Ambiguity and Communication

Juraj Hromkovič ${ }^{1}$ Georg Schnitger ${ }^{2}$

${ }^{1}$ Department of Computer Science
ETH Zürich
${ }^{2}$ Institut für Informatik
Goethe Universität Frankfurt am Main

The Goal

By how much does the size of NFA's increase, if the number of accepting computations is restricted?

Ambiguity

$\operatorname{ambig}_{N}(x)$, the ambiguity of NFA N for input x, is the number of accepting computations of N on x.

Ambiguity

$\operatorname{ambig}_{N}(x)$, the ambiguity of NFA N for input x, is the number of accepting computations of N on x. $\operatorname{ambig}_{N}(n)=\max \left\{\operatorname{ambig}_{N}(x): x \in \Sigma^{n}\right\}$ is the ambiguity of NFA N for input length n.

Ambiguity

$\operatorname{ambig}_{N}(x)$, the ambiguity of NFA N for input x, is the number of accepting computations of N on x.
$\operatorname{ambig}_{N}(n)=\max \left\{\operatorname{ambig}_{N}(x): x \in \Sigma^{n}\right\}$ is the ambiguity of NFA N for input length n.

Why are automata with small ambiguity of interest? Basic decision problems are efficiently solvable:

Ambiguity

$\operatorname{ambig}_{N}(x)$, the ambiguity of NFA N for input x, is the number of accepting computations of N on x.
$\operatorname{ambig}_{N}(n)=\max \left\{\operatorname{ambig}_{N}(x): x \in \Sigma^{n}\right\}$ is the ambiguity of NFA N for input length n.

Why are automata with small ambiguity of interest? Basic decision problems are efficiently solvable:

- Given an NFA N and a fixed constant c, is the ambiguity of N bounded by c? (Stearns and Hunt III, 1985).

Ambiguity

$\operatorname{ambig}_{N}(x)$, the ambiguity of NFA N for input x, is the number of accepting computations of N on x.
$\operatorname{ambig}_{N}(n)=\max \left\{\operatorname{ambig}_{N}(x): x \in \Sigma^{n}\right\}$ is the ambiguity of NFA N for input length n.

Why are automata with small ambiguity of interest? Basic decision problems are efficiently solvable:

- Given an NFA N and a fixed constant c, is the ambiguity of N bounded by c? (Stearns and Hunt III, 1985).
- Given an NFA N, is the ambiguity of N bounded, polynomial or exponential? (Weber and Seidl, 1991).

Ambiguity

$\operatorname{ambig}_{N}(x)$, the ambiguity of NFA N for input x, is the number of accepting computations of N on x.
$\operatorname{ambig}_{N}(n)=\max \left\{\operatorname{ambig}_{N}(x): x \in \Sigma^{n}\right\}$ is the ambiguity of NFA N for input length n.

Why are automata with small ambiguity of interest? Basic decision problems are efficiently solvable:

- Given an NFA N and a fixed constant c, is the ambiguity of N bounded by c? (Stearns and Hunt III, 1985).
- Given an NFA N, is the ambiguity of N bounded, polynomial or exponential? (Weber and Seidl, 1991).
- Given two NFA N_{1} and N_{2} with ambiguity at most c, are N_{1} and N_{2} equivalent? (Stearns and Hunt III, 1985).

What is Known?

- Ambiguity is either bounded by a constant or bounded by a polynomial or at least exponential.

What is Known?

- Ambiguity is either bounded by a constant or bounded by a polynomial or at least exponential.
- There are NFA's with exponential ambiguity and size n such that equivalent NFA's with polynomial ambiguity require $2^{n}-1$ states (Leung98).

What is Known?

- Ambiguity is either bounded by a constant or bounded by a polynomial or at least exponential.
- There are NFA's with exponential ambiguity and size n such that equivalent NFA's with polynomial ambiguity require $2^{n}-1$ states (Leung98).
- Open for almost twenty years: can NFA's with polynomial ambiguity be simulated by NFA's with bounded ambiguity, if size is only allowed to increase polynomially?

The Result

Languages with small automata of ambiguity $O\left(n^{k}\right)$

Let L be an arbitrary language. Define $\exists_{k}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \in L$ for at least k positions $\}$.

The Result

Languages with small automata of ambiguity $O\left(n^{k}\right)$

Let L be an arbitrary language. Define
$\exists_{k}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \in L$ for at least k positions $\}$.

Let Σ_{r} be the alphabet of all r-element subsets of $\left\{1, \ldots, r^{32}\right\}$. Then $L_{r}=\left\{x y \in \Sigma_{r}^{2} \mid x \cap y \neq \emptyset\right\}$ is the language of non-disjointness.

The Result

Languages with small automata of ambiguity $O\left(n^{k}\right)$

Let L be an arbitrary language. Define
$\exists_{k}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \in L$ for at least k positions $\}$.

Let Σ_{r} be the alphabet of all r-element subsets of $\left\{1, \ldots, r^{32}\right\}$. Then $L_{r}=\left\{x y \in \Sigma_{r}^{2} \mid x \cap y \neq \emptyset\right\}$ is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set $t=r^{1 / 3}$. Then $\exists_{k}\left(\left(L_{r}\right)^{t}\right)$ has NFA's with ambiguity $O\left(n^{k}\right)$ and $k \cdot \operatorname{poly}(r)$ states,

The Result

Languages with small automata of ambiguity $O\left(n^{k}\right)$

Let L be an arbitrary language. Define
$\exists_{k}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \in L$ for at least k positions $\}$.

Let Σ_{r} be the alphabet of all r-element subsets of $\left\{1, \ldots, r^{32}\right\}$. Then $L_{r}=\left\{x y \in \Sigma_{r}^{2} \mid x \cap y \neq \emptyset\right\}$ is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set $t=r^{1 / 3}$. Then $\exists_{k}\left(\left(L_{r}\right)^{t}\right)$ has NFA's with ambiguity $O\left(n^{k}\right)$ and $k \cdot$ poly (r) states, but any equivalent NFA with ambiguity $o\left(n^{k}\right)$ has at least $2^{\left(r / k^{2}\right)^{1 / 3}}$ states.

Why Product Languages $\left(L_{r}\right)^{t}$?

Choose $L=\left\{u v \mid u, v \in\{0,1\}^{r}, u \neq v\right\}$: the language of inequality between r-bit strings. How large are NFA's for $\exists_{1}(L)$, if bounded ambiguity is required?

Why Product Languages $\left(L_{r}\right)^{t}$?

Choose $L=\left\{u v \mid u, v \in\{0,1\}^{r}, u \neq v\right\}$: the language of inequality between r-bit strings. How large are NFA's for $\exists_{1}(L)$, if bounded ambiguity is required?

- Guess a position $i \in\{1, \ldots, r\}$ and accept $u^{1} v^{1} \$ \cdots \$ u^{m} v^{m}$ if $u_{i}^{j} \neq v_{i}^{j}$ for some $1 \leq j \leq r$.

Why Product Languages $\left(L_{r}\right)^{t}$?

Choose $L=\left\{u v \mid u, v \in\{0,1\}^{r}, u \neq v\right\}$: the language of inequality between r-bit strings. How large are NFA's for $\exists_{1}(L)$, if bounded ambiguity is required?

- Guess a position $i \in\{1, \ldots, r\}$ and accept $u^{1} v^{1} \$ \cdots \$ u^{m} v^{m}$ if $u_{i}^{j} \neq v_{i}^{j}$ for some $1 \leq j \leq r$.
$\exists_{1}(L)$ is recognizable with poly (r) states and ambiguity r.

Why Product Languages $\left(L_{r}\right)^{t}$?

Choose $L=\left\{u v \mid u, v \in\{0,1\}^{r}, u \neq v\right\}$: the language of inequality between r-bit strings. How large are NFA's for $\exists_{1}(L)$, if bounded ambiguity is required?

- Guess a position $i \in\{1, \ldots, r\}$ and accept $u^{1} v^{1} \$ \cdots \$ u^{m} v^{m}$ if $u_{i}^{j} \neq v_{i}^{j}$ for some $1 \leq j \leq r$.
$\exists_{1}(L)$ is recognizable with poly (r) states and ambiguity r.
- What went wrong?

Why Product Languages $\left(L_{r}\right)^{t}$?

Choose $L=\left\{u v \mid u, v \in\{0,1\}^{r}, u \neq v\right\}$: the language of inequality between r-bit strings. How large are NFA's for $\exists_{1}(L)$, if bounded ambiguity is required?

- Guess a position $i \in\{1, \ldots, r\}$ and accept $u^{1} v^{1} \$ \cdots \$ u^{m} v^{m}$ if $u_{i}^{j} \neq v_{i}^{j}$ for some $1 \leq j \leq r$. $\exists_{1}(L)$ is recognizable with poly (r) states and ambiguity r.
- What went wrong? Few advice bits suffice and these advice bits can be remembered with few states.

Why Product Languages $\left(L_{r}\right)^{t}$?

Choose $L=\left\{u v \mid u, v \in\{0,1\}^{r}, u \neq v\right\}$: the language of inequality between r-bit strings. How large are NFA's for $\exists_{1}(L)$, if bounded ambiguity is required?

- Guess a position $i \in\{1, \ldots, r\}$ and accept $u^{1} v^{1} \$ \cdots \$ u^{m} v^{m}$ if $u_{i}^{j} \neq v_{i}^{j}$ for some $1 \leq j \leq r$. $\exists_{1}(L)$ is recognizable with poly (r) states and ambiguity r.
- What went wrong? Few advice bits suffice and these advice bits can be remembered with few states.
- Advantages, when working with $L=\left(L_{r}\right)^{t}$:
- L has (small) NFA's with size poly $(r+t)$ with linear ambiguity.

Why Product Languages $\left(L_{r}\right)^{t}$?

Choose $L=\left\{u v \mid u, v \in\{0,1\}^{r}, u \neq v\right\}$: the language of inequality between r-bit strings. How large are NFA's for $\exists_{1}(L)$, if bounded ambiguity is required?

- Guess a position $i \in\{1, \ldots, r\}$ and accept $u^{1} v^{1} \$ \cdots \$ u^{m} v^{m}$ if $u_{i}^{j} \neq v_{i}^{j}$ for some $1 \leq j \leq r$. $\exists_{1}(L)$ is recognizable with poly (r) states and ambiguity r.
- What went wrong? Few advice bits suffice and these advice bits can be remembered with few states.
- Advantages, when working with $L=\left(L_{r}\right)^{t}$:
- L has (small) NFA's with size poly $(r+t)$ with linear ambiguity.
- The required number of guesses increases exponentially with t and these guesses cannot be remembered by small NFA.

A Proof Sketch for Sublinear Ambiguity

- $L=\left(L_{r}\right)^{t}$ is the language of t-fold non-disjointness.

A Proof Sketch for Sublinear Ambiguity

- $L=\left(L_{r}\right)^{t}$ is the language of t-fold non-disjointness. Set $\exists_{=0}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \notin L$ for all positions $\}$.

A Proof Sketch for Sublinear Ambiguity

- $L=\left(L_{r}\right)^{t}$ is the language of t-fold non-disjointness. Set $\exists_{=0}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \notin L$ for all positions $\}$.
- Let N be an NFA for $\exists_{1}(L)$ with sublinear ambiguity and let Q be its set of states.

A Proof Sketch for Sublinear Ambiguity

- $L=\left(L_{r}\right)^{t}$ is the language of t-fold non-disjointness. Set $\exists_{=0}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \notin L$ for all positions $\}$.
- Let N be an NFA for $\exists_{1}(L)$ with sublinear ambiguity and let Q be its set of states.

A first step: show

- There are states $p_{0}, p_{1} \in Q$ such that at least $|L| /|Q|^{2}$ strings in L have a computation starting in p_{0} and ending in p_{1}.

A Proof Sketch for Sublinear Ambiguity

- $L=\left(L_{r}\right)^{t}$ is the language of t-fold non-disjointness. Set $\exists_{=0}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \notin L$ for all positions $\}$.
- Let N be an NFA for $\exists_{1}(L)$ with sublinear ambiguity and let Q be its set of states.

A first step: show

- There are states $p_{0}, p_{1} \in Q$ such that at least $|L| /|Q|^{2}$ strings in L have a computation starting in p_{0} and ending in p_{1}.
- For any string $z^{\prime} \in \bar{L}$ there is a string $u \in \exists_{=0}(L)$ with a
"launching cycle" $r \xrightarrow{\left(z^{\prime} u\right)^{a}} r \xrightarrow{\left(z^{\prime} u\right)^{b}} p_{0}$ before reaching p_{0}

A Proof Sketch for Sublinear Ambiguity

- $L=\left(L_{r}\right)^{t}$ is the language of t-fold non-disjointness. Set $\exists_{=0}(L)=\left\{w_{1} \$ w_{2} \$ \cdots \$ w_{m}: m \in \mathbb{N}\right.$ and $w_{i} \notin L$ for all positions $\}$.
- Let N be an NFA for $\exists_{1}(L)$ with sublinear ambiguity and let Q be its set of states.

A first step: show

- There are states $p_{0}, p_{1} \in Q$ such that at least $|L| /|Q|^{2}$ strings in L have a computation starting in p_{0} and ending in p_{1}.
- For any string $z^{\prime} \in \bar{L}$ there is a string $u \in \exists_{=0}(L)$ with a
"launching cycle" $r \xrightarrow{\left(z^{\prime} u\right)^{a}} r \xrightarrow{\left(z^{\prime} u\right)^{b}} p_{0}$ before reaching p_{0} and a
"storage cycle" $p_{1} \xrightarrow{\left(u z^{\prime}\right)^{c}} s \xrightarrow{\left(u z^{\prime}\right)^{d}} s$ after leaving p_{1}.

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of $z^{\prime} u$ to state p_{0} and the storage cycle of p_{1} stores a power of $u z^{\prime}$.

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of $z^{\prime} u$ to state p_{0} and the storage cycle of p_{1} stores a power of $u z^{\prime}$.

When is N forced into at least linear ambiguity?

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of $z^{\prime} u$ to state p_{0} and the storage cycle of p_{1} stores a power of $u z^{\prime}$.

When is N forced into at least linear ambiguity?

- If a single occurrence of z^{\prime} within the launching cycle is replaced by an impostor string $z \in L$ without N noticing and

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of $z^{\prime} u$ to state p_{0} and the storage cycle of p_{1} stores a power of $u z^{\prime}$.

When is N forced into at least linear ambiguity?

- If a single occurrence of z^{\prime} within the launching cycle is replaced by an impostor string $z \in L$ without N noticing and
- if z also hides unnoticed in a matching position within the storage cycle and

How to Exploit Sublinear Ambiguity?

The launching cycle delivers a power of $z^{\prime} u$ to state p_{0} and the storage cycle of p_{1} stores a power of $u z^{\prime}$.

When is N forced into at least linear ambiguity?

- If a single occurrence of z^{\prime} within the launching cycle is replaced by an impostor string $z \in L$ without N noticing and
- if z also hides unnoticed in a matching position within the storage cycle and
- if $z \in L$ has a computation starting in p_{0} and ending in p_{1}.

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.
The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted.

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.
The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted. At least $|L| /|Q|^{2}$ strings!

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.
The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted. At least $|L| /|Q|^{2}$ strings!
- All strings z surviving in matching positions within both cycles are to be rejected:

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.
The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted. At least $|L| /|Q|^{2}$ strings!
- All strings z surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of L are rejected.

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.
The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted. At least $|L| /|Q|^{2}$ strings!
- All strings z surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of L are rejected.
- No string may be accepted as well as rejected:

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.
The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted. At least $|L| /|Q|^{2}$ strings!
- All strings z surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of L are rejected.
- No string may be accepted as well as rejected: no impostor may survive in both cycles.

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.
The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted. At least $|L| /|Q|^{2}$ strings!
- All strings z surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of L are rejected.
- No string may be accepted as well as rejected: no impostor may survive in both cycles.
- The remaining strings from L can be treated either way.

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.
The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted. At least $|L| /|Q|^{2}$ strings!
- All strings z surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of L are rejected.
- No string may be accepted as well as rejected: no impostor may survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted.

The Detection Problem

An NFA N with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_{0} \xrightarrow{z} p_{1}$ are to be accepted. At least $|L| /|Q|^{2}$ strings!
- All strings z surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of L are rejected.
- No string may be accepted as well as rejected: no impostor may survive in both cycles.
- The remaining strings from L can be treated either way.

A small, but significant minority of strings in L is accepted. All strings in the "complement" of L are rejected and no string is accepted as well as rejected.

The Perspective of Communication

Let N be an NFA for $\left(L_{r}\right)^{t}$ with state set Q. If $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ is input for N, then assign $\left(x_{1}, \ldots, x_{s}\right)$ to Alice and $\left(y_{1}, \ldots, y_{s}\right)$ to Bob.

The Perspective of Communication

Let N be an NFA for $\left(L_{r}\right)^{t}$ with state set Q. If $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ is input for N, then assign $\left(x_{1}, \ldots, x_{s}\right)$ to Alice and $\left(y_{1}, \ldots, y_{s}\right)$ to Bob. Alice and Bob can simulate N by exchanging at most $|Q|^{t}$ messages.

The Perspective of Communication

Let N be an NFA for $\left(L_{r}\right)^{t}$ with state set Q. If $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ is input for N, then assign $\left(x_{1}, \ldots, x_{s}\right)$ to Alice and $\left(y_{1}, \ldots, y_{s}\right)$ to Bob. Alice and Bob can simulate N by exchanging at most $|Q|^{t}$ messages.

There is a nondeterministic communication protocol which on input $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ exchanges at most $|Q|^{O(t)}$ messages,

The Perspective of Communication

Let N be an NFA for $\left(L_{r}\right)^{t}$ with state set Q. If $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ is input for N, then assign $\left(x_{1}, \ldots, x_{s}\right)$ to Alice and $\left(y_{1}, \ldots, y_{s}\right)$ to Bob. Alice and Bob can simulate N by exchanging at most $|Q|^{t}$ messages.

There is a nondeterministic communication protocol which on input $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ exchanges at most $|Q|^{O(t)}$ messages,

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,

The Perspective of Communication

Let N be an NFA for $\left(L_{r}\right)^{t}$ with state set Q. If $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ is input for N, then assign $\left(x_{1}, \ldots, x_{s}\right)$ to Alice and $\left(y_{1}, \ldots, y_{s}\right)$ to Bob. Alice and Bob can simulate N by exchanging at most $|Q|^{t}$ messages.

There is a nondeterministic communication protocol which on input $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ exchanges at most $|Q|^{O(t)}$ messages,

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,
- rejects all strings z in the "complement" of $\left(L_{r}\right)^{t}$ and

The Perspective of Communication

Let N be an NFA for $\left(L_{r}\right)^{t}$ with state set Q. If $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ is input for N, then assign $\left(x_{1}, \ldots, x_{s}\right)$ to Alice and $\left(y_{1}, \ldots, y_{s}\right)$ to Bob. Alice and Bob can simulate N by exchanging at most $|Q|^{t}$ messages.

There is a nondeterministic communication protocol which on input $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ exchanges at most $|Q|^{O(t)}$ messages,

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,
- rejects all strings z in the "complement" of $\left(L_{r}\right)^{t}$ and
- treats the many remaining strings in $\left(L_{r}\right)^{t}$ arbitrarily.

The Perspective of Communication

Let N be an NFA for $\left(L_{r}\right)^{t}$ with state set Q. If $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ is input for N, then assign $\left(x_{1}, \ldots, x_{s}\right)$ to Alice and $\left(y_{1}, \ldots, y_{s}\right)$ to Bob. Alice and Bob can simulate N by exchanging at most $|Q|^{t}$ messages.

There is a nondeterministic communication protocol which on input $z=\left(x_{1} y_{1}, \ldots, x_{t} y_{t}\right)$ exchanges at most $|Q|^{O(t)}$ messages,

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,
- rejects all strings z in the "complement" of $\left(L_{r}\right)^{t}$ and
- treats the many remaining strings in $\left(L_{r}\right)^{t}$ arbitrarily.

How to analyze the nondeterministic communication protocol?

Utilize the above properties to obtain a deterministic protocol!

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,
- rejects all strings z in the "complement" of $\left(L_{r}\right)^{t}$

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,
- rejects all strings z in the "complement" of $\left(L_{r}\right)^{t}$
- and exchanges at most $|Q|^{t^{2} \cdot \log _{2}|Q|}$ messages.

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,
- rejects all strings z in the "complement" of $\left(L_{r}\right)^{t}$
- and exchanges at most $|Q|^{t^{2} \cdot \log _{2}|Q|}$ messages.

Let α be sufficiently small. If such a deterministic protocol exchanges at most $2^{\alpha \cdot r \cdot t}$ messages, then D accepts at most $\left|\left(L_{r}\right)^{t}\right| / 2^{\alpha \cdot t}$ strings from $\left(L_{r}\right)^{t}$. (Hromkovic and Schnitger, 2003)

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which

- accepts at least $\left|\left(L_{r}\right)^{t}\right| /|Q|^{2}$ strings z from $\left(L_{r}\right)^{t}$,
- rejects all strings z in the "complement" of $\left(L_{r}\right)^{t}$
- and exchanges at most $|Q|^{t^{2} \cdot \log _{2}|Q|}$ messages.

Let α be sufficiently small. If such a deterministic protocol exchanges at most $2^{\alpha \cdot r \cdot t}$ messages, then D accepts at most $\left|\left(L_{r}\right)^{t}\right| / 2^{\alpha \cdot t}$ strings from $\left(L_{r}\right)^{t}$. (Hromkovic and Schnitger, 2003)

Let N be an NFA with sublinear ambiguity recognizing $\exists_{1}\left(\left(L_{r}\right)^{t}\right)$. Then N has at least $2^{\Omega\left(r^{1 / 3}\right)}$ states.

Conclusions

- The detection problem allows to investigate NFA's of restricted ambiguity with the help of communication arguments.

Conclusions

- The detection problem allows to investigate NFA's of restricted ambiguity with the help of communication arguments.
- Showing that an NFA for $\exists_{k}(L)$ solves an appropriately defined detection problem for $k>1$ proceeds similarly, but requires further work.

