Submitted to the Symposium on Theoretical Aspects of Computer Science
www.stacs-conf.org

LOWER BOUNDS FOR MULTI-PASS PROCESSING OF
MULTIPLE DATA STREAMS

NICOLE SCHWEIKARDT

Institut fUr Informatik, Goethe-Universitat Frankfurt am Main,
Robert-Mayer-Str. 11-15, D-60325 Frankfurt am Main, Germany
E-mail addressschweika@informatik.uni-frankfurt.de

URL: http://www.informatik.uni-frankfurt.de/"schweika

ABSTRACT. This paper gives a brief overview of computation models for data retn@@cess-
ing, and it introduces a new model for multi-pass processing of multiptasts, the so-called
mp2s-automata Two algorithms for solving the set disjointness problem with these automata a
presented. The main technical contribution of this paper is the proof aferlbound on the size
of memory and the number of heads that are required for solving thdisjeintness problem with
mp2s-automata.

1. Introduction

In the basic data stream model, the input consists of a stream of data itemscahible read
only sequentially, one after the other. For processing these data items, ayrwrfier of limited
size is available. When designing data stream algorithms, one aims at algoritioae memory
size is far smaller than the size of the input.

Typical application areas for which data stream processing is relevanea., IP network
traffic analysis, mining text message streams, or processing meteorobbgf@gienerated by sensor
networks. Data stream algorithms are also used to support query optimiratéational database
systems. In fact, virtually all query optimization methods in relational databagermss rely on
information about the number of distinct values of an attribute or the self-jpinag a relation —
and these pieces of information have to be maintained while the database tisdufddata stream
algorithms for accomplishing this task have been introduced in the seminal[@ape

Most parts of the data stream literature deal with the task of perforoniagass over a single
stream. For a detailed overview on algorithmic techniques for this scenario wetef23]. Lower
boundson the size of memory needed for solving a problem by a one-pass alg@ithosually
obtained by applying methods froommmunication complexi{gee, e.g., [2, 20]). In fact, for many
concrete problems it is known that the memory needed for solving the prdibjenteterministic
one-pass algorithm is at least linear in the siz# the input. For some of these problems, however,
randomizecdne-pass algorithms can still compute gaeggroximateanswers while using memory

1998 ACM Subject ClassificationF.1.1 (Computation by Abstract Devices: Models of Computation);
F.2.2 (Analysis of Algorithms and Problem Complexity: Nonnumericalohithms and Problems);
F.2.3 (Analysis of Algorithms and Problem Complexity: Tradeoffs betw€omplexity Measures) .

Key words and phrasegdata streams, lower bounds, machine models, automata, the set digjsiptablem.

N SYMPOSIUM
V' ON THEORETICAL
) Y =) aspecs
4 7 / OF COMPUTER _ i
SCIENCE © Nicole Schweikardt

Confidential — submitted to STACS

2 NICOLE SCHWEIKARDT

of size sublinear im. Typically, such algorithms are basedsamplingi.e., only a “representative”
portion of the data is taken into account, arathdom projectionsi.e., only a rough “sketch” of
the data is stored in memory. See [23, 10] for a comprehensive sunagycofding algorithmic
techniques and for pointers to the literature.

Also the generalization whemaultiple passes over a single stream are performed, has re-
ceived considerable attention in the literature. Techniques for provirgy lbaunds in this scenario
can be found, e.g., in [20, 18, 9, 12, 22].

A few articles also deal with the task pfocessing several streamsin parallel. For example,
the authors of [28] consider algorithms which perform one pass overaetreams. They introduce
a new model of multi-party communication complexity that is suitable for provingitweands on
the amount of memory necessary for one-pass algorithms on multiple streg|i@8], these results
are used for determining the exact space complexity of processing pertdiL twig queries.

In recent years, the database community has also addressed the idesigning general-purpose
data stream management systesmsl query languages that are suitable for new application areas
where multiple data streams have to be processed in parallel. To get ameavefithis research
area, [3] is a good starting point. Foundations for a theorgtedam queriedave been laid in
[19]. Stream-based approaches have also been examined in detaihecton withXML query
processing and validatigrsee, e.g. the papers [27, 26, 13, 8, 4, 5, 16].

Thefinite cursor machine§~CMs, for short) of [14] are a computation model for performing
multiple passes over multiple streams. FCMs were introduced as an abstract model of database
guery processing. Formally, they are defined in the framewordbsfract state machinegnfor-
mally, they can be described as follows: The input for an FCM is a relatdatabase, each relation
of which is represented bytable, i.e., an ordered list of rows, where each row corresponds to a
tuple in the relation. Data elements are viewed as “indivisible” objects thateamanipulated by
a number of “built-in” operations. This feature is very convenient to mo@eldard operations on
data types like integers, floating point numbers, or strings, which may akhepthe universe of
data elements. FCMs can operate in a finite numbenadesusing aninternal memoryin which
they can store bitstrings. They access each relation through a finite naibersors each of
which can read one row of a table at any time. The model incorporategcgrEamingor sequen-
tial processingaspects by imposing a restriction on the movement of the cursors: They aan mo
on the tables only sequentially in one direction. Thus, once the last ciasdefh a row of a table,
this row can never be accessed again during the computation. Note, drotvet several cursors
can be moved asynchronously over the same table at the same time, anchthes,ie different,
possibly far apart, regions of the table can be read and processed sieouitdy.

A common feature of the computation models mentioned so far in this paper is that the
put streams areead-onlystreams that cannot be modified during a pass. Recentlystksaim-
based models for external memory processing have been proposed, among them 8teSort
model[1, 24], theW-Streammodel [11], and the model akad/write stream$17, 16, 15, 7, 6].

In these models, several passes may be performed over a single streaen several streams in
parallel, and during a pass, the content of the stream may be modified.

A detailed introduction talgorithms on data streamsespectively, to the related areasoib-
linear algorithmscan be found in [23, 10]. A survey atream-based models for external memory
processingand of methods for provinpwer boundsn these models is given in [25]. A database
systems oriented overview of so-callddta stream systent&n be found in [3]. For a list afpen
problemsin the area of data streams we refer to [21].

LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREIS 3

In the remainder of this article, a new computation model for multi-pass pliogesismultiple
streams is introduced: thep2s-automataln this model, (read-only) streams can be processed by
forward scans as well as backward scans, and several “head§ecused to perform several passes
over the streams in parallel. After fixing the basic notation in Section 2, the datigrumodel of
mp2s-automata is introduced in Section 3. In Section 4, we consideettdisjointness problem
and prove upper bounds as well as lower bounds on the size of menwihe@number of heads
that are necessary for solving this problem with an mp2s-automaton. SBa@ancludes the paper
by pointing out some directions for future research.

2. Basic notation

If fis a function from the set of non-negative integers to the set of realshaly write
f(n) instead of[f(n)] (where[z] denotes the smallest integerz). We writelgn to denote the
logarithm ofn with respect to base 2. For a §étve writeD* to denote the set of all finite strings
over alphabeb. We viewD* as the set of all finitelata streamsghat can be built from elements in
D. For a streand e D* write | S| to denote the length of, and we writes; to denote the element

in D that occurs at théth position inS, i.e.,S = s1s9--- 515"

3. A computation model for multi-pass processing of multiple streams

In this section, we fix a computation model for multi-pass processing of multiglares. The
model is quite powerful: Streams can be processed by forward scamdl@s backward scans, and
several "heads” can be used to perform several passes ovérgamsn parallel. For simplicity, we
restrict attention to the case where jtwgb streams are processed in parallel. Note, however, that it
is straightforward to generalize the model to an arbitrary number of streams.

The computation model, calladp2s-automata can be described as follows: LBtbe a set,
and letm, k;, k, be integers withn. > 1 andk;, k, > 0. An

mp2s-automatom with parametergD, m, k;, k)

receives as input two strearfiss D* andT € D*. The automaton’s memory consistgofdifferent
states (note that this corresponds to a memory buffer consistiggrobits). The automaton’s state
space is denoted b§. We assume tha®) contains a designatestart stateand that there is a
designated subsét of () of so-calledaccepting states

On each of the input streanfsand 7', the automaton hak; heads that process the stream
from left to right (so-calledorward head}¥ andk, heads that process the stream from right to left
(so-calledbackward heads The heads are allowed to move asynchronously. Wekusedenote
the total number of heads, i.&.= 2k; + 2k,.

In theinitial configurationof .4 on input(S, T'), the automaton is in thetart state all forward
heads orf andT are placed on the leftmost element in the stream, sy@esp.t1, and allbackward
heads are placed on the rightmost element in the streana‘g‘er.esp.t‘fl.

During each computation step, depending on (a) the current state (i.eurtbetcontent of the
automaton’s memory) and (b) the elementsSandT at the current head positions, a deterministic
transition function determines (1) the next state (i.e., the new content of theaton’s memory)
and (2) which of thek heads should be advanced to the next position (where forward heads a

1“mpZS” stands for milti-pass processing of 2reams

4 NICOLE SCHWEIKARDT

D : setofdata itemsf which input streams and7 are composed

m : size of the automatonstate space) (this corresponds ttg m bits of memory)
k; : number offorward headsavailable on each input stream

k, : number ofbackward headavailable on each input stream

k. 2k;+ 2k, (total number of heads)

Figure 1: The meaning of the parametéis m, k;, k,) of an mp2s-automaton.

advanced one step to the right, and backward heads are advancadpteethe left). Formally, the
transition function can be specified in a straightforward way by a function

§: Qx (Du{end)* — Q x {advancestay”

where @ denotes the automaton’s state space, emdlis a special symbol (not belonging Id)
which indicates that a head has reached the end of the stream (forarddmead this means that
the head has been advanced beyond the rightmost element of the strddor, abackward head
this means that the head has been advanced beyond the leftmost elemerstiafam).

The automaton’s computation on inpiff, 7') ends as soon as each head has passed the entire
stream. The input iacceptedf the automaton’s state then belongs to the/Setf accepting states,
and it isrejectedotherwise.

The computation model of mp2s-automata is closely related tdiritie cursor machinesf
[14]. In both models, several streams can be processed in paralletesadal heads (or, “cur-
sors”) may be used to perform several “asynchronous” passshoy same stream in parallel. In
contrast to the mp2s-automata of the present paper, finite cursor maskiremtroduced as an
abstract model for database query processing, and their formaitidefin [14] is presented in the
framework ofabstract state machines

Note that mp2s-automata can be viewed as a generalization of other modetsefpass or
multi-pass processing of streams. For example, the scenario of [28]eatsngle pass over two
streams is performed, is captured by an mp2s-automaton where 1 foreaadahd no backward
heads are available on each stream. Also, the scenario whamaesecutive passes of each input
stream are available (cf., e.g., [20]), can be implemented by an mp2s-autonuetiousep forward
heads and backward heads, and let tli¢h head wait at the first position of the stream until the
(i—1)-th head has reached the end of the stream.

4. The set digointness problem

Throughout Section 4 we consider a particular version ofsétedisjointness problenvhere,
for each integen. > 1, D,, := {a1,bi1, ..., ay, b, } is afixed set on data items. We write
Disj,, to denote the following decision problem: The input consists of two strefuansd ' over
D, with |S| = |T| = n. The goal is to decide whether the séis, ..., s,} and{t1,...,t,} are
disjoint.

An mp2s-automatosolveshe problenDisj, if, for all valid inputs toDisj,, (i.e., allS, T e b~
with \5‘] = |ﬂ = n), it accepts the input if, and only if, the corresponding sets are disjoint.

LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREIS 5

4.1. Two upper boundsfor the set disointness problem

It is straightforward to see that the problddisj,, can be solved by an mp2s-automaton with
227 states and a single forward head on each of the two input streams: Dufinsg ghase, the
head onS processeg and stores, in the automaton’s current state, the subdgt tfiat has been
seen while processinﬁ. Afterwards, the head off processef and checks whether the element
currently seen by this head belongs to the subsdb,pthat is stored in the automaton’s state.
Clearly,2?" states suffice for this task, sin{ie,,| = 2n. We thus obtain the following trivial upper
bound:

Proposition 4.1. Disj, can be solved by an mp2s-automaton with paramef®ss22", 1, 0).

The following result shows that, at the expense of increasing the nurhbema@rd heads on
each stream tg/n, the memory consumption can be reduced exponentially:

Proposition 4.2. Disj, can be solved by an mp2s-automaton with paraméf@fsn+2, \/n, 0).2

Proof. The automaton proceeds in two phases.

The goal inPhase 1lis to move, for each € {1,...,/n}, thei-th head onS onto the
((z’—l)\/ﬁ + 1)-th position in S. This way, after having finisheBhase 1 the heads partition
S into \/n sub-streams, each of which has length. Note thatn + 1 — /n states suffice for
accomplishing this: The automaton simply stores, in its state, the current poditiosm ightmost
head(s) orS. It starts by leaving head 1 at positidrand moving the remaining heads Srto the
right until positiony/n + 1 is reached. Then, it leaves head 2 at positjén+ 1 and proceeds by
moving the remaining heads to the right until positiayin + 1 is reached, etc.

During Phase 2the automaton checks whether the two sets are disjoint. This is dgnesab-
phases. During thg-th sub-phase, thgth head oril’ processef from left to right and compares
each element ifi’ with the elements on the current positions of tjie heads orS. When thej-th
head oril’ has reached the end of the stream, each of the heasissomoved one step to the right.
This finishes thg-th sub-phase. Note thBhase Zan be accomplished by using just 2 states: By
looking at the combination of heads @hthat have already passed the entire stream, the automaton
can tell which sub-phase it is currently performing. Thus,Pbase 2we just need one state for
indicating that the automaton is Phase 2 and an additional state for storing that the automaton
has discovered already that the two setsmatalisjoint. [

4.2. Two lower boundsfor the set digointness problem
We first show a lower bound for mp2s-automata where only forwardshawsmavailable:
Theorem 4.3. For all integersn, m, k;, such that, fork = 2k; and v = k:? +1,
E-v-lg(n+1) + k-v-lgm + v-(1+1gv) < n,
the problem Disj cannot be solved by any mp2s-automaton with paraméirsm, k;, 0).

Proof. Letn, m, andk; be chosen such that they meet the theorem’s assumption. For contradiction,
let us assume thad is an mp2s-automaton with parametébs,, m, k;, 0) that solves the problem
Disj,,.

2To be precise, the proof shows that already 2 — \/n states suffice.

6 NICOLE SCHWEIKARDT

Recall thatD,, = {a1,b1, ..., an, b, } isafixed set okn data items. Throughout the proof
we will restrict attention to input streantsand7” which are enumerations of the elements in a set

Al = {a;riel U {b:iel}

for arbitraryl C {1,..,n} and its complement := {1,..,n} \ I.
Note that for alll;, I> C {1,..,n} we have

Al and A”2 are disjoint <= I, = 1;. (4.1)

For eachl C {1,..,n} we letS” be the stream of length which is defined as follows: For each
i1 € I, it carries data item, at positioni; and for eachi ¢ I, it carries data item; at positioni. The
stream7! contains the same data items§s but in the opposite order: For eatke I, it carries
data itema; at positionn — i + 1; and for each ¢ I, it carries data item; at positionn — i + 1.

Forsetsl;, I, C {1,..,n}, we write D(I}, I,) to denote the input instanc&' and7> for the
problemDisj,,. From (4.1) and our assumption that the mp2s-automadtsnlvesDisj,,, we obtain
that

A acceptsD(I1,I5) <= I, =1. 4.2)

Throughout the remainder of this proof, our goal is to find two $ef§ C {1, ..,n} such that
1) I#1TI, and

(2) the accepting run aft on D(I, 1) is “similar” to the accepting run afl on D(I',T'), so
that the two runs can be combined into an accepting rud oh D(I, I’) (later on in the
proof, we will see what “similar” precisely means).

Then, however, the fact that accepts inpuD (I, I’) contradicts (4.2) and thus finishes the proof
of Theorem 4.3.
For accomplishing this goal, we let

v o= k2 +1 (4.3)
be 1 plus the number of pairs of heads on the two streams. We subdividetthie s, n} into v
consecutive block#, ..., B, of equal size?. l.e., for eachj € {1,..,v}, block B; consists of

the indices in{ (j—1)% +1, ..., j& }.

We say that a paifhg, hr) of heads ofA checks blockB; during the run on inpuD (1, I5)
if, and only if, at some point in time during the run, there exjst € B; such that head g is on
elementa; or b; in St and headvr is on elementi;, or b, in Tk,

Note that each pair of heads can check at most one block, since ongrtbheads are available
and the data items 2 are arranged in the reverse order (with respect to the indiockslements
a; andb;) than inS7t. Since there are blocks, but onlyv — 1 pairs(hg, hr) of heads on the two
streams, we know that for eaé¢h, I, C {1,..,n} there exists a block; that isnot checkedluring
A'srunonD(Iy, I5).

In the following, we determine aséf C {/ : I C {1,..,n}} with | X| > 2 such that for all
I,I' € X, item (2) of our goal is satisfied. We start by using a simple averagingramgtto find a
joe{l,..,vtandaseXy C {/: 1 C{1,..,n}} such that

e for eachl € X, block Bj, is not checked during!’s run on inputD(1,I), and

[] ’Xo’ 2 %

LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREIS 7

For the remainder of the proof we fi := Bj,.
We next choose a sufficiently large s€t C X, in which everythir)g outside blocﬁf is fixed:
A simple averaging argument shows that there,aC X, andal C {1,..,n} \ B such that

e foreachl € X;, I\ B=1, and

o [Xi| > Kb > ou-lev,

n
2"

We next identify a seX, C X7 such that for alll, I’ € X5 the runs ofd on D(I,T) andD(I’, ")

are “similar” in a sense suitable for item (2) of our goal. To this end, fohdeadh of A we let
configﬁ be theconfiguration(i.e., the current state and the absolute positions of all the heads) in the
run of A on input D(I,T) at the particular point in time where heachas just left blockB (i.e.,
headh has just left the last element or b; with i € B that it can access). We lebnfig be the
ordered tuple of the configuratioenfig, for all headsh of .A. Note that the number of possible
configurationsconfig, is < m - (n+1)¥, sinceA hasm states and since each of the= 2k,
heads can be at one outwo#1 possible positions in its input stream. Consequently, the number of
possiblek-tuplesconfig of configurations is< (m - (n+1)’f)k.

A simple averaging argument thus yields a tuptef configurations and a séfs C X such that

e forall I € X5, configd = ¢, and

o [Xo| > (m-(‘?ﬁl“)‘m > 24 lev — klgm — K lg(nt1)
Using the theorem’s assumption on the numbers, andk,, one obtains thatXs| > 2. Therefore,
we can find two set$, I’ € X, with [# T'.

To finish the proof of Theorem 4.3, it remains to show that the rund oh D(I, 1) and on
D(I', T') can be combined into a run of on D(I, I’) such thatA (falsely) accepts inpub (I, I").
To this end let us summarize what we know abbandl’ in Xs:

(a) I and!’ only differ in block B.

(b) Block B is not checked during!’s runs onD(I,T) and onD(I’, 7). l.e., while any head on
S! (resp.S"') is at an element; or b; with i € 13, no head o’ (resp.Z"") is on an element
a; orby with i’ € B.

(c) ConsideringA’s runs onD(I,1) and onD(I’, 1), each time a head leaves the last position
in B that it can access, both runs are are in exactly the same configuratignhdyeare in
the same state, and all heads are at the same absolute positions in their @gasstr

Due to item (a),A’s run on inputD(I, ') starts in the same way as the runs B/, 1) and
D(I',T'): As long as no head has reached an element in hiydhe automaton has not yet seen
any difference betweeP (I, I’) on the one hand anB (I, 1) andD(I’, I’) on the other hand.

At some point in time, however, some headwill enter block B, i.e., it will enter the first
elementa; or b; with i € B that it can access. The situation then is as follows:

e If his a head orb’, then, due to item (b), no head @H’ is at an element i®3. Therefore,
until headh leaves block, A will go through the same sequence of configurations as in
its run on inputD(I,T). Item (c) ensures that whenleaves blockB, A is in the same
configuration as in its runs aR (1, I) and onD(I’, T').

8 NICOLE SCHWEIKARDT

e Similarly, if # is a head orf’”’, then, due to item (b), no head &ff is at an element
in B. Therefore, until head leaves blockB, A will go through the same sequence of
configurations as in its run on inpiit(I’, T’). Item (c) ensures that whénleaves block3,

A is in the same configuration as in its runsB’, I’) and onD(I, I).

In summary, ind’s run onD(1, 7), each time a heald has just left the last element in blo¢kthat
it can access, it is in exactly the same configuration ad’sruns onD(I,T) and onD(I’,I’) at
the points in time where heddhas just left the last element in blodk that it can access. After
the last head has left block, .A’s run on D(I, T') finishes in exactly the same way ais runs
onD(I,I)andD(I',I"). In particular, it accept® (I, I’) (since it acceptd (I, 1) andD(I', I')).
This, however, is a contradiction to (4.2). Thus, the proof of Theorghisdcomplete. [

Remark 4.4. Let us compare the lower bound from Theorem 4.3 with the upper bouRtbpbsi-
tion 4.2: The upper bound tells us tHaisj,, can be solved by an mp2s-automaton with2 states
and./n forward heads on each input stream. The lower bound implies (for largeghn) that
if just ¥/n forward heads are available on each stream, not pvénstates suffice for solving the
problemDisj,, with an mp2s-automaton.

Remark 4.5. A straightforward calculation shows that the assumptions of Theoremelsatisfied,
for example, for all sufficiently large integersand all integersn andk; with 4k, < e and

n
8 < o

Theorem 4.3 can be generalized to the following lower bound for mp2srati¢owhere also
backward heads are available:

Theorem 4.6. For all n, m, k;, k, such that, fork = 2k; 42k, and v = (k?+kZ2+1)-(2k;k,+1),
E>v-lg(n+l) + k-v-lgm + v-(14+1gv) < n,
the problem Disj cannot be solved by any mp2s-automaton with paraméfrsm, k;, k).

Proof. The overall structure of the proof is the same as in the proof of TheorgémMe consider
the same setd’, forall 7 C {1,..,n}. The strean®” is chosen in the same way as in the proof of
Theorem 4.3, i.e., for eache I, the streant’ carries data item; at position:; and for eachi ¢ I,
it carries data itend; at positioni.

Similarly as in the proof of Theorem 4.3, the stredih contains the same data items.&s
Now, however, the order in which the elements occufnis a bit more elaborate. For fixing this
order, we choose the following parameters:

v = k?—l—k‘f—i—l, vy = 2ksk,+1, v o= v1-Ug. (4.4)

We subdivide the sdll, . ., n} into v; consecutive block®, . .., B, of equal size;ll. l.e., for each
j €{1,..,v1}, block B; consists of the indices i (j—1)+ + 1, ..., ji* }-
Afterwards, we further subdivide each blogk; into v, consecutive subblocks of equal sige

These subblocks are denotéij, .. ,B;?Q. Thus, each subbloclij' consists of the indices in
{G-Dg+0G"-Dy+1 ..., - +55 1

Now let = be the permutation ofl,..,n} which maps, for allj,» with 1 < 57 < v; and
1<r< % element(j—l)% 4+ s onto element(vl—j)% + s. Thus,m maps elements in block
B; onto elements in block,, _;;1, and inside these two blocks,maps the elements of subblock

LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREIS 9

1—1+1"
reverse the order of the subblocB§ .

Finally, we are ready to fix the order in which the elementglinoccur in the strearf’: For
eachi € I, the strean¥’’ carries data itena,; at positionr(i); and for each ¢ I, it carries data
item b; at positionr (7).

In the same way as in the proof of Theorem 4.3, we wiitd;, 1) to denote the input instance
St andT?>.

A pair of headghg, hr) is calledmixedif one of the heads is a forward head and the other is
a backward head. Sincereverses the order of the blocks, . ., B,,, it is straightforward to see
that everynon-mixedpair of heads can check at most one of the bloBks. ., B,,. Since there
arewv; blocks, but only(v; — 1) non-mixed pairs of heads, we know that for All I C {1,..,n}
there exists a block; that isnot checkedby any non-mixed pair of heads duriogjs run on input
D(I, I).

The same averaging argument as in the proof of Theorem 4.3 thus tells tisetteais aj; €
{1,..,n1}andaseX(C {I: I C{1,..,n}} suchthat

ij/ onto elements in subblodk’ Note thatr reverses the blockB; in order, but it doesiot

e for eachl € X{), block B;, is not checked by any non-mixed pair of heads duritig run
oninputD(/,I), and
o | X[| > %
From our particular choice of, it is straightforward to see that evamjixedpair of heads can check
at most one of the subbloclB}l, ..., B3?. Since there are, such subblocks, but onlfw, — 1)
mixed pairs of heads, there must bgae {1,..,v2} and a sef;, C X, such that

e for eachl € X, subblockijf is not checked by any pair of heads durid run on input

D(I,I), and
X! n
o [Xo| > o> 2

For the remainder of the proof we fig := Bif, and we letk := 2k; + 2k, denote the total
number of heads. Using these notations, the rest of the proof can eviadtatim from the proof
of Theorem 4.3. [

The proof of Theorem 4.6 is implicit in [14] (see Theorem 5.11 in [14])efEh however, the
proof is formulated in the terminology of a different machine model, the soetéiltite cursor
machines

5. Final remarks

Several questions concerning the computational power of mp2s-autootatamaturally. On
a technical level, it would be nice to determine the exact complexity of the geindiess problem
with respect to mp2s-automata. In particular: Is the upper bound protigdderoposition 4.2
optimal? Can backward scans significantly help for solving the set disjogpreblem? Are/n
heads really necessary for solving the set disjointness problem whea sub-exponential number
of states are available?

A more important task, however, is to consider also randomized versiomp2$-automata,
to design efficient randomized approximation algorithms for particular pnehyle@nd to develop
techniques for proving lower bounds in the randomized model.

10 NICOLE SCHWEIKARDT

Acknowledgement. | would like to thank Georg Schnitger for helpful comments on an earlier
version of this paper.

References

[1] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On the stregmiodel augmented with a sorting primitive.
In Proc. FOCS’04 pages 540-549, 2004.
[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of axipmating the frequency momentournal of
Computer and System Science8:137-147, 1999.
[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Modeld ssues in data stream systemsPhoc.
PODS’02 pages 1-16, 2002.
[4] Z.Bar-Yossef, M. Fontoura, and V. Josifovski. On the memeruirements of XPath evaluation over XML streams.
In Proc. PODS’04 pages 177-188, 2004.
[5] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering inequ evaluation over XML streams. Proc. PODS’05
pages 216-227, 2005.
[6] P. Beame and D.-T. Huynh-Ngoc. On the value of multiple read/wtieams for approximating frequency mo-
ments. InProc. FOCS’082008.
[7] P. Beame, T. S. Jayram, and A. Rudra. Lower bounds foroaizked read/write stream algorithms. Rroc.
STOC'07 pages 689-698, 2007.
[8] C.Y.Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficidtaring of XML documents with XPath expressions.
VLDB Journa) 11(4):354-379, 2002.
[9] T. M. Chan and E. Y. Chen. Multi-pass geometric algorithDiscrete & Computational Geometrg7(1):79-102,
2007.
[10] A. Czumaj and C. Sohler. Subliner-time algorithrBsilletin of the EATCS39:23-47, 2006.
[11] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off spamedasses in graph streaming problemsPtac.
SODA'06 pages 714—723, 2006.
[12] A.Géland P. Gopalan. Lower bounds on streaming algorithrregdproximating the length of the longest increasing
subsequence. IAroc. FOCS'07 pages 294-304, 2007.
[13] T. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Pregggs XML streams with deterministic automata
and stream indexe&CM Transactions on Database Syste@8(4):752—788, 2004.
[14] M. Grohe, Y. Gurevich, D. Leinders, N. Schweikardt, J. Tyewmkcz, and J. Van den Bussche. Database query
processing using finite cursor machin€keory of Computing Systen2909. To appear. A preliminary version can
be found inProc. ICDT'07, pages 284—298.
[15] M. Grohe, A. Hernich, and N. Schweikardt. Randomized comntjmria on large data sets: Tight lower bounds. In
Proc. PODS’'06 pages 243-252, 2006. Full version available as CoRR Report,:asXdB/0703081.
[16] M. Grohe, C. Koch, and N. Schweikardt. Tight lower boundsdfeery processing on streaming and external mem-
ory data. Accepted atheoretical Computer Sciencgpecial issue for selected papers from ICALP’05.
[17] M. Grohe and N. Schweikardt. Lower bounds for sorting with feamdom accesses to external memoryPtac.
PODS’05 pages 238-249, 2005.
[18] S. Guha and A. McGregor. Tight lower bounds for multi-passastreomputation via pass elimination. Broc.
ICALP’08, pages 760772, 2008.
[19] Y. Gurevich, D. Leinders, and J. Van den Bussche. A theorgtigfam queries. IfProc. DBPL, pages 153-168,
2007.
[20] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computingatanadreams. IfExternal memory algorithms
volume 50, pages 107-118. DIMACS Series in Discrete Mathematics laeatdtical Computer Science, 1999.
[21] A. McGregor et al. Open problems in data streams and related tdpgcember 2006. IITK Workshop on Algo-

rithms for Data Streaméittp://www.cse.iitk.ac.in/users/sganguly/workshop.h tml .
[22] J. Munro and M. Paterson. Selection and sorting with limited storBigeoretical Computer Scienc&2:315-323,
1980.

[23] S. Muthukrishnan. Data Streams: Algorithms and Applicati¢iesindations and Trends in Theoretical Computer
Sciencel(2), 2005.

[24] M. Ruhl. Efficient Algorithms for New Computational ModeRhD thesis, Massachusetts Institute of Technology,
2003.

[25] N. Schweikardt. Machine models and lower bounds for querggssing. IfProc. PODS'07 pages 41-52, 2007.

LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREIS 11

[26] L. Segoufin and C. Sirangelo. Constant-memory validation of stirga XML documents against DTDs. Proc.
ICDT'07, pages 299-313, 2007.

[27] L. Segoufin and V. Vianu. Validating streaming XML documentsPmc. PODS’'02 pages 53-64, 2002.

[28] M. Shalem and Z. Bar-Yossef. The space complexity of praegssML twig queries over indexed documents. In
Proc. ICDE’08 pages 824-832, 2008.

If accepted for publication by STACS, this work will be licensed under the Creative Commons Attribution-NoDerivs
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/

