Goethe-Universität Frankfurt am Main Institut für Informatik Theorie komplexer Systeme Prof. Dr. Nicole Schweikardt

Logik in der Informatik

Wintersemester 2011/2012

Übungsblatt 10

Zu bearbeiten bis Donnerstag, 19. Januar 2012

Aufgabe 1: (20 Punkte)

Betrachten Sie eine geeignete Signatur σ , die aus überabzählbar vielen Symbolen besteht und finden Sie eine Menge Φ von FO[σ]-Formeln, die erfüllbar ist, aber kein (höchstens) abzählbares Modell besitzt.

Aufgabe 2: (30 Punkte)

Beweisen Sie Bemerkung 8.16, d.h. zeigen Sie Folgendes: Sei σ eine beliebige Signatur und sei $\mathfrak A$ eine beliebige σ -Struktur. Dann gilt:

- (a) Ist $\mathfrak A$ endlich, so gilt für alle σ -Strukturen $\mathfrak B$: $\mathfrak B \equiv \mathfrak A \iff \mathfrak B \cong \mathfrak A$.
- (b) Ist $\mathfrak A$ unendlich, so gibt es eine σ -Struktur $\mathfrak B$ mit $\mathfrak B \equiv \mathfrak A$ und $\mathfrak B \not\cong \mathfrak A$.

Hinweise: Für (b) können Sie den aufsteigenden Satz von Löwenheim und Skolem benutzen. Für (a) können Sie folgendermaßen vorgehen: Nutzen Sie Aufgabe 2 von Übungsblatt 1, um zu zeigen, dass (a) für endliche Signaturen gilt. Folgern Sie daraus, dass für beliebige Signaturen gilt: Falls $\mathfrak{B} \equiv \mathfrak{A}$, so ist |B| = |A|. Folgern Sie daraus, dass (a) für abzählbare Signaturen gilt. Folgern Sie dann, dass (a) auch für beliebige Signaturen gilt.

Aufgabe 3: (30 Punkte)

Sei $\sigma := \{E\}$ die Signatur, die aus einem 2-stelligen Relationssymbol E besteht. Zeigen Sie:

- (a) Die Klasse aller azyklischen (endlichen oder unendlichen) Graphen ist axiomatisierbar.
- (b) Die Klasse aller azyklischen (endlichen oder unendlichen) Graphen ist nicht endlich axiomatisierbar.
- (c) Die Klasse aller endlichen azyklischen Graphen ist nicht axiomatisierbar.

Zur Erinnerung: Ein gerichteter Graph ist azyklisch, falls er keinen Kreis endlicher Länge besitzt.

Aufgabe 4: (20 Punkte)

Geben Sie einen FO[\leq]-Satz χ an, so dass für alle { \leq }-Strukturen $\mathfrak A$ gilt:

 $\mathfrak{A} \models \chi \iff \mathfrak{A}$ ist eine diskrete lineare Ordnung, die ein kleinstes, aber kein größtes Element besitzt.