Ambiguity and Communication

Juraj Hromkovič¹ Georg Schnitger²

¹Department of Computer Science ETH Zürich

²Institut für Informatik Goethe Universität Frankfurt am Main

By how much does the size of NFA's increase, if the number of accepting computations is restricted?

A (1) > A (2) > A

 $\operatorname{ambig}_N(x)$, the ambiguity of NFA *N* for input *x*, is the number of accepting computations of *N* on *x*.

< 同 > < ∃ >

ambig_N(x), the ambiguity of NFA *N* for input *x*, is the number of accepting computations of *N* on *x*. $\operatorname{ambig}_N(n) = \max{\operatorname{ambig}_N(x) : x \in \Sigma^n}$ is the ambiguity of NFA *N* for input length *n*.

▲ 同 ▶ → 三 ▶

ambig_N(x), the ambiguity of NFA *N* for input *x*, is the number of accepting computations of *N* on *x*. $\operatorname{ambig}_{N}(n) = \max{\operatorname{ambig}_{N}(x) : x \in \Sigma^{n}}$ is the ambiguity of NFA *N* for input length *n*.

Why are automata with small ambiguity of interest? Basic decision problems are efficiently solvable:

▲ 同 ▶ - ▲ 三 ▶

ambig_N(x), the ambiguity of NFA N for input x, is the number of accepting computations of N on x. $\operatorname{ambig}_N(n) = \max{\operatorname{ambig}_N(x) : x \in \Sigma^n}$ is the ambiguity of NFA N for input length *n*.

Why are automata with small ambiguity of interest? Basic decision problems are efficiently solvable:

• Given an NFA *N* and a fixed constant *c*, is the ambiguity of *N* bounded by *c*? (Stearns and Hunt III, 1985).

< 🗇 > < 🖻 >

ambig_N(x), the ambiguity of NFA N for input x, is the number of accepting computations of N on x. $\operatorname{ambig}_N(n) = \max{\operatorname{ambig}_N(x) : x \in \Sigma^n}$ is the ambiguity of NFA N for input length *n*.

Why are automata with small ambiguity of interest? Basic decision problems are efficiently solvable:

- Given an NFA *N* and a fixed constant *c*, is the ambiguity of *N* bounded by *c*? (Stearns and Hunt III, 1985).
- Given an NFA *N*, is the ambiguity of *N* bounded, polynomial or exponential? (Weber and Seidl, 1991).

ambig_N(x), the ambiguity of NFA N for input x, is the number of accepting computations of N on x. $\operatorname{ambig}_N(n) = \max{\operatorname{ambig}_N(x) : x \in \Sigma^n}$ is the ambiguity of NFA N for input length *n*.

Why are automata with small ambiguity of interest? Basic decision problems are efficiently solvable:

- Given an NFA *N* and a fixed constant *c*, is the ambiguity of *N* bounded by *c*? (Stearns and Hunt III, 1985).
- Given an NFA *N*, is the ambiguity of *N* bounded, polynomial or exponential? (Weber and Seidl, 1991).
- Given two NFA N₁ and N₂ with ambiguity at most c, are N₁ and N₂ equivalent? (Stearns and Hunt III, 1985).

• • • • • • • • • • • •

What is Known?

• Ambiguity is either bounded by a constant or bounded by a polynomial or at least exponential.

A (1) > A (2) > A

What is Known?

- Ambiguity is either bounded by a constant or bounded by a polynomial or at least exponential.
- There are NFA's with exponential ambiguity and size n such that equivalent NFA's with polynomial ambiguity require $2^n 1$ states (Leung98).

▲ □ ▶ → □ ▶

What is Known?

- Ambiguity is either bounded by a constant or bounded by a polynomial or at least exponential.
- There are NFA's with exponential ambiguity and size n such that equivalent NFA's with polynomial ambiguity require $2^n 1$ states (Leung98).
- Open for almost twenty years: can NFA's with polynomial ambiguity be simulated by NFA's with bounded ambiguity, if size is only allowed to increase polynomially?

Languages with small automata of ambiguity $O(n^k)$

Let *L* be an arbitrary language. Define $\exists_k(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \in L \text{ for at least } k \text{ positions} \}.$

Languages with small automata of ambiguity $O(n^k)$

Let *L* be an arbitrary language. Define $\exists_k(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \in L \text{ for at least } k \text{ positions} \}.$

Let Σ_r be the alphabet of all *r*-element subsets of $\{1, \ldots, r^{32}\}$. Then $L_r = \{xy \in \Sigma_r^2 \mid x \cap y \neq \emptyset\}$ is the language of non-disjointness.

- 4 回 ト 4 ヨ ト 4 ヨ

Languages with small automata of ambiguity $O(n^k)$

Let *L* be an arbitrary language. Define $\exists_k(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \in L \text{ for at least } k \text{ positions} \}.$

Let Σ_r be the alphabet of all *r*-element subsets of $\{1, \ldots, r^{32}\}$. Then $L_r = \{xy \in \Sigma_r^2 \mid x \cap y \neq \emptyset\}$ is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set $t = r^{1/3}$. Then $\exists_k((L_r)^t)$ has NFA's with ambiguity $O(n^k)$ and $k \cdot \text{poly}(r)$ states,

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Languages with small automata of ambiguity $O(n^k)$

Let *L* be an arbitrary language. Define $\exists_k(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \in L \text{ for at least } k \text{ positions} \}.$

Let Σ_r be the alphabet of all *r*-element subsets of $\{1, \ldots, r^{32}\}$. Then $L_r = \{xy \in \Sigma_r^2 \mid x \cap y \neq \emptyset\}$ is the language of non-disjointness.

A hierarchy of polynomial ambiguity

Set $t = r^{1/3}$. Then $\exists_k((L_r)^t)$ has NFA's with ambiguity $O(n^k)$ and $k \cdot \text{poly}(r)$ states, but any equivalent NFA with ambiguity $o(n^k)$ has at least $2^{(r/k^2)^{1/3}}$ states.

Choose $L = \{uv \mid u, v \in \{0, 1\}^r, u \neq v\}$: the language of inequality between *r*-bit strings. How large are NFA's for $\exists_1(L)$, if bounded ambiguity is required?

A (10) × A (10) × A (10) ×

Choose $L = \{uv \mid u, v \in \{0, 1\}^r, u \neq v\}$: the language of inequality between *r*-bit strings. How large are NFA's for $\exists_1(L)$, if bounded ambiguity is required?

• Guess a position $i \in \{1, ..., r\}$ and accept $u^1 v^1 \$ \cdots \$ u^m v^m$ if $u_i^j \neq v_i^j$ for some $1 \leq j \leq r$.

< 同 ト < 三 ト < 三 ト

Choose $L = \{uv \mid u, v \in \{0, 1\}^r, u \neq v\}$: the language of inequality between *r*-bit strings. How large are NFA's for $\exists_1(L)$, if bounded ambiguity is required?

• Guess a position $i \in \{1, ..., r\}$ and accept $u^1 v^1 \dots u^m v^m$ if $u_i^j \neq v_i^j$ for some $1 \leq j \leq r$. $\exists_1(L)$ is recognizable with poly(r) states and ambiguity r.

A (1) > A (2) > A

Choose $L = \{uv \mid u, v \in \{0, 1\}^r, u \neq v\}$: the language of inequality between *r*-bit strings. How large are NFA's for $\exists_1(L)$, if bounded ambiguity is required?

- Guess a position $i \in \{1, ..., r\}$ and accept $u^1 v^1 \dots u^m v^m$ if $u_i^j \neq v_i^j$ for some $1 \leq j \leq r$. $\exists_1(L)$ is recognizable with poly(r) states and ambiguity r.
- What went wrong?

A (10) > A (10) > A

Choose $L = \{uv \mid u, v \in \{0, 1\}^r, u \neq v\}$: the language of inequality between *r*-bit strings. How large are NFA's for $\exists_1(L)$, if bounded ambiguity is required?

- Guess a position $i \in \{1, ..., r\}$ and accept $u^1 v^1 \dots u^m v^m$ if $u_i^j \neq v_i^j$ for some $1 \leq j \leq r$. $\exists_1(L)$ is recognizable with poly(r) states and ambiguity r.
- What went wrong? Few advice bits suffice and these advice bits can be remembered with few states.

Choose $L = \{uv \mid u, v \in \{0, 1\}^r, u \neq v\}$: the language of inequality between *r*-bit strings. How large are NFA's for $\exists_1(L)$, if bounded ambiguity is required?

- Guess a position $i \in \{1, ..., r\}$ and accept $u^1 v^1 \dots u^m v^m$ if $u_i^j \neq v_i^j$ for some $1 \leq j \leq r$. $\exists_1(L)$ is recognizable with poly(r) states and ambiguity r.
- What went wrong? Few advice bits suffice and these advice bits can be remembered with few states.
- Advantages, when working with $L = (L_r)^t$:
 - *L* has (small) NFA's with size poly(r + t) with linear ambiguity.

ヘロト ヘアト ヘビト ヘ

Choose $L = \{uv \mid u, v \in \{0, 1\}^r, u \neq v\}$: the language of inequality between *r*-bit strings. How large are NFA's for $\exists_1(L)$, if bounded ambiguity is required?

- Guess a position $i \in \{1, ..., r\}$ and accept $u^1 v^1 \dots u^m v^m$ if $u_i^j \neq v_i^j$ for some $1 \leq j \leq r$. $\exists_1(L)$ is recognizable with poly(r) states and ambiguity r.
- What went wrong? Few advice bits suffice and these advice bits can be remembered with few states.
- Advantages, when working with $L = (L_r)^t$:
 - *L* has (small) NFA's with size poly(r + t) with linear ambiguity.
 - The required number of guesses increases exponentially with t and these guesses cannot be remembered by small NFA.

イロト イヨト イヨト イヨト

A Proof Sketch for Sublinear Ambiguity

• $L = (L_r)^t$ is the language of *t*-fold non-disjointness.

Ambiguity and Communication

< 同 > < ∃ >

A Proof Sketch for Sublinear Ambiguity

• $L = (L_r)^t$ is the language of *t*-fold non-disjointness. Set $\exists_{=0}(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \notin L \text{ for all positions} \}.$

A Proof Sketch for Sublinear Ambiguity

- $L = (L_r)^t$ is the language of *t*-fold non-disjointness. Set $\exists_{=0}(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \notin L \text{ for all positions} \}.$
- Let N be an NFA for ∃₁(L) with sublinear ambiguity and let Q be its set of states.

▲ □ ▶ → □ ▶

A Proof Sketch for Sublinear Ambiguity

- $L = (L_r)^t$ is the language of *t*-fold non-disjointness. Set $\exists_{=0}(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \notin L \text{ for all positions} \}.$
- Let *N* be an NFA for ∃₁(*L*) with sublinear ambiguity and let *Q* be its set of states.

A first step: show

There are states p₀, p₁ ∈ Q such that at least |L|/|Q|² strings in L have a computation starting in p₀ and ending in p₁.

A Proof Sketch for Sublinear Ambiguity

- $L = (L_r)^t$ is the language of *t*-fold non-disjointness. Set $\exists_{=0}(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \notin L \text{ for all positions} \}.$
- Let *N* be an NFA for ∃₁(*L*) with sublinear ambiguity and let *Q* be its set of states.

A first step: show

- There are states p₀, p₁ ∈ Q such that at least |L|/|Q|² strings in L have a computation starting in p₀ and ending in p₁.
- For any string $z' \in \overline{L}$ there is a string $u \in \exists_{=0}(L)$ with a "launching cycle" $r \stackrel{(z'u)^a}{\to} r \stackrel{(z'u)^b}{\to} p_0$ before reaching p_0

• • • • • • • • • • •

A Proof Sketch for Sublinear Ambiguity

- $L = (L_r)^t$ is the language of *t*-fold non-disjointness. Set $\exists_{=0}(L) = \{w_1 \$ w_2 \$ \cdots \$ w_m : m \in \mathbb{N} \text{ and } w_i \notin L \text{ for all positions}\}.$
- Let *N* be an NFA for ∃₁(*L*) with sublinear ambiguity and let *Q* be its set of states.

A first step: show

- There are states p₀, p₁ ∈ Q such that at least |L|/|Q|² strings in L have a computation starting in p₀ and ending in p₁.
- For any string $z' \in \overline{L}$ there is a string $u \in \exists_{=0}(L)$ with a "launching cycle" $r \stackrel{(z'u)^a}{\to} r \stackrel{(z'u)^b}{\to} p_0$ before reaching p_0 and a "storage cycle" $p_1 \stackrel{(uz')^c}{\to} s \stackrel{(uz')^d}{\to} s$ after leaving p_1 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The launching cycle delivers a power of z'u to state p_0 and the storage cycle of p_1 stores a power of uz'.

▲ 同 ▶ - ▲ 三 ▶

The launching cycle delivers a power of z'u to state p_0 and the storage cycle of p_1 stores a power of uz'.

When is N forced into at least linear ambiguity?

The launching cycle delivers a power of z'u to state p_0 and the storage cycle of p_1 stores a power of uz'.

When is *N* forced into at least linear ambiguity?

 If a single occurrence of z' within the launching cycle is replaced by an impostor string z ∈ L without N noticing and

The launching cycle delivers a power of z'u to state p_0 and the storage cycle of p_1 stores a power of uz'.

When is *N* forced into at least linear ambiguity?

- If a single occurrence of z' within the launching cycle is replaced by an impostor string z ∈ L without N noticing and
- if *z* also hides unnoticed in a matching position within the storage cycle **and**

The launching cycle delivers a power of z'u to state p_0 and the storage cycle of p_1 stores a power of uz'.

When is *N* forced into at least linear ambiguity?

- If a single occurrence of z' within the launching cycle is replaced by an impostor string z ∈ L without N noticing and
- if *z* also hides unnoticed in a matching position within the storage cycle **and**
- if $z \in L$ has a computation starting in p_0 and ending in p_1 .

The Detection Problem

An NFA *N* with sublinear ambiguity has to detect impostors.

▲ 同 ▶ - ▲ 三 ▶

The Detection Problem

An NFA *N* with sublinear ambiguity has to detect impostors.

The detection problem:

all potential impostor strings *z* ∈ *L* with a computation *p*₀ ^{*Z*}→ *p*₁ are to be accepted.

▲ 同 ▶ - ▲ 三 ▶

The Detection Problem

An NFA *N* with sublinear ambiguity has to detect impostors.

The detection problem:

all potential impostor strings z ∈ L with a computation p₀ ^z→ p₁ are to be accepted. At least |L|/|Q|² strings!

An NFA *N* with sublinear ambiguity has to detect impostors.

- all potential impostor strings $z \in L$ with a computation $p_0 \xrightarrow{z} p_1$ are to be accepted. At least $|L|/|Q|^2$ strings!
- All strings *z* surviving in matching positions within both cycles are to be rejected:

An NFA *N* with sublinear ambiguity has to detect impostors.

- all potential impostor strings $z \in L$ with a computation $p_0 \xrightarrow{z} p_1$ are to be accepted. At least $|L|/|Q|^2$ strings!
- **All** strings *z* surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of *L* are rejected.

An NFA *N* with sublinear ambiguity has to detect impostors.

- all potential impostor strings $z \in L$ with a computation $p_0 \xrightarrow{z} p_1$ are to be accepted. At least $|L|/|Q|^2$ strings!
- **All** strings *z* surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of *L* are rejected.
- No string may be accepted as well as rejected:

An NFA *N* with sublinear ambiguity has to detect impostors.

- all potential impostor strings $z \in L$ with a computation $p_0 \xrightarrow{z} p_1$ are to be accepted. At least $|L|/|Q|^2$ strings!
- **All** strings *z* surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of *L* are rejected.
- No string may be accepted as well as rejected: no impostor may survive in both cycles.

An NFA *N* with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings z ∈ L with a computation p₀ ^z→ p₁ are to be accepted. At least |L|/|Q|² strings!
- **All** strings *z* surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of *L* are rejected.
- No string may be accepted as well as rejected: no impostor may survive in both cycles.
- The remaining strings from *L* can be treated either way.

▲ 同 ▶ | ▲ 三 ▶

An NFA *N* with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_0 \xrightarrow{z} p_1$ are to be accepted. At least $|L|/|Q|^2$ strings!
- **All** strings *z* surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of *L* are rejected.
- No string may be accepted as well as rejected: no impostor may survive in both cycles.
- The remaining strings from *L* can be treated either way.

A small, but significant minority of strings in *L* is accepted.

イロン 人間 とくほ とくほう

An NFA *N* with sublinear ambiguity has to detect impostors.

The detection problem:

- all potential impostor strings $z \in L$ with a computation $p_0 \xrightarrow{z} p_1$ are to be accepted. At least $|L|/|Q|^2$ strings!
- **All** strings *z* surviving in matching positions within both cycles are to be rejected: all strings in the "complement" of *L* are rejected.
- No string may be accepted as well as rejected: no impostor may survive in both cycles.
- The remaining strings from *L* can be treated either way.

A small, but significant minority of strings in L is accepted. All strings in the "complement" of L are rejected and no string is accepted as well as rejected.

イロン 人間 とくほ とくほう

Let *N* be an NFA for $(L_r)^t$ with state set *Q*. If $z = (x_1y_1, \ldots, x_ty_t)$ is input for *N*, then assign (x_1, \ldots, x_s) to Alice and (y_1, \ldots, y_s) to Bob.

A (1) > A (2) > A

Let *N* be an NFA for $(L_r)^t$ with state set *Q*. If $z = (x_1y_1, \ldots, x_ty_t)$ is input for *N*, then assign (x_1, \ldots, x_s) to Alice and (y_1, \ldots, y_s) to Bob. Alice and Bob can simulate *N* by exchanging at most $|Q|^t$ messages.

< 同 ト < 三 ト < 三 ト

Let *N* be an NFA for $(L_r)^t$ with state set *Q*. If $z = (x_1y_1, \ldots, x_ty_t)$ is input for *N*, then assign (x_1, \ldots, x_s) to Alice and (y_1, \ldots, y_s) to Bob. Alice and Bob can simulate *N* by exchanging at most $|Q|^t$ messages.

There is a nondeterministic communication protocol which on input $z = (x_1y_1, \ldots, x_ty_t)$ exchanges at most $|Q|^{O(t)}$ messages,

< 回 > < 三 > < 三 >

Let *N* be an NFA for $(L_r)^t$ with state set *Q*. If $z = (x_1y_1, \ldots, x_ty_t)$ is input for *N*, then assign (x_1, \ldots, x_s) to Alice and (y_1, \ldots, y_s) to Bob. Alice and Bob can simulate *N* by exchanging at most $|Q|^t$ messages.

There is a nondeterministic communication protocol which on input $z = (x_1y_1, \ldots, x_ty_t)$ exchanges at most $|Q|^{O(t)}$ messages,

• accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,

< 回 > < 三 > < 三 >

Let *N* be an NFA for $(L_r)^t$ with state set *Q*. If $z = (x_1y_1, \ldots, x_ty_t)$ is input for *N*, then assign (x_1, \ldots, x_s) to Alice and (y_1, \ldots, y_s) to Bob. Alice and Bob can simulate *N* by exchanging at most $|Q|^t$ messages.

There is a nondeterministic communication protocol which on input $z = (x_1y_1, ..., x_ty_t)$ exchanges at most $|Q|^{O(t)}$ messages,

- accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,
- rejects all strings z in the "complement" of $(L_r)^t$ and

< 回 > < 三 > < 三 >

Let *N* be an NFA for $(L_r)^t$ with state set *Q*. If $z = (x_1y_1, \ldots, x_ty_t)$ is input for *N*, then assign (x_1, \ldots, x_s) to Alice and (y_1, \ldots, y_s) to Bob. Alice and Bob can simulate *N* by exchanging at most $|Q|^t$ messages.

There is a nondeterministic communication protocol which on input $z = (x_1y_1, ..., x_ty_t)$ exchanges at most $|Q|^{O(t)}$ messages,

- accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,
- rejects all strings z in the "complement" of $(L_r)^t$ and
- treats the many remaining strings in $(L_r)^t$ arbitrarily.

A (1) > A (2) > A

Let *N* be an NFA for $(L_r)^t$ with state set *Q*. If $z = (x_1y_1, \ldots, x_ty_t)$ is input for *N*, then assign (x_1, \ldots, x_s) to Alice and (y_1, \ldots, y_s) to Bob. Alice and Bob can simulate *N* by exchanging at most $|Q|^t$ messages.

There is a nondeterministic communication protocol which on input $z = (x_1y_1, \ldots, x_ty_t)$ exchanges at most $|Q|^{O(t)}$ messages,

- accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,
- rejects all strings z in the "complement" of $(L_r)^t$ and
- treats the many remaining strings in $(L_r)^t$ arbitrarily.

How to analyze the nondeterministic communication protocol? Utilize the above properties to obtain a deterministic protocol!

・ロト ・聞 ト ・ ヨト ・ ヨト

The Communication Problem

Analyzing the Nondeterministic Protocol

There is a deterministic protocol which

• accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,

There is a deterministic protocol which

- accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,
- rejects all strings z in the "complement" of $(L_r)^t$

There is a deterministic protocol which

- accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,
- rejects all strings z in the "complement" of $(L_r)^t$
- and exchanges at most $|Q|^{t^2 \cdot \log_2 |Q|}$ messages.

There is a deterministic protocol which

- accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,
- rejects all strings z in the "complement" of $(L_r)^t$
- and exchanges at most $|Q|^{t^2 \cdot \log_2 |Q|}$ messages.

Let α be sufficiently small. If such a deterministic protocol exchanges at most $2^{\alpha \cdot r \cdot t}$ messages, then *D* accepts at most $|(L_r)^t|/2^{\alpha \cdot t}$ strings from $(L_r)^t$. (Hromkovic and Schnitger, 2003)

There is a deterministic protocol which

- accepts at least $|(L_r)^t|/|Q|^2$ strings *z* from $(L_r)^t$,
- rejects all strings z in the "complement" of $(L_r)^t$
- and exchanges at most $|Q|^{t^2 \cdot \log_2 |Q|}$ messages.

Let α be sufficiently small. If such a deterministic protocol exchanges at most $2^{\alpha \cdot r \cdot t}$ messages, then *D* accepts at most $|(L_r)^t|/2^{\alpha \cdot t}$ strings from $(L_r)^t$. (Hromkovic and Schnitger, 2003)

Let *N* be an NFA with sublinear ambiguity recognizing $\exists_1((L_r)^t)$. Then *N* has at least $2^{\Omega(r^{1/3})}$ states.

Conclusions

• The detection problem allows to investigate NFA's of restricted ambiguity with the help of communication arguments.

Conclusions

- The detection problem allows to investigate NFA's of restricted ambiguity with the help of communication arguments.
- Showing that an NFA for ∃_k(L) solves an appropriately defined detection problem for k > 1 proceeds similarly, but requires further work.