog
- (3) mit beliebig vielen Zwischenhalten ???

(Am Ende von Kapitel 5 werden wir sehen: Nicht ausdrückbar in Relationaler Algebra)

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 2

Anfragesprachen mit Rekursion — Datalog

Erreichbarkeits-Anfrage in Datalog

Die Anfrage

"Gib alle Stationen aus, die von "Bockenheimer Warte" aus ohne Umsteigen zu erreichen sind"

kann in Datalog folgendermaßen ausgedrückt werden:

```
Erreichbar(L, S, Z) \leftarrow U-Bahn-Netz(L, S, Z)
Erreichbar(L, S, Z) \leftarrow Erreichbar(L, S, Z'), U-Bahn-Netz(L, Z', Z)
           Ans(Z) \leftarrow Erreichbar(L, "Bockenheimer Warte", Z)
```

Anfragesprachen mit Rekursion — Datalog

3.1 Syntax und Semantik

- 3.3 Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negation

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 5

Notation

- Wie üblich bezeichnen wir mit adom(P) bzw. adom(Q) die Menge der Konstanten, die in einem Datalog-Programm P bzw. einer Datalog-Anfrage Q vorkommen. Für eine Datanbank I ist $adom(P, I) := adom(P) \cup adom(I)$ und $adom(Q, I) := adom(Q) \cup adom(I).$
- $ightharpoonup R_0(u_0)$ heißt Kopf der Regel $R_0(u_0) \leftarrow R_1(u_1), \ldots, R_\ell(u_\ell)$; $R_1(u_1), \ldots, R_\ell(u_\ell)$ heißt Rumpf der Regel.
- edb(P) bezeichnet die Menge der Relations-Namen, die ausschließlich im Rumpf von Regeln in P vorkommen (die sog. "extensionalen Prädikate von P").
- ▶ idb(P) bezeichnet die Menge der Relations-Namen, die im Kopf mindestens einer Regel in P vorkommen (die sog. "intensionalen Prädikate von P").
- $ightharpoonup sch(P) := edb(P) \cup idb(P)$ heißt Schema von P.

Datalog: Syntax

Definition 3.1

(a) Eine Datalog-Regel ist ein Ausdruck der Form

$$R_0(u_0) \leftarrow R_1(u_1), \ldots, R_\ell(u_\ell)$$

wobei $\ell \geqslant 0$, $R_0, R_1, \ldots, R_\ell \in \mathbf{relname}$ und u_0, u_1, \ldots, u_ℓ freie Tupel der Stelligkeiten $arity(R_0)$, $arity(R_1)$, ..., $arity(R_\ell)$ sind, so dass jede Variable, die in u_0 vorkommt, auch in mindestens einem der Tupel u_1, \ldots, u_ℓ vorkommt.

- (b) Ein Datalog-Programm *P* ist eine endliche Menge von Datalog-Regeln.
- (c) Eine Datalog-Anfrage (P, R) besteht aus einem Datalog-Programm P und einem Relations-Namen R, der in P vorkommt.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE

Beispiel

$$P := \left\{ \begin{array}{ccc} \textit{Erreichbar}(L,S,Z) & \leftarrow & \textit{U-Bahn-Netz}(L,S,Z) \;, \\ \textit{Erreichbar}(L,S,Z) & \leftarrow & \textit{Erreichbar}(L,S,Z'), \; \textit{U-Bahn-Netz}(L,Z',Z) \;, \\ \textit{Ans}(Z) & \leftarrow & \textit{Erreichbar}(L,\text{``Bockenheimer Warte''},Z) \end{array} \right.$$

ist ein Datalog-Programm mit

- ▶ edb(P) = { U-Bahn-Netz }
- idb(P) = { Erreichbar, Ans }
- sch(P) = { U-Bahn-Netz, Erreichbar, Ans }

 $Q_1 := (P, Ans)$ ist eine Datalog-Anfrage;

 $Q_2 := (P, Erreichbar)$ ist noch eine Datalog-Anfrage;

 $Q_3 := (P, U-Bahn-Netz)$ ist noch eine Datalog-Anfrage.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 7

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Datalog: Semantik

Die Semantik von Datalog lässt sich auf verschiedene Weisen definieren:

Fixpunkt-Semantik:

"Regeln schrittweise anwenden, bis sich nichts mehr ändert"

Modellbasierte Semantik:

kleinste Datenbank über sch(P), die alle "Regeln wahr macht"

Beweisbasierte Semantik:

"Fakten, die sich herleiten lassen, sind im Ergebnis"

Glücklicherweise kann man zeigen, dass alle drei Ansätze zum gleichen Resultat führen.

Wir betrachten im Folgenden hauptsächlich die Fixpunkt-Semantik, die folgendermaßen definiert ist:

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 9

Anfragesprachen mit Rekursion — Datalog Syntax und Semantik

Monotonie von T_P

Bemerkung: Eine alternative (und äquivalente) Definition von T_P :

 $T_P(\mathbf{I})(R) := \{ \text{ unmittelbare } R \text{-Konsequenzen von } P \text{ über } \mathbf{I} \},$

wobei ein Tupel t eine unmittelbare R-Konsequenz von P über I ist, falls

- $ightharpoonup R \in edb(P) \text{ und } t \in I(R) \text{ oder}$
- ▶ $R \in idb(P)$ und es eine Regel der Form $R(u) \leftarrow R_1(u_1), \dots, R_\ell(u_\ell)$ in P und eine Belegung β gibt, so dass $\beta(u) = t$ und $\beta(u_i) \in I(R_i)$, für alle $i \in \{1, ..., \ell\}$.

Lemma 3.3

Für jedes Datalog-Programm P gilt:

Der Operator T_P ist monoton, d.h. für alle $I, J \in inst(sch(P))$ mit $I \subseteq J$ (d.h. $\mathbf{I}(R) \subseteq \mathbf{J}(R)$ f.a. $R \in sch(P)$ gilt: $T_P(\mathbf{I}) \subseteq T_P(\mathbf{J})$.

Beweis: leicht (Übung).

Der "immediate consequence"-Operator T_P

Definition 3.2

Sei P ein Datalog-Programm.

- (a) Für jedes $R \in idb(P)$ seien $Q_{R,1}, \dots, Q_{R,k_R}$ diejenigen Regeln aus P, in deren Kopf das Relationssymbol R steht, und seien $Q'_{R,1},\ldots,Q'_{R,k_R}$ die Regeln, die aus $Q_{R,1}, \dots, Q_{R,k_R}$ entstehen, indem im Kopf jeweils R durch das Relationssymbol Ans' ersetzt wird (mit $Ans' \notin sch(P)$ und arity(Ans') = arity(R)).
- Der "immediate consequence"-Operator T_P : inst $(sch(P)) \rightarrow inst(sch(P))$ ist folgendermaßen definiert: Für jedes $I \in inst(sch(P))$ und jedes $R \in sch(P)$ ist

$$T_P(\mathbf{I})(R) \ := \ \left\{ egin{array}{ll} \mathbf{I}(R) & ext{falls } R \in edb(P) \ \mathbb{Q}'_{R,k_r} \mathbb{I}(\mathbf{I}) & ext{falls } R \in idb(P) \end{array}
ight.$$

Beispiel: Ist P das Datalog-Programm aus dem Beispiel der Erreichbarkeits-Anfrage, und besteht I(Erreichbar) aus allen Tupeln, die "mit max. i Zwischenhalten ohne Umsteigen zu erreichen sind", so besteht $T_P(I)$ (Erreichbar) aus allen Tupeln, die "mit max. i + 1Zwischenhalten ohne Umsteigen zu erreichen sind".

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE

Anfragesprachen mit Rekursion — Datalog Syntax und Semantik

Fixpunkte

Bemerkung 3.4

(a) Aus der Monotonie von T_P folgt für jedes $I \in inst(sch(P))$ mit $I(R) = \emptyset$ f.a. $R \in idb(P)$, dass:

$$\mathbf{I} \subseteq T_P(\mathbf{I}) \subseteq T_P(T_P(\mathbf{I})) \subseteq \cdots \subseteq T_P^i(\mathbf{I}) \subseteq T_P^{i+1}(\mathbf{I}) \subseteq \cdots$$

wobei $T_P^0(\mathbf{I}) := \mathbf{I}$ und $T_P^{i+1}(\mathbf{I}) := T_P(T_P^i(\mathbf{I}))$.

- (b) Man sight leicht, dass $adom(T_P(I)) \subseteq adom(P, I)$ und $adom(T_P^i(\mathbf{I})) \subseteq adom(P,\mathbf{I}), \text{ f.a. } i \in \mathbb{N}.$
- (c) Da adom(P, I) nur endlich viele Elemente besitzt, muss es in der Inklusionskette aus (a) ein $i_0 \in \mathbb{N}$ mit $T_P^{i_0}(\mathbf{I}) = T_P^{i_0+1}(\mathbf{I})$ geben. Aus der Monotonie von T_P folgt dann: $T_P^{i_0}(\mathbf{I}) = T_P^j(\mathbf{I})$ f.a. $i \ge i_0$.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 11

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Notation

- ▶ Ein $J \in inst(sch(P))$ heißt Fixpunkt von T_P , falls $T_P(J) = J$.
- ▶ Ab-Stufe(I) := $\min\{i_0 : T_P^{i_0}(I) = T_P^{i_0+1}(I)\}\$ heißt "Abschluss-Stufe" von T_P auf I. Die einzelnen Instanzen $T_{P}^{0}(\mathbf{I}), T_{P}^{1}(\mathbf{I}), T_{P}^{2}(\mathbf{I})$ etc. werden "Stufen des Fixpunktprozesses" genannt.

Ab-Stufe(*P*, I) gibt also diejenige Stufe an, ab der der Fixpunkt erreicht ist:

$$\mathbf{I} = T_P^0(\mathbf{I}) \varsubsetneq T_P^1(\mathbf{I}) \varsubsetneq \cdots \varsubsetneq T_P^{\textit{Ab-Stufe}(P,\mathbf{I})}(\mathbf{I}) = T_P^{\textit{Ab-Stufe}(P,\mathbf{I})+1}(\mathbf{I}) = T_P^j(\mathbf{I})$$

$$\text{f.a. } j \geqslant \textit{Ab-Stufe}(P,\mathbf{I})$$

 $T_P^{\omega}(\mathbf{I}) := T_P^{Ab\text{-}Stufe}(\mathbf{I})$. Klar: $T_P^{\omega}(\mathbf{I})$ ist ein Fixpunkt von T_P .

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 13

Naive Berechnung von [P](I)

Bemerkung:

Ein einfacher Algorithmus, der bei Eingabe von P und I das Resultat [P](I)berechnet, kann folgendermaßen vorgehen:

- (1) $J := \hat{I}$
- (2) Berechne $J' := T_P(J)$
- (3) Falls $J' \neq J$, so (J := J', GOTO (2))
- (4) Gib **J** aus

Datenkomplexität dieses Algorithmus: Polynomialzeit.

Theorem 3.6 (Immerman und Vardi — hier ohne Beweis)

- (a) Die Datenkomplexität des Auswertungsproblems für Datalog-Anfragen ist PTIME-vollständig.
- (b) Die kombinierte Komplexität des Auswertungsproblems für Datalog-Anfragen ist EXPTIME-vollständig.

Fixpunkt-Semantik von Datalog

Definition 3.5

(a) Sei P ein Datalog-Programm, $\mathbf{R} := edb(P)$. Jeder Datenbank $\mathbf{l} \in inst(\mathbf{R})$ ordnen wir die Datenbank $\hat{\mathbf{l}} \in inst(sch(P))$ mit

$$\hat{\mathbf{I}}(R) := \left\{ egin{array}{ll} \mathbf{I}(R) & ext{falls } R \in edb(P) \\ \emptyset & ext{falls } R \in idb(P) \end{array} \right.$$

zu. Ausgewertet in I liefert P die Datenbank

$$\llbracket P \rrbracket (\mathbf{I}) := T_P^{\omega} (\hat{\mathbf{I}}) \in inst(sch(P))$$

(b) Eine Datalog-Anfrage Q = (P, R) liefert auf einer Datenbank $I \in inst(edb(P))$ die Relation

$$\llbracket Q \rrbracket (I) := (\llbracket P \rrbracket (I))(R).$$

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 1

Fixpunkt-Semantik vs. Modellbasierte Semantik

Notation:

Für zwei Datenbanken $J, J' \in inst(\mathbb{R})$ bezeichnet $J \cap J'$ die Datenbank mit $(\mathbf{J} \cap \mathbf{J}')(R) := \mathbf{J}(R) \cap \mathbf{J}'(R)$, f.a. $R \in \mathbf{R}$.

Satz 3.7 (Knaster und Tarski)

Sei P ein Datalog-Programm und $I \in inst(edb(P))$. Dann gilt:

$$\llbracket P \rrbracket (\mathbf{I}) = \bigcap \{ \mathbf{J} \in inst(sch(P)) : T_P(\mathbf{J}) = \mathbf{J} \text{ und } \hat{\mathbf{I}} \subseteq \mathbf{J} \}$$

D.h.: [P](I) ist die kleinste Erweiterung von \hat{I} , die ein Fixpunkt von T_P ist.

Beweis: Siehe Tafel.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 15

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Ausdrucksstärke von Datalog

Bemerkung 3.8

Die Ausdrucksstärken von Datalog-Anfragen und von Anfragen des Relationalen Algebra sind unvergleichbar:

 Beispiel für eine Datalog-Anfrage, die nicht in Relationaler Algebra formuliert werden kann:

"Welche Stationen sind von "Bockenheimer Warte" aus ohne Umsteigen zu erreichen?"

Beispiel für eine Relationale Algebra-Anfrage, die nicht in Datalog formuliert werden kann:

"In welchen Kinos läuft kein Film um 17:00 Uhr?"

Bzw. jede andere Anfrage, die nicht monoton ist (aber in Relationaler Algebra formuliert werden kann).

Denn aus Lemma 3.3 folgt leicht, dass jede Datalog-Anfrage monoton ist.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 17

Beweisbäume

Definition 3.9

Sei P ein Datalog-Programm und $I \in inst(edb(P))$. Ein Beweisbaum für ein Faktum *R*(*t*) bzgl. I und *P* ist ein gerichteter Baum mit den folgenden Eigenschaften:

- (1) Jeder Knoten ist mit einem Faktum markiert.
- (2) Die Wurzel enthält das Faktum R(t).
- (3) Die Fakten an den Blättern sind Elemente aus Fakten(I)
- (4) Für jeden inneren Knoten v mit Kindern v_1, \ldots, v_ℓ gibt es eine Regel $R_0(u_0) \leftarrow R_1(u_1), \dots, R_\ell(u_\ell)$ in P und eine Belegung $\beta : Var(P) \rightarrow \mathbf{dom}$ so dass gilt:
 - der Knoten v enthält das Faktum $R_0(\beta(u_0))$
 - ▶ das Kind v_i von v enthält das Faktum $R_i(\beta(u_i))$ (für alle $i \in \{1, ..., \ell\}$).

Beispiel: Beweisbäume für Ans("Frankfurt Süd") bzgl. dem Frankfurter U-Bahn-Netz und dem folgenden Datalog-Programm:

> $E(L, S, Z) \leftarrow U$ -Bahn-Netz(L, S, Z)E(L, S, Y), U-Bahn-Netz(L, Y, Z) E(L, "Hauptwache", Z)

(siehe Tafel)

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 19

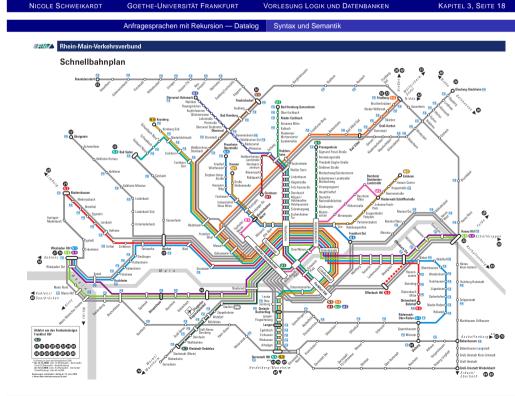
Beweisbasierte Semantik von Datalog

Sichtweise:

- ▶ Ein Faktum ist ein Ausdruck der Form R(t) mit $R \in \text{relname}$ und $t \in \text{dom}^{arity(R)}$.
- Eine Datenbank I ∈ inst(R) wird mit der folgenden Menge von Fakten identifiziert:

$$Fakten(\mathbf{I}) := \{ R(t) : R \in \mathbf{R} \text{ und } t \in \mathbf{I}(R) \}$$

 Für die beweisbasierte Semantik werden Datalog-Regeln als Schlussregel-Muster in Beweisen betrachtet.



Anfragesprachen mit Rekursion — Datalog Syntax und Semantil

Anfragesprachen mit Rekursion — Datalog Statische Analyse

Fixpunkt-Semantik vs. Beweisbasierte Semantik

Satz 3 10

Für jedes Datalog-Programm P, alle $I \in inst(edb(P))$ und alle Fakten R(t) mit $R \in sch(P)$ und $t \in dom^{arity(R)}$ gilt:

 $t \in (\llbracket P \rrbracket(I))(R) \iff$ es gibt einen Beweisbaum für R(t) bzgl. I und P.

Beweis: Übung.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 21

Erfüllbarkeit

Theorem 3.11

Das

ERFÜLLBARKEITSPROBLEM FÜR DATALOG-ANFRAGEN

Eingabe: Datalog-Anfrage Q = (P, R)

Frage: Gibt es ein $I \in inst(edb(P))$ so dass $[Q](I) \neq \emptyset$?

ist entscheidbar.

Beweisidee:

Verallgemeinerung des Beweises der Erfüllbarkeit regelbasierter konjunktiver Anfragen (Satz 2.6).

Details: Übung.

Anfragesprachen mit Rekursion — Datalog

- 3.1 Syntax und Semantik
- 3.2 Statische Analyse
- 3.3 Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negation

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 2

Query Containment — Zwei Varianten

(a) Herkömmliches Query Containment:

QUERY CONTAINMENT PROBLEM FÜR DATALOG-ANFRAGEN

Eingabe: Zwei Datalog-Anfragen (P_1, R) und (P_2, R) mit $edb(P_1) = edb(P_2)$ und $R \in idb(P_1) \cap idb(P_2)$

Frage: Gilt $[(P_1, R)](I) \subseteq [(P_2, R)](I)$ für alle $I \in inst(edb(P_1))$?

(b) Uniformes Containment:

UNIFORMES CONTAINMENT PROBLEM FÜR DATALOG-PROGRAMME

Eingabe: Zwei Datalog-Programme P_1 und P_2 mit $edb(P_1) = edb(P_2)$ und $idb(P_1) = idb(P_2)$

Frage: Gilt $\llbracket P_1 \rrbracket(\mathbf{I}) \subseteq \llbracket P_2 \rrbracket(\mathbf{I})$ für alle $\mathbf{I} \in inst(sch(P_1))$?

Theorem 3.12

(Beweis von (a) siehe Tafel; (b) hier ohne Beweis)

- (a) Das Query Containment Problem für Datalog-Anfragen ist unentscheidbar.
- (b) Das uniforme Containment Problem für Datalog-Programme ist entscheidbar.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 23

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Anfragesprachen mit Rekursion — Datalog Statische Analyse

Beschränktheit (Boundedness)

▶ Wir haben gesehen: 『P』(I) kann berechnet werden, indem man nach und nach

$$\hat{\mathbf{l}}, T_P(\hat{\mathbf{l}}), T_P(T_P(\hat{\mathbf{l}})), \dots, T_P^{Ab\text{-Stufe}(P,\mathbf{l})}(\hat{\mathbf{l}}), T_P^{Ab\text{-Stufe}(P,\mathbf{l})+1}(\hat{\mathbf{l}})$$

berechnet.

- ► Anzahl der Iterationen, die dafür nötig sind: Ab-Stufe(P, I) + 1
- ► Frage: Wie groß kann *Ab-Stufe*(*P*, I) werden?
- Klar: in jeder Iteration kommt mindestens ein Faktum dazu;
 - $adom(\llbracket P \rrbracket(\mathbf{I})) \subseteq adom(P, \mathbf{I})$
- ▶ Daher: Ab-Stufe $(P, I) \leq \sum_{\mathbf{I}} |adom(P, I)|^{arity(R)}$
- ▶ Besonders "schön" sind solche Datalog-Programme P, bei denen Ab-Stufe(P, I) gar nicht von I abhängt. Solche Programme heißen beschränkt (engl.: bounded).
- ▶ Präzise: Ein Datalog-Programm P heißt beschränkt, falls eine Zahl $d \in \mathbb{N}$ gibt, so dass für alle $I \in inst(edb(P))$ gilt: Ab- $Stufe(P, I) \leq d$.
 - Den kleinsten solchen Wert d nennen maximale Rekursionstiefe von P.
- ▶ Wenn man weiß, dass ein Programm P bschränkt ist und maximale Rekursionstiefe d hat, so kann man leicht eine zu P äguivalente Anfrage in relationaler Algebra konstruieren, die nur die Operatoren der SPC-Algebra und den Vereinigungs-Operator benutzt (kurz: SPCU-Algebra).

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 25

Anfragesprachen mit Rekursion — Datalog Statische Analyse

Beschränktheit (Boundedness)

Theorem 3 13

(hier ohne Beweis)

Das

BOUNDEDNESS PROBLEM FÜR DATALOG-PROGRAMME

Eingabe: Datalog-Programm P

Frage: Ist P beschränkt, d.h. gibt es ein $d \in \mathbb{N}$ so dass Ab-Stufe $(P, I) \leq d$

für alle $I \in inst(edb(P))$?

ist unentscheidbar.

Anfragesprachen mit Rekursion — Datalog Statische Analyse

Beispiel

Das Datalog-Programm

```
E(L, S, Z) \leftarrow U-Bahn-Netz(L, S, Z)
E(L, S, Z) \leftarrow E(L, S, Y), U-Bahn-Netz(L, Y, Z)
  Ans(Z) \leftarrow E(L, "Bockenheimer Warte", Z)
```

ist nicht beschränkt.

Das Datalog-Programm

```
Kauft(x, y) \leftarrow Mag(x, y)
Kauft(x, y) \leftarrow Person(x), Trendsetter(z), Kauft(z, y)
```

ist beschränkt mit maximaler Rekursionstiefe 2 und äquivalent zum nicht-rekursiven Programm

```
Kauft(x,y) \leftarrow Mag(x,y)
                Kauft(x, y) \leftarrow Person(x), Trendsetter(z), Mag(z, y)
bzw. zur SPCU-Anfrage Mag \cup (Person \times \pi_3(\sigma_{1=1}(Trendsetter \times Mag)))
```

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Anfragesprachen mit Rekursion — Datalog Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negation

Anfragesprachen mit Rekursion — Datalog

- 3.1 Syntax und Semantik
- 3.2 Statische Analyse
- 3.3 Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negation

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 27

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Nicht-Rekursives Datalog — Beispiel

Beispiel 3.14

(a) Das Datalog-Programm

```
Kauft(x, y) \leftarrow Mag(x, y)
Kauft(x, y) \leftarrow Person(x), Trendsetter(z), Mag(z, y)
```

ist nicht-rekursiv.

(b) Äquivalent dazu, aber NICHT nicht-rekursiv ist

```
Kauft(x, y) \leftarrow Mag(x, y)
Kauft(x, y) \leftarrow Person(x), Trendsetter(z), Kauft(z, y)
```

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

"Nicht-rekursiv" vs. "beschränkt" ("bounded")

Proposition 3.16

- (a) Jedes nr-Datalog-Programm ist beschränkt.
- (b) Jedes beschränkte Datalog-Programm ist äquivalent zu einem nr-Datalog-Programm.

Beweis: Einfache Übung.

Nicht-Rekursives Datalog — Präzise

Definition 3.15

Sei P ein Datalog-Programm.

(a) Der Abhängigkeitsgraph G_P von P ist der gerichtete Graph mit Knotenmenge $V_P := sch(P)$ und Kantenmenge

$$E_P := \left\{ (S,R) : \begin{array}{l} ext{es gibt eine Regel in } P, ext{ in deren Kopf } R ext{ und in } \\ ext{deren Rumpf } S ext{ vorkommt} \end{array} \right\}$$

(b) Die Klasse nr-Datalog aller nicht-rekursiven Datalog-Programme besteht aus allen Datalog-Programmen P, deren Abhängigkeitsgraph G_P azyklisch ist (d.h. keinen einfachen Kreis enthält).

Beispiele für Abhängigkeitsgraphen: siehe Tafel

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Anfragesprachen mit Rekursion — Datalog Einschränkung und Erweiterungen; nr-Datalog und Datalog mit Negatio

Ausdrucksstärke von nr-Datalog

- ▶ Die SPCU-Algebra ist die Erweiterung der SPC-Algebra um den Vereinigungsoperator ∪, der es erlaubt, die Ergebnisse zweier Anfragen derselben Stelligkeit zu vereinigen. Semantik: $[(Q_1 \cup Q_2)](I) := [Q_1](I) \cup [Q_2](I)$.
- ► Der positive existentielle Kalkül PE-CALC_{adom} ist die Klasse aller Anfragen Q der Form $\{\langle e_1, \dots, e_r \rangle : \varphi \}$, wobei φ eine Formel der Logik erster Stufe ist, in der keins der Symbole $\neg, \forall, \rightarrow, \leftrightarrow$ vorkommt. Semantik:

```
[Q](I) := \{ \beta(\langle e_1, \dots, e_r \rangle) : \beta : var \rightarrow adom(Q, I), \text{ so dass } I \models \varphi[\beta] \}
```

Satz 3.17

Die folgenden Anfragesprachen können genau dieselben Anfragefunktionen beschreiben:

- (a) nr-Datalog-Anfragen
- (b) SPCU-Algebra
- (c) positiver existentieller Kalkül PE-CALC_{adom}

Bemerkung: Die Übersetzung von nr-Datalog in eine der anderen Sprachen kann mehr als polynomiell viel Zeit beanspruchen, da nr-Datalog-Programme u.U. viel kürzer sind als äquivalente Anfragen der anderen Sprachen.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 31

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Beweis von Satz 3.17

(b) ⇒ (a): Induktion über den Aufbau von SPCU-Anfragen (leicht). Details: siehe Tafel.

(a) \Rightarrow (c): siehe Tafel.

(c) \Rightarrow (b): Bei gegebener Anfrage $Q = \{\langle e_1, \dots, e_r \rangle : \varphi \}$ bringe die Formel φ zunächst in disjunktive Normalform, d.h. in eine Formel der Form $\varphi_1 \vee \cdots \vee \varphi_\ell$, wobei φ_i eine $CQ^=$ -Formel ist.

Dann gilt für jede Datenbank I, dass $[Q](I) = [Q_1](I) \cup \cdots \cup [Q_\ell](I)$, wobei

$$\llbracket Q_i \rrbracket (I) = \{ \beta(\langle e_1, \dots, e_r \rangle) : \beta : var \rightarrow adom(Q, I), \text{ so dass } I \models \varphi_i \}.$$

Wir können nun ähnlich wie in Kapitel 2 beim Beweis der Äguivalenz von Konjunkivem Kalkül und SPC-Algebra vorgehen, um eine SPCU-Anfrage Q', zu konstruieren, so dass für alle Datenbanken I gilt: $[Q_i](I) = [Q_i](I)$. Details: Übung.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 33

Frage: Was soll die Semantik von Datalog sein?

Beispiel 3.19

Anfrage:

"Gib alle Stationen aus, die von "Bockenheimer Warte" aus nicht ohne Umsteigen zu erreichen sind."

Als Datalog - Anfrage:

 $E(L, S, Z) \leftarrow U$ -Bahn-Netz(L, S, Z) $E(L, S, Z) \leftarrow E(L, S, Y), U-Bahn-Netz(L, Y, Z)$ Erreichbar $BW(Z) \leftarrow E(L, \text{``Bockenheimer Warte''}, Z)$ $Station(S) \leftarrow U-Bahn-Netz(L, S, Z)$ $Station(Z) \leftarrow U-Bahn-Netz(L, S, Z)$ $Ans(Z) \leftarrow Station(Z), \neg Erreichbar BW(Z)$

Hier: Semantik intuitiv klar.

Datalog mit Negation

Ziel: Auch Negationszeichen "¬" in Datalog-Regeln zulassen.

Definition 3 18

- (a) Ein Literal ist ein Relationsatom R(u) oder ein negiertes Relationsatom $\neg R(u)$. Ein Literal der Form R(u) heißt positiv; ein Literal der Form $\neg R(u)$ heißt negativ bzw. negiert.
- (b) Eine Datalog Regel ist ein Ausdruck der Form

$$R_0(u_0) \leftarrow L_1(u_1), \ldots, L_\ell(u_\ell)$$

wobei $\ell \geqslant 0$, $R_0 \in \mathbf{relname}$, u_0 ein freies Tupel der Stelligkeit *arity*(R_0) und $L_1(u_1), \ldots, L_\ell(u_\ell)$ Literale, so dass jede Variable, die in u_0 vorkommt, auch in mindestens einem positiven Literal $L_i(u_i)$ vorkommt.

- (c) Ein Datalog Programm P ist eine endliche Menge von Datalog Regeln.
- (d) Eine Datalog Anfrage (P, R) besteht aus einem Datalog Programm P und einem Relations-Namen R, der in P vorkommt.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 34

Anfragesprachen mit Rekursion — Datalog Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negatior

Probleme mit der Semantik von Datalog

Beispiel 3.20

(a) $R(x) \leftarrow A(x), \neg R(x)$

"Ausgewertet" über einer DB $I \in inst(\{A\})$ gilt:

$$T_P^i(\hat{\mathbf{I}})(R) = \begin{cases} \emptyset & \text{falls } i \text{ gerade} \\ adom(\mathbf{I}) & \text{falls } i \text{ ungerade} \end{cases}$$

Somit: Die Folge $\left(T_P^i(\hat{\mathbf{l}})\right)_{i>0}$ hat keinen Fixpunkt.

Außerdem: $T_P(\cdot)$ hat überhaupt keinen Fixpunkt.

(b) $R(x) \leftarrow A(x), \neg S(x)$ $S(x) \leftarrow A(x), \neg R(x)$

Hier hat $T_P(\cdot)$ zwei verschiedene minimale Fixpunkte (minimal bzgl. \subseteq):

- ▶ FP_1 mit $\mathsf{FP}_1(R) = \emptyset$ und $\mathsf{FP}_1(S) = adom(I)$
- ▶ FP_2 mit $\mathsf{FP}_2(R) = adom(I)$ und $\mathsf{FP}_2(S) = \emptyset$

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 35

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Inflationäre Fixpunkte

Um eine Semantik für Datalog festzulegen, könnte man einfach per Definition erzwingen, dass die einzelnen Stufen des Fixpunktprozesses ineinander enthalten sind:

An Stelle von $T_P(\cdot)$ betrachte den Operator $\Gamma_P(\cdot)$ mit

$$\Gamma_P(\mathbf{J}) := \mathbf{J} \cup T_P(\mathbf{J})$$

Dann gilt:

$$\hat{\mathbf{I}} \subseteq \Gamma_P(\hat{\mathbf{I}}) \subseteq \Gamma_P(\Gamma_P(\hat{\mathbf{I}})) \subseteq \cdots \subseteq \Gamma_P^i(\hat{\mathbf{I}}) \subseteq \Gamma_P^{i+1}(\hat{\mathbf{I}}) \subseteq \cdots$$

Da adom(P,I) endlich ist, wird irgendwann ein (eindeutig definierter) Fixpunkt von $\Gamma_P(\cdot)$ erreicht. Dieser heißt inflationärer Fixpunkt von P auf I.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 37

Anfragesprachen mit Rekursion — Datalog Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negation

Frage: Was soll die Semantik von Datalog sein?

Probleme:

- ▶ Inflationäre Fixpunkt-Semantik: unnatürlich (siehe Beispiel 3.21)
- Fixpunkt-Semantik via $T_P^{\omega}(\hat{\mathbf{I}})$: für manche Datalog - Programme undefiniert (siehe Beispiel 3.20)
- ▶ Semantik via "kleinster Fixpunkt" von $T_P(\cdot)$: ist für manche Datalog - Programme nicht eindeutig (siehe Beispiel 3.20)
- Beweisbasierte Semantik für Datalog[¬]: ???

Aber für Programme wie in Beispiel 3.21 ist die Semantik "intuitiv klar".

- → Betrachte im Folgenden nur Datalog¬-Programme von eingeschränkter Form:
 - Semipositives Datalog
- ▶ nr-Datalog¬
- Stratifiziertes Datalog

Problem mit der inflationären Fixpunkt-Semantik von Datalog

Diese Semantik ist für viele Programme unnatürlich.

Beispiel 3.21

```
E(L, S, Z) \leftarrow U-Bahn-Netz(L, S, Z)
         E(L, S, Z) \leftarrow E(L, S, Y), U-Bahn-Netz(L, Y, Z)
Erreichbar BW(Z) \leftarrow E(L, \text{``Bockenheimer Warte''}, Z)
         Station(S) \leftarrow U-Bahn-Netz(L, S, Z)
                       \leftarrow U-Bahn-Netz(L, S, Z)
                       \leftarrow Station(Z), \negErreichbar BW(Z)
```

"Intuitive Semantik":

Alle Stationen, die von "Bockenheimer Warte" aus nicht ohne Umsteigen zu erreichen sind.

Inflationäre Fixpunkt-Semantik: Alle Stationen.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 38

Anfragesprachen mit Rekursion — Datalog Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negatior

Semipositives Datalog

Negation ist nur bei edb-Prädikaten erlaubt.

Man kann leicht zeigen, dass für jedes semipositive Datalog -Programm P und alle $\mathbf{I} \in inst(edb(P))$ gilt:

- ▶ $T_P(\cdot)$ hat einen eindeutig bestimmten kleinsten Fixpunkt **J** mit $J|_{edb(P)} = I$.
- Dieser wird von der Sequenz

$$\hat{\mathbf{I}}, T_P(\hat{\mathbf{I}}), T_P^2(\hat{\mathbf{I}}), T_P^3(\hat{\mathbf{I}}), \dots$$

erreicht. Notation für diesen Fixpunkt: $T_P^{\omega}(\mathbf{I})$.

Definition der Semantik von semipositiven Datalog - Programmen P: Für alle $I \in inst(edb(P))$ setze

$$\llbracket P \rrbracket (\mathbf{I}) := T_P^{\omega} (\hat{\mathbf{I}})$$

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 39

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Stratifiziertes Datalog — Beispiel

 $E(L, S, Z) \leftarrow U$ -Bahn-Netz(L, S, Z) $E(L, S, Z) \leftarrow E(L, S, Y), U-Bahn-Netz(L, Y, Z)$ $Erreichbar_BW(Z) \leftarrow E(L, "Bockenheimer Warte", Z)$ $Station(S) \leftarrow U-Bahn-Netz(L, S, Z)$ $Station(Z) \leftarrow U-Bahn-Netz(L, S, Z)$ $Ans(Z) \leftarrow Station(Z), \neg Erreichbar_BW(Z)$

- Die Negation ist hier nicht mit der Rekursion verschränkt.
- ► Sie kann angewendet werden, nachdem *Erreichbar BW*(·) vollständig berechnet ist.
- ► ~→ Grundidee für stratifiziertes Datalog¬.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 41

Anfragesprachen mit Rekursion — Datalog Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negatior

Stratifiziertes Datalog — Beispiele

$$P^{1} := \\ E(L,S,Z) \leftarrow BVG(L,S,Z) \\ E(L,S,Z) \leftarrow E(L,S,Y), \ U\text{-}Bahn\text{-}Netz(L,Y,Z) \\ Erreichbar_BW(Z) \leftarrow E(L,\text{``Bockenheimer Warte''},Z) \\ Station(S) \leftarrow U\text{-}Bahn\text{-}Netz(L,S,Z) \\ Station(Z) \leftarrow U\text{-}Bahn\text{-}Netz(L,S,Z) \\ \\ P^{2} := \\ \\ P^{2} := \\ \\ P^{2} := \\ \\ P^{3} := \\ \\ P^{4} := \\ \\ P^{$$

 $Ans(Z) \leftarrow Station(Z), \neg Erreichbar_BW(Z)$

ist eine Stratifizierung des Datalog - Programms aus Beispiel 3.21.

Das Datalog \neg -Programm $R(x) \leftarrow A(x)$, $\neg R(x)$ ist nicht stratifizierbar.

Das Datalog - Programm

$$R(x) \leftarrow A(x), \neg S(x)$$

$$S(x) \leftarrow A(x), \neg R(x)$$

auch nicht.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 43

Stratifiziertes Datalog — Präzise

Definition 3.22

Sei P ein Datalog - Programm.

Eine Stratifizierung von P ist eine Folge P^1, \ldots, P^m von Datalog $^-$ -Programmen, so dass $m \ge 1$ ist und es eine Abbildung $\sigma : idb(P) \to \{1, ..., m\}$ gibt, so dass gilt:

- (1) P^1, \ldots, P^m ist eine Partition von P (d.h. $P = P^1 \dot{\cup} \cdots \dot{\cup} P^m$),
- (2) für jedes idb-Prädikat R von P gilt: alle Regeln, in deren Kopf R vorkommt, gehören zu $P^{\sigma(R)}$.
- (3) kommt ein $S \in idb(P)$ im Rumpf einer Regel mit Kopf R vor, so ist $\sigma(S) \leq \sigma(R)$, und
- (4) kommt ein $S \in idb(P)$ negiert im Rumpf einer Regel mit Kopf R vor, so ist $\sigma(S) < \sigma(R)$.

Notation:

- $ightharpoonup P^i$ heißt *i*-tes Stratum bzw. *i*-te Schicht der Stratifizierung P^1, \ldots, P^m ("Stratum": lat. für "Schicht"; Plural: Strata)
- σ heißt Stratifizierungs-Abbildung
- ▶ Ein Datalog¬-Programm P heißt stratifizierbar, falls es eine Stratifizierung von P gibt. Stratifiziertes Datalog bezeichnet die Menge aller stratifizierbaren Datalog - Programme.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Anfragesprachen mit Rekursion — Datalog Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negatior

Test auf Stratifizierbarkeit

Abhängigkeitsgraph für Datalog - Programme

Definition 3.23

Sei P ein Datalog - Programm. Der Abhängigkeitsgraph $G_P = (V_P, E_P^+, E_P^-)$ ist der gerichtete Graph mit

- ightharpoonup Knotenmenge $V_P := sch(P)$
- Kantenmengen

$$E_P^+ := \left\{ (S, R) : \begin{array}{l} \text{es gibt eine Regel in } P, \text{ in deren Kopf } R \text{ vorkommt} \\ \text{und in deren Rumpf } S \text{ positiv vorkommt} \end{array} \right\}$$

$$= \left\{ (S, R) : \begin{array}{l} \text{es gibt eine Regel in } P, \text{ in deren Kopf } R \text{ vorkommt} \\ \text{or some single eine Regel in } P, \text{ in deren Kopf } R \text{ vorkommt} \end{array} \right\}$$

$$E_P^- := \left\{ (S, R) : \begin{array}{l} \text{es gibt eine Regel in } P, \text{ in deren Kopf } R \text{ vorkommt} \\ \text{und in deren Rumpf } S \text{ negativ vorkommt} \end{array} \right.$$

Beispiel: Siehe Tafel: Abhängigkeitsgraph für

```
E(L, S, Z) \leftarrow U-Bahn-Netz(L, S, Z)
        E(L, S, Z) \leftarrow E(L, S, Y), U-Bahn-Netz(L, Y, Z)
Erreichbar\_BW(Z) \leftarrow E(L, "Bockenheimer Warte", Z)
        Station(S) \leftarrow U-Bahn-Netz(L, S, Z)
                         U-Bahn-Netz(L, S, Z)
        Station(Z)
                           Station(Z), \neg Erreichbar\_BW(Z)
```

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

Test auf Stratifizierbarkeit

Proposition 3.24

Für iedes Datalog -Programm P gilt:

P ist stratifizierbar \iff Im Abhängigkeitsgraph G_P gibt es keinen Kreis, in dem eine Kante aus E_P^- vorkommt.

Beweis:

" \Longrightarrow ": Sei σ eine Stratifizierungs-Abbildung von P.

Angenommen, es gibt einen Kreis von R nach R, auf dem mindestens eine Kante aus E_{P}^{-} vorkommt.

Dann gilt: $\sigma(R) > \sigma(R)$. Widerspruch!

": Idee: Nutze eine topologische Sortierung der starken Zusammenhangskomponenten von $(E_P^+ \cup E_P^-)$, um die einzelnen Schichten zu definieren.

Details: Übung.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 45

Anfragesprachen mit Rekursion — Datalog Einschränkung und Erweiterungen: nr-Datalog und Datalog mit Negatior

Spezialfall: nr-Datalog

nr-Datalog

- nr-Datalog mit Negation
- stratifiziertes Datalog, eingeschränkt auf Programme P, in deren Abhängigkeitsgraph es keinen gerichteten Kreis (über $(E_P^+ \cup E_P^-)$) gibt.

Satz 3.25

Die folgenden Anfragesprachen können genau dieselben Anfragefunktionen beschreiben:

- (a) nr-Datalog -Anfragen
- (b) Relationale Algebra
- (c) Relationenkalkül.

Bemerkung: Die Übersetzung von nr-Datalog in eine der anderen Sprachen kann mehr als polynomiell viel Zeit beanspruchen, da nr-Datalog -Programme u.U. viel kürzer sind als äguivalente Anfragen der anderen Sprachen.

Beweis: Der Beweis wird in den Kapiteln 4 und 5 (Relationale Algebra und Relationenkalkül) gegeben.

NICOLE SCHWEIKARDT GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN

KAPITEL 3, SEITE 47

Stratifiziertes Datalog — Semantik

- ▶ Sei P^1, \ldots, P^m eine Stratifizierung eines Datalog $^-$ -Programms P.
- ▶ Betrachte jede Schicht *P*ⁱ als ein semipositives Datalog¬-Programm mit $edb(P^i) \subset edb(P) \cup idb(P^1) \cup \cdots \cup idb(P^{i-1})$
- Sei I ∈ edb(P).

Die Semantik [P](I) von P auf I ist folgendermaßen definiert: $[P](I) := I^m$,

$$\begin{array}{lll} {\bf I}^1 & := & [\![P^1]\!]({\bf I}) \\ {\bf I}^2 & := & [\![P^2]\!]({\bf I}^1) \\ \vdots & \vdots & \vdots \\ {\bf I}^m & := & [\![P^m]\!]({\bf I}^{m-1}) \end{array}$$

Man kann leicht zeigen, dass folgendes gilt:

- (a) Obige Definition hängt nicht von der konkreten Wahl der Stratifizierung von P ab. D.h. für je zwei verschiedene Stratifizierungen P^1, \ldots, P^m und Q^1, \ldots, Q^n von P gilt: $[P^m](I^{m-1}) = [Q^n](I^{n-1}).$
- (b) [P](I) ist der (eindeutig definierte) kleinste Fixpunkt **J** von $T_P(\cdot)$ mit $\mathbf{J}|_{edb(P)} = \mathbf{I}$.

NICOLE SCHWEIKARDT

GOETHE-UNIVERSITÄT FRANKFURT

VORLESUNG LOGIK UND DATENBANKEN