
Ambiguity and Communication

Juraj Hromkovič 1 Georg Schnitger 2

1Department of Computer Science
ETH Zürich

2Institut für Informatik
Goethe Universität Frankfurt am Main

Ambiguity and Communication 1 / 12

The Goal

By how much does the size of NFA’s increase, if the number of
accepting computations is restricted?

Ambiguity and Communication 2 / 12

Ambiguity

Ambiguity

ambigN(x), the ambiguity of NFA N for input x , is the number of
accepting computations of N on x .

ambigN(n) = max{ambigN(x) : x ∈ Σn} is the ambiguity of NFA N for
input length n.

Why are automata with small ambiguity of interest? Basic decision
problems are efficiently solvable:

Given an NFA N and a fixed constant c, is the ambiguity of N
bounded by c? (Stearns and Hunt III, 1985).
Given an NFA N, is the ambiguity of N bounded, polynomial or
exponential? (Weber and Seidl, 1991).
Given two NFA N1 and N2 with ambiguity at most c, are N1 and N2
equivalent? (Stearns and Hunt III, 1985).

Ambiguity and Communication 3 / 12

Ambiguity

Ambiguity

ambigN(x), the ambiguity of NFA N for input x , is the number of
accepting computations of N on x .
ambigN(n) = max{ambigN(x) : x ∈ Σn} is the ambiguity of NFA N for
input length n.

Why are automata with small ambiguity of interest? Basic decision
problems are efficiently solvable:

Given an NFA N and a fixed constant c, is the ambiguity of N
bounded by c? (Stearns and Hunt III, 1985).
Given an NFA N, is the ambiguity of N bounded, polynomial or
exponential? (Weber and Seidl, 1991).
Given two NFA N1 and N2 with ambiguity at most c, are N1 and N2
equivalent? (Stearns and Hunt III, 1985).

Ambiguity and Communication 3 / 12

Ambiguity

Ambiguity

ambigN(x), the ambiguity of NFA N for input x , is the number of
accepting computations of N on x .
ambigN(n) = max{ambigN(x) : x ∈ Σn} is the ambiguity of NFA N for
input length n.

Why are automata with small ambiguity of interest? Basic decision
problems are efficiently solvable:

Given an NFA N and a fixed constant c, is the ambiguity of N
bounded by c? (Stearns and Hunt III, 1985).
Given an NFA N, is the ambiguity of N bounded, polynomial or
exponential? (Weber and Seidl, 1991).
Given two NFA N1 and N2 with ambiguity at most c, are N1 and N2
equivalent? (Stearns and Hunt III, 1985).

Ambiguity and Communication 3 / 12

Ambiguity

Ambiguity

ambigN(x), the ambiguity of NFA N for input x , is the number of
accepting computations of N on x .
ambigN(n) = max{ambigN(x) : x ∈ Σn} is the ambiguity of NFA N for
input length n.

Why are automata with small ambiguity of interest? Basic decision
problems are efficiently solvable:

Given an NFA N and a fixed constant c, is the ambiguity of N
bounded by c? (Stearns and Hunt III, 1985).

Given an NFA N, is the ambiguity of N bounded, polynomial or
exponential? (Weber and Seidl, 1991).
Given two NFA N1 and N2 with ambiguity at most c, are N1 and N2
equivalent? (Stearns and Hunt III, 1985).

Ambiguity and Communication 3 / 12

Ambiguity

Ambiguity

ambigN(x), the ambiguity of NFA N for input x , is the number of
accepting computations of N on x .
ambigN(n) = max{ambigN(x) : x ∈ Σn} is the ambiguity of NFA N for
input length n.

Why are automata with small ambiguity of interest? Basic decision
problems are efficiently solvable:

Given an NFA N and a fixed constant c, is the ambiguity of N
bounded by c? (Stearns and Hunt III, 1985).
Given an NFA N, is the ambiguity of N bounded, polynomial or
exponential? (Weber and Seidl, 1991).

Given two NFA N1 and N2 with ambiguity at most c, are N1 and N2
equivalent? (Stearns and Hunt III, 1985).

Ambiguity and Communication 3 / 12

Ambiguity

Ambiguity

ambigN(x), the ambiguity of NFA N for input x , is the number of
accepting computations of N on x .
ambigN(n) = max{ambigN(x) : x ∈ Σn} is the ambiguity of NFA N for
input length n.

Why are automata with small ambiguity of interest? Basic decision
problems are efficiently solvable:

Given an NFA N and a fixed constant c, is the ambiguity of N
bounded by c? (Stearns and Hunt III, 1985).
Given an NFA N, is the ambiguity of N bounded, polynomial or
exponential? (Weber and Seidl, 1991).
Given two NFA N1 and N2 with ambiguity at most c, are N1 and N2
equivalent? (Stearns and Hunt III, 1985).

Ambiguity and Communication 3 / 12

Ambiguity

What is Known?

Ambiguity is either bounded by a constant or bounded by a
polynomial or at least exponential.

There are NFA’s with exponential ambiguity and size n such that
equivalent NFA’s with polynomial ambiguity require 2n − 1 states
(Leung98).
Open for almost twenty years: can NFA’s with polynomial
ambiguity be simulated by NFA’s with bounded ambiguity, if size is
only allowed to increase polynomially?

Ambiguity and Communication 4 / 12

Ambiguity

What is Known?

Ambiguity is either bounded by a constant or bounded by a
polynomial or at least exponential.
There are NFA’s with exponential ambiguity and size n such that
equivalent NFA’s with polynomial ambiguity require 2n − 1 states
(Leung98).

Open for almost twenty years: can NFA’s with polynomial
ambiguity be simulated by NFA’s with bounded ambiguity, if size is
only allowed to increase polynomially?

Ambiguity and Communication 4 / 12

Ambiguity

What is Known?

Ambiguity is either bounded by a constant or bounded by a
polynomial or at least exponential.
There are NFA’s with exponential ambiguity and size n such that
equivalent NFA’s with polynomial ambiguity require 2n − 1 states
(Leung98).
Open for almost twenty years: can NFA’s with polynomial
ambiguity be simulated by NFA’s with bounded ambiguity, if size is
only allowed to increase polynomially?

Ambiguity and Communication 4 / 12

Ambiguity

The Result

Languages with small automata of ambiguity O(nk)

Let L be an arbitrary language. Define
∃k (L) = {w1$w2$ · · · $wm : m ∈ N and wi ∈ L for at least k positions}.

Let Σr be the alphabet of all r -element subsets of {1, . . . , r32}. Then
Lr = {xy ∈ Σ2

r | x ∩ y 6= ∅} is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set t = r1/3. Then ∃k ((Lr)t) has NFA’s with ambiguity O(nk) and
k · poly(r) states, but any equivalent NFA with ambiguity o(nk) has at
least 2(r/k2)1/3

states.

Ambiguity and Communication 5 / 12

Ambiguity

The Result

Languages with small automata of ambiguity O(nk)

Let L be an arbitrary language. Define
∃k (L) = {w1$w2$ · · · $wm : m ∈ N and wi ∈ L for at least k positions}.

Let Σr be the alphabet of all r -element subsets of {1, . . . , r32}. Then
Lr = {xy ∈ Σ2

r | x ∩ y 6= ∅} is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set t = r1/3. Then ∃k ((Lr)t) has NFA’s with ambiguity O(nk) and
k · poly(r) states, but any equivalent NFA with ambiguity o(nk) has at
least 2(r/k2)1/3

states.

Ambiguity and Communication 5 / 12

Ambiguity

The Result

Languages with small automata of ambiguity O(nk)

Let L be an arbitrary language. Define
∃k (L) = {w1$w2$ · · · $wm : m ∈ N and wi ∈ L for at least k positions}.

Let Σr be the alphabet of all r -element subsets of {1, . . . , r32}. Then
Lr = {xy ∈ Σ2

r | x ∩ y 6= ∅} is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set t = r1/3. Then ∃k ((Lr)t) has NFA’s with ambiguity O(nk) and
k · poly(r) states,

but any equivalent NFA with ambiguity o(nk) has at
least 2(r/k2)1/3

states.

Ambiguity and Communication 5 / 12

Ambiguity

The Result

Languages with small automata of ambiguity O(nk)

Let L be an arbitrary language. Define
∃k (L) = {w1$w2$ · · · $wm : m ∈ N and wi ∈ L for at least k positions}.

Let Σr be the alphabet of all r -element subsets of {1, . . . , r32}. Then
Lr = {xy ∈ Σ2

r | x ∩ y 6= ∅} is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set t = r1/3. Then ∃k ((Lr)t) has NFA’s with ambiguity O(nk) and
k · poly(r) states, but any equivalent NFA with ambiguity o(nk) has at
least 2(r/k2)1/3

states.

Ambiguity and Communication 5 / 12

Ambiguity

Why Product Languages (Lr)
t?

Choose L = {uv | u, v ∈ {0,1}r ,u 6= v}: the language of inequality
between r -bit strings. How large are NFA’s for ∃1(L), if bounded
ambiguity is required?

Guess a position i ∈ {1, . . . , r} and accept u1v1$ · · · $umvm if
uj

i 6= v j
i for some 1 ≤ j ≤ r .

∃1(L) is recognizable with poly(r) states and ambiguity r .
What went wrong? Few advice bits suffice and these advice bits
can be remembered with few states.
Advantages, when working with L = (Lr)t :

I L has (small) NFA’s with size poly(r + t) with linear ambiguity.
I The required number of guesses increases exponentially with t and

these guesses cannot be remembered by small NFA.

Ambiguity and Communication 6 / 12

Ambiguity

Why Product Languages (Lr)
t?

Choose L = {uv | u, v ∈ {0,1}r ,u 6= v}: the language of inequality
between r -bit strings. How large are NFA’s for ∃1(L), if bounded
ambiguity is required?

Guess a position i ∈ {1, . . . , r} and accept u1v1$ · · · $umvm if
uj

i 6= v j
i for some 1 ≤ j ≤ r .

∃1(L) is recognizable with poly(r) states and ambiguity r .
What went wrong? Few advice bits suffice and these advice bits
can be remembered with few states.
Advantages, when working with L = (Lr)t :

I L has (small) NFA’s with size poly(r + t) with linear ambiguity.
I The required number of guesses increases exponentially with t and

these guesses cannot be remembered by small NFA.

Ambiguity and Communication 6 / 12

Ambiguity

Why Product Languages (Lr)
t?

Choose L = {uv | u, v ∈ {0,1}r ,u 6= v}: the language of inequality
between r -bit strings. How large are NFA’s for ∃1(L), if bounded
ambiguity is required?

Guess a position i ∈ {1, . . . , r} and accept u1v1$ · · · $umvm if
uj

i 6= v j
i for some 1 ≤ j ≤ r .

∃1(L) is recognizable with poly(r) states and ambiguity r .

What went wrong? Few advice bits suffice and these advice bits
can be remembered with few states.
Advantages, when working with L = (Lr)t :

I L has (small) NFA’s with size poly(r + t) with linear ambiguity.
I The required number of guesses increases exponentially with t and

these guesses cannot be remembered by small NFA.

Ambiguity and Communication 6 / 12

Ambiguity

Why Product Languages (Lr)
t?

Choose L = {uv | u, v ∈ {0,1}r ,u 6= v}: the language of inequality
between r -bit strings. How large are NFA’s for ∃1(L), if bounded
ambiguity is required?

Guess a position i ∈ {1, . . . , r} and accept u1v1$ · · · $umvm if
uj

i 6= v j
i for some 1 ≤ j ≤ r .

∃1(L) is recognizable with poly(r) states and ambiguity r .
What went wrong?

Few advice bits suffice and these advice bits
can be remembered with few states.
Advantages, when working with L = (Lr)t :

I L has (small) NFA’s with size poly(r + t) with linear ambiguity.
I The required number of guesses increases exponentially with t and

these guesses cannot be remembered by small NFA.

Ambiguity and Communication 6 / 12

Ambiguity

Why Product Languages (Lr)
t?

Choose L = {uv | u, v ∈ {0,1}r ,u 6= v}: the language of inequality
between r -bit strings. How large are NFA’s for ∃1(L), if bounded
ambiguity is required?

Guess a position i ∈ {1, . . . , r} and accept u1v1$ · · · $umvm if
uj

i 6= v j
i for some 1 ≤ j ≤ r .

∃1(L) is recognizable with poly(r) states and ambiguity r .
What went wrong? Few advice bits suffice and these advice bits
can be remembered with few states.

Advantages, when working with L = (Lr)t :
I L has (small) NFA’s with size poly(r + t) with linear ambiguity.
I The required number of guesses increases exponentially with t and

these guesses cannot be remembered by small NFA.

Ambiguity and Communication 6 / 12

Ambiguity

Why Product Languages (Lr)
t?

Choose L = {uv | u, v ∈ {0,1}r ,u 6= v}: the language of inequality
between r -bit strings. How large are NFA’s for ∃1(L), if bounded
ambiguity is required?

Guess a position i ∈ {1, . . . , r} and accept u1v1$ · · · $umvm if
uj

i 6= v j
i for some 1 ≤ j ≤ r .

∃1(L) is recognizable with poly(r) states and ambiguity r .
What went wrong? Few advice bits suffice and these advice bits
can be remembered with few states.
Advantages, when working with L = (Lr)t :

I L has (small) NFA’s with size poly(r + t) with linear ambiguity.

I The required number of guesses increases exponentially with t and
these guesses cannot be remembered by small NFA.

Ambiguity and Communication 6 / 12

Ambiguity

Why Product Languages (Lr)
t?

Choose L = {uv | u, v ∈ {0,1}r ,u 6= v}: the language of inequality
between r -bit strings. How large are NFA’s for ∃1(L), if bounded
ambiguity is required?

Guess a position i ∈ {1, . . . , r} and accept u1v1$ · · · $umvm if
uj

i 6= v j
i for some 1 ≤ j ≤ r .

∃1(L) is recognizable with poly(r) states and ambiguity r .
What went wrong? Few advice bits suffice and these advice bits
can be remembered with few states.
Advantages, when working with L = (Lr)t :

I L has (small) NFA’s with size poly(r + t) with linear ambiguity.
I The required number of guesses increases exponentially with t and

these guesses cannot be remembered by small NFA.

Ambiguity and Communication 6 / 12

From NFA to Communication

A Proof Sketch for Sublinear Ambiguity

L = (Lr)t is the language of t-fold non-disjointness.

Set
∃=0(L) = {w1$w2$ · · · $wm : m ∈ N and wi 6∈ L for all positions}.
Let N be an NFA for ∃1(L) with sublinear ambiguity and let Q be
its set of states.

A first step: show

There are states p0,p1 ∈ Q such that at least |L|/|Q|2 strings in L
have a computation starting in p0 and ending in p1.
For any string z ′ ∈ L there is a string u ∈ ∃=0(L) with a

“launching cycle” r
(z′u)a

→ r
(z′u)b

→ p0 before reaching p0 and a

“storage cycle” p1
(uz′)c

→ s
(uz′)d

→ s after leaving p1.

Ambiguity and Communication 7 / 12

From NFA to Communication

A Proof Sketch for Sublinear Ambiguity

L = (Lr)t is the language of t-fold non-disjointness. Set
∃=0(L) = {w1$w2$ · · · $wm : m ∈ N and wi 6∈ L for all positions}.

Let N be an NFA for ∃1(L) with sublinear ambiguity and let Q be
its set of states.

A first step: show

There are states p0,p1 ∈ Q such that at least |L|/|Q|2 strings in L
have a computation starting in p0 and ending in p1.
For any string z ′ ∈ L there is a string u ∈ ∃=0(L) with a

“launching cycle” r
(z′u)a

→ r
(z′u)b

→ p0 before reaching p0 and a

“storage cycle” p1
(uz′)c

→ s
(uz′)d

→ s after leaving p1.

Ambiguity and Communication 7 / 12

From NFA to Communication

A Proof Sketch for Sublinear Ambiguity

L = (Lr)t is the language of t-fold non-disjointness. Set
∃=0(L) = {w1$w2$ · · · $wm : m ∈ N and wi 6∈ L for all positions}.
Let N be an NFA for ∃1(L) with sublinear ambiguity and let Q be
its set of states.

A first step: show

There are states p0,p1 ∈ Q such that at least |L|/|Q|2 strings in L
have a computation starting in p0 and ending in p1.
For any string z ′ ∈ L there is a string u ∈ ∃=0(L) with a

“launching cycle” r
(z′u)a

→ r
(z′u)b

→ p0 before reaching p0 and a

“storage cycle” p1
(uz′)c

→ s
(uz′)d

→ s after leaving p1.

Ambiguity and Communication 7 / 12

From NFA to Communication

A Proof Sketch for Sublinear Ambiguity

L = (Lr)t is the language of t-fold non-disjointness. Set
∃=0(L) = {w1$w2$ · · · $wm : m ∈ N and wi 6∈ L for all positions}.
Let N be an NFA for ∃1(L) with sublinear ambiguity and let Q be
its set of states.

A first step: show

There are states p0,p1 ∈ Q such that at least |L|/|Q|2 strings in L
have a computation starting in p0 and ending in p1.

For any string z ′ ∈ L there is a string u ∈ ∃=0(L) with a

“launching cycle” r
(z′u)a

→ r
(z′u)b

→ p0 before reaching p0 and a

“storage cycle” p1
(uz′)c

→ s
(uz′)d

→ s after leaving p1.

Ambiguity and Communication 7 / 12

From NFA to Communication

A Proof Sketch for Sublinear Ambiguity

L = (Lr)t is the language of t-fold non-disjointness. Set
∃=0(L) = {w1$w2$ · · · $wm : m ∈ N and wi 6∈ L for all positions}.
Let N be an NFA for ∃1(L) with sublinear ambiguity and let Q be
its set of states.

A first step: show

There are states p0,p1 ∈ Q such that at least |L|/|Q|2 strings in L
have a computation starting in p0 and ending in p1.
For any string z ′ ∈ L there is a string u ∈ ∃=0(L) with a

“launching cycle” r
(z′u)a

→ r
(z′u)b

→ p0 before reaching p0

and a

“storage cycle” p1
(uz′)c

→ s
(uz′)d

→ s after leaving p1.

Ambiguity and Communication 7 / 12

From NFA to Communication

A Proof Sketch for Sublinear Ambiguity

L = (Lr)t is the language of t-fold non-disjointness. Set
∃=0(L) = {w1$w2$ · · · $wm : m ∈ N and wi 6∈ L for all positions}.
Let N be an NFA for ∃1(L) with sublinear ambiguity and let Q be
its set of states.

A first step: show

There are states p0,p1 ∈ Q such that at least |L|/|Q|2 strings in L
have a computation starting in p0 and ending in p1.
For any string z ′ ∈ L there is a string u ∈ ∃=0(L) with a

“launching cycle” r
(z′u)a

→ r
(z′u)b

→ p0 before reaching p0 and a

“storage cycle” p1
(uz′)c

→ s
(uz′)d

→ s after leaving p1.

Ambiguity and Communication 7 / 12

From NFA to Communication

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of z ′u to state p0 and the storage
cycle of p1 stores a power of uz ′.

When is N forced into at least linear ambiguity?

If a single occurrence of z ′ within the launching cycle is replaced
by an impostor string z ∈ L without N noticing and
if z also hides unnoticed in a matching position within the storage
cycle and
if z ∈ L has a computation starting in p0 and ending in p1.

Ambiguity and Communication 8 / 12

From NFA to Communication

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of z ′u to state p0 and the storage
cycle of p1 stores a power of uz ′.

When is N forced into at least linear ambiguity?

If a single occurrence of z ′ within the launching cycle is replaced
by an impostor string z ∈ L without N noticing and
if z also hides unnoticed in a matching position within the storage
cycle and
if z ∈ L has a computation starting in p0 and ending in p1.

Ambiguity and Communication 8 / 12

From NFA to Communication

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of z ′u to state p0 and the storage
cycle of p1 stores a power of uz ′.

When is N forced into at least linear ambiguity?

If a single occurrence of z ′ within the launching cycle is replaced
by an impostor string z ∈ L without N noticing and

if z also hides unnoticed in a matching position within the storage
cycle and
if z ∈ L has a computation starting in p0 and ending in p1.

Ambiguity and Communication 8 / 12

From NFA to Communication

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of z ′u to state p0 and the storage
cycle of p1 stores a power of uz ′.

When is N forced into at least linear ambiguity?

If a single occurrence of z ′ within the launching cycle is replaced
by an impostor string z ∈ L without N noticing and
if z also hides unnoticed in a matching position within the storage
cycle and

if z ∈ L has a computation starting in p0 and ending in p1.

Ambiguity and Communication 8 / 12

From NFA to Communication

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of z ′u to state p0 and the storage
cycle of p1 stores a power of uz ′.

When is N forced into at least linear ambiguity?

If a single occurrence of z ′ within the launching cycle is replaced
by an impostor string z ∈ L without N noticing and
if z also hides unnoticed in a matching position within the storage
cycle and
if z ∈ L has a computation starting in p0 and ending in p1.

Ambiguity and Communication 8 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected: no impostor may

survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted.

At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected: no impostor may

survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!

- All strings z surviving in matching positions within both cycles are
to be rejected: all strings in the “complement” of L are rejected.

- No string may be accepted as well as rejected: no impostor may
survive in both cycles.

- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected:

all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected: no impostor may

survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.

- No string may be accepted as well as rejected: no impostor may
survive in both cycles.

- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected:

no impostor may
survive in both cycles.

- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected: no impostor may

survive in both cycles.

- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected: no impostor may

survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected: no impostor may

survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.

All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected: no impostor may

survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.

Ambiguity and Communication 9 / 12

The Communication Problem

The Perspective of Communication

Let N be an NFA for (Lr)t with state set Q. If z = (x1y1, . . . , xtyt) is
input for N, then assign (x1, . . . , xs) to Alice and (y1, . . . , ys) to Bob.

Alice and Bob can simulate N by exchanging at most |Q|t messages.

There is a nondeterministic communication protocol which on input
z = (x1y1, . . . , xtyt) exchanges at most |Q|O(t) messages,

accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t and
treats the many remaining strings in (Lr)t arbitrarily.

How to analyze the nondeterministic communication protocol?
Utilize the above properties to obtain a deterministic protocol!

Ambiguity and Communication 10 / 12

The Communication Problem

The Perspective of Communication

Let N be an NFA for (Lr)t with state set Q. If z = (x1y1, . . . , xtyt) is
input for N, then assign (x1, . . . , xs) to Alice and (y1, . . . , ys) to Bob.
Alice and Bob can simulate N by exchanging at most |Q|t messages.

There is a nondeterministic communication protocol which on input
z = (x1y1, . . . , xtyt) exchanges at most |Q|O(t) messages,

accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t and
treats the many remaining strings in (Lr)t arbitrarily.

How to analyze the nondeterministic communication protocol?
Utilize the above properties to obtain a deterministic protocol!

Ambiguity and Communication 10 / 12

The Communication Problem

The Perspective of Communication

Let N be an NFA for (Lr)t with state set Q. If z = (x1y1, . . . , xtyt) is
input for N, then assign (x1, . . . , xs) to Alice and (y1, . . . , ys) to Bob.
Alice and Bob can simulate N by exchanging at most |Q|t messages.

There is a nondeterministic communication protocol which on input
z = (x1y1, . . . , xtyt) exchanges at most |Q|O(t) messages,

accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t and
treats the many remaining strings in (Lr)t arbitrarily.

How to analyze the nondeterministic communication protocol?
Utilize the above properties to obtain a deterministic protocol!

Ambiguity and Communication 10 / 12

The Communication Problem

The Perspective of Communication

Let N be an NFA for (Lr)t with state set Q. If z = (x1y1, . . . , xtyt) is
input for N, then assign (x1, . . . , xs) to Alice and (y1, . . . , ys) to Bob.
Alice and Bob can simulate N by exchanging at most |Q|t messages.

There is a nondeterministic communication protocol which on input
z = (x1y1, . . . , xtyt) exchanges at most |Q|O(t) messages,

accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,

rejects all strings z in the “complement” of (Lr)t and
treats the many remaining strings in (Lr)t arbitrarily.

How to analyze the nondeterministic communication protocol?
Utilize the above properties to obtain a deterministic protocol!

Ambiguity and Communication 10 / 12

The Communication Problem

The Perspective of Communication

Let N be an NFA for (Lr)t with state set Q. If z = (x1y1, . . . , xtyt) is
input for N, then assign (x1, . . . , xs) to Alice and (y1, . . . , ys) to Bob.
Alice and Bob can simulate N by exchanging at most |Q|t messages.

There is a nondeterministic communication protocol which on input
z = (x1y1, . . . , xtyt) exchanges at most |Q|O(t) messages,

accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t and

treats the many remaining strings in (Lr)t arbitrarily.

How to analyze the nondeterministic communication protocol?
Utilize the above properties to obtain a deterministic protocol!

Ambiguity and Communication 10 / 12

The Communication Problem

The Perspective of Communication

Let N be an NFA for (Lr)t with state set Q. If z = (x1y1, . . . , xtyt) is
input for N, then assign (x1, . . . , xs) to Alice and (y1, . . . , ys) to Bob.
Alice and Bob can simulate N by exchanging at most |Q|t messages.

There is a nondeterministic communication protocol which on input
z = (x1y1, . . . , xtyt) exchanges at most |Q|O(t) messages,

accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t and
treats the many remaining strings in (Lr)t arbitrarily.

How to analyze the nondeterministic communication protocol?
Utilize the above properties to obtain a deterministic protocol!

Ambiguity and Communication 10 / 12

The Communication Problem

The Perspective of Communication

Let N be an NFA for (Lr)t with state set Q. If z = (x1y1, . . . , xtyt) is
input for N, then assign (x1, . . . , xs) to Alice and (y1, . . . , ys) to Bob.
Alice and Bob can simulate N by exchanging at most |Q|t messages.

There is a nondeterministic communication protocol which on input
z = (x1y1, . . . , xtyt) exchanges at most |Q|O(t) messages,

accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t and
treats the many remaining strings in (Lr)t arbitrarily.

How to analyze the nondeterministic communication protocol?
Utilize the above properties to obtain a deterministic protocol!

Ambiguity and Communication 10 / 12

The Communication Problem

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which
accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,

rejects all strings z in the “complement” of (Lr)t

and exchanges at most |Q|t2·log2 |Q| messages.

Let α be sufficiently small. If such a deterministic protocol exchanges
at most 2α·r ·t messages, then D accepts at most |(Lr)t |/2α·t strings
from (Lr)t . (Hromkovic and Schnitger, 2003)

Let N be an NFA with sublinear ambiguity recognizing ∃1((Lr)t). Then
N has at least 2Ω(r1/3) states.

Ambiguity and Communication 11 / 12

The Communication Problem

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which
accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t

and exchanges at most |Q|t2·log2 |Q| messages.

Let α be sufficiently small. If such a deterministic protocol exchanges
at most 2α·r ·t messages, then D accepts at most |(Lr)t |/2α·t strings
from (Lr)t . (Hromkovic and Schnitger, 2003)

Let N be an NFA with sublinear ambiguity recognizing ∃1((Lr)t). Then
N has at least 2Ω(r1/3) states.

Ambiguity and Communication 11 / 12

The Communication Problem

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which
accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t

and exchanges at most |Q|t2·log2 |Q| messages.

Let α be sufficiently small. If such a deterministic protocol exchanges
at most 2α·r ·t messages, then D accepts at most |(Lr)t |/2α·t strings
from (Lr)t . (Hromkovic and Schnitger, 2003)

Let N be an NFA with sublinear ambiguity recognizing ∃1((Lr)t). Then
N has at least 2Ω(r1/3) states.

Ambiguity and Communication 11 / 12

The Communication Problem

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which
accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t

and exchanges at most |Q|t2·log2 |Q| messages.

Let α be sufficiently small. If such a deterministic protocol exchanges
at most 2α·r ·t messages, then D accepts at most |(Lr)t |/2α·t strings
from (Lr)t . (Hromkovic and Schnitger, 2003)

Let N be an NFA with sublinear ambiguity recognizing ∃1((Lr)t). Then
N has at least 2Ω(r1/3) states.

Ambiguity and Communication 11 / 12

The Communication Problem

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which
accepts at least |(Lr)t |/|Q|2 strings z from (Lr)t ,
rejects all strings z in the “complement” of (Lr)t

and exchanges at most |Q|t2·log2 |Q| messages.

Let α be sufficiently small. If such a deterministic protocol exchanges
at most 2α·r ·t messages, then D accepts at most |(Lr)t |/2α·t strings
from (Lr)t . (Hromkovic and Schnitger, 2003)

Let N be an NFA with sublinear ambiguity recognizing ∃1((Lr)t). Then
N has at least 2Ω(r1/3) states.

Ambiguity and Communication 11 / 12

The Communication Problem

Conclusions

The detection problem allows to investigate NFA’s of restricted
ambiguity with the help of communication arguments.

Showing that an NFA for ∃k (L) solves an appropriately defined
detection problem for k > 1 proceeds similarly, but requires further
work.

Ambiguity and Communication 12 / 12

The Communication Problem

Conclusions

The detection problem allows to investigate NFA’s of restricted
ambiguity with the help of communication arguments.
Showing that an NFA for ∃k (L) solves an appropriately defined
detection problem for k > 1 proceeds similarly, but requires further
work.

Ambiguity and Communication 12 / 12

	Ambiguity
	From NFA to Communication
	The Communication Problem

