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The Goal

By how much does the size of NFA’s increase, if the number of
accepting computations is restricted?
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Ambiguity

Ambiguity

ambigN(x), the ambiguity of NFA N for input x , is the number of
accepting computations of N on x .

ambigN(n) = max{ambigN(x) : x ∈ Σn} is the ambiguity of NFA N for
input length n.

Why are automata with small ambiguity of interest? Basic decision
problems are efficiently solvable:

Given an NFA N and a fixed constant c, is the ambiguity of N
bounded by c? (Stearns and Hunt III, 1985).
Given an NFA N, is the ambiguity of N bounded, polynomial or
exponential? (Weber and Seidl, 1991).
Given two NFA N1 and N2 with ambiguity at most c, are N1 and N2
equivalent? (Stearns and Hunt III, 1985).
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Ambiguity

What is Known?

Ambiguity is either bounded by a constant or bounded by a
polynomial or at least exponential.

There are NFA’s with exponential ambiguity and size n such that
equivalent NFA’s with polynomial ambiguity require 2n − 1 states
(Leung98).
Open for almost twenty years: can NFA’s with polynomial
ambiguity be simulated by NFA’s with bounded ambiguity, if size is
only allowed to increase polynomially?
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Ambiguity

The Result

Languages with small automata of ambiguity O(nk)

Let L be an arbitrary language. Define
∃k (L) = {w1$w2$ · · · $wm : m ∈ N and wi ∈ L for at least k positions}.

Let Σr be the alphabet of all r -element subsets of {1, . . . , r32}. Then
Lr = {xy ∈ Σ2

r | x ∩ y 6= ∅} is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set t = r1/3. Then ∃k ((Lr )t ) has NFA’s with ambiguity O(nk ) and
k · poly(r) states, but any equivalent NFA with ambiguity o(nk ) has at
least 2(r/k2)1/3

states.
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Ambiguity

Why Product Languages (Lr)
t?

Choose L = {uv | u, v ∈ {0,1}r ,u 6= v}: the language of inequality
between r -bit strings. How large are NFA’s for ∃1(L), if bounded
ambiguity is required?

Guess a position i ∈ {1, . . . , r} and accept u1v1$ · · · $umvm if
uj

i 6= v j
i for some 1 ≤ j ≤ r .

∃1(L) is recognizable with poly(r) states and ambiguity r .
What went wrong? Few advice bits suffice and these advice bits
can be remembered with few states.
Advantages, when working with L = (Lr )t :

I L has (small) NFA’s with size poly(r + t) with linear ambiguity.
I The required number of guesses increases exponentially with t and

these guesses cannot be remembered by small NFA.
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From NFA to Communication

A Proof Sketch for Sublinear Ambiguity

L = (Lr )t is the language of t-fold non-disjointness.

Set
∃=0(L) = {w1$w2$ · · · $wm : m ∈ N and wi 6∈ L for all positions}.
Let N be an NFA for ∃1(L) with sublinear ambiguity and let Q be
its set of states.

A first step: show

There are states p0,p1 ∈ Q such that at least |L|/|Q|2 strings in L
have a computation starting in p0 and ending in p1.
For any string z ′ ∈ L there is a string u ∈ ∃=0(L) with a

“launching cycle” r
(z′u)a

→ r
(z′u)b

→ p0 before reaching p0 and a

“storage cycle” p1
(uz′)c

→ s
(uz′)d

→ s after leaving p1.
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From NFA to Communication

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of z ′u to state p0 and the storage
cycle of p1 stores a power of uz ′.

When is N forced into at least linear ambiguity?

If a single occurrence of z ′ within the launching cycle is replaced
by an impostor string z ∈ L without N noticing and
if z also hides unnoticed in a matching position within the storage
cycle and
if z ∈ L has a computation starting in p0 and ending in p1.
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From NFA to Communication

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p0
z→ p1 are

to be accepted. At least |L|/|Q|2 strings!
- All strings z surviving in matching positions within both cycles are

to be rejected: all strings in the “complement” of L are rejected.
- No string may be accepted as well as rejected: no impostor may

survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.
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survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.
All strings in the “complement” of L are rejected and no string is
accepted as well as rejected.
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The Communication Problem

The Perspective of Communication

Let N be an NFA for (Lr )t with state set Q. If z = (x1y1, . . . , xtyt ) is
input for N, then assign (x1, . . . , xs) to Alice and (y1, . . . , ys) to Bob.

Alice and Bob can simulate N by exchanging at most |Q|t messages.

There is a nondeterministic communication protocol which on input
z = (x1y1, . . . , xtyt ) exchanges at most |Q|O(t) messages,

accepts at least |(Lr )t |/|Q|2 strings z from (Lr )t ,
rejects all strings z in the “complement” of (Lr )t and
treats the many remaining strings in (Lr )t arbitrarily.

How to analyze the nondeterministic communication protocol?
Utilize the above properties to obtain a deterministic protocol!
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The Communication Problem

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which
accepts at least |(Lr )t |/|Q|2 strings z from (Lr )t ,

rejects all strings z in the “complement” of (Lr )t

and exchanges at most |Q|t2·log2 |Q| messages.

Let α be sufficiently small. If such a deterministic protocol exchanges
at most 2α·r ·t messages, then D accepts at most |(Lr )t |/2α·t strings
from (Lr )t . (Hromkovic and Schnitger, 2003)

Let N be an NFA with sublinear ambiguity recognizing ∃1((Lr )t ). Then
N has at least 2Ω(r1/3) states.
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The Communication Problem

Conclusions

The detection problem allows to investigate NFA’s of restricted
ambiguity with the help of communication arguments.

Showing that an NFA for ∃k (L) solves an appropriately defined
detection problem for k > 1 proceeds similarly, but requires further
work.
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