Automata and Communication

Georg Schnitger

Institute of Computer Science Goethe Universität Frankfurt am Main

Georg Schnitger

Automata and Communication

< 4 →

The Goal

Predict the minimal size of automata,

i.e., number of states or number of transitions.

3 + 4 = +

The Goal

Predict the minimal size of automata,

i.e., number of states or number of transitions.

 The size of deterministic finite automata (DFA) and of Las Vegas Automata: Tight characterizations with Communication Complexity.

The Goal

Predict the minimal size of automata,

i.e., number of states or number of transitions.

 The size of deterministic finite automata (DFA) and of Las Vegas Automata:
Tight observatorizations with Communication Complexity

Tight characterizations with Communication Complexity.

• The size of nondeterministic finite automata. (NFA)

Approximation Complexity.

The Goal

Predict the minimal size of automata,

i.e., number of states or number of transitions.

• The size of deterministic finite automata (DFA) and of Las Vegas Automata:

Tight characterizations with Communication Complexity.

- The size of nondeterministic finite automata. (NFA)
 - Approximation Complexity.
 - Multi-party communication.

The Goal

Predict the minimal size of automata,

i.e., number of states or number of transitions.

• The size of deterministic finite automata (DFA) and of Las Vegas Automata:

Tight characterizations with Communication Complexity.

• The size of nondeterministic finite automata. (NFA)

- Approximation Complexity.
- Multi-party communication.
- The size of NFA with limited ambiguity.

The Goal

Predict the minimal size of automata,

i.e., number of states or number of transitions.

• The size of deterministic finite automata (DFA) and of Las Vegas Automata:

Tight characterizations with Communication Complexity.

• The size of nondeterministic finite automata. (NFA)

- Approximation Complexity.
- Multi-party communication.
- The size of NFA with limited ambiguity.
- Two-Way automata: The size of deterministic sweeping automata and nondeterministic communication.

< 🗇 > < 🖻 >

The Size of DFA and Las Vegas Automata

DFA and One-Way Communication

▲帰▶ ▲臣▶ ▲臣

If *A* is a DFA with input $x = x_1 x_2$ and $|x_1| = |x_2|$:

< (17) > < (17) > > <

If *A* is a DFA with input $x = x_1x_2$ and $|x_1| = |x_2|$: Alice simulates *A* on prefix x_1 and sends the final state to Bob.

If *A* is a DFA with input $x = x_1x_2$ and $|x_1| = |x_2|$: Alice simulates *A* on prefix x_1 and sends the final state to Bob. Bob completes the simulation of *A* on suffix x_2 .

A (10) F (10)

If *A* is a DFA with input $x = x_1x_2$ and $|x_1| = |x_2|$: Alice simulates *A* on prefix x_1 and sends the final state to Bob. Bob completes the simulation of *A* on suffix x_2 .

• A DFA with *q* states is simulated by a one-way deterministic protocol with at most *q* messages.

If *A* is a DFA with input $x = x_1x_2$ and $|x_1| = |x_2|$: Alice simulates *A* on prefix x_1 and sends the final state to Bob. Bob completes the simulation of *A* on suffix x_2 .

- A DFA with *q* states is simulated by a one-way deterministic protocol with at most *q* messages.
- Consider the language

$$L_n = \{0^{2n}x_1x_2 : |x_1| = |x_2| = n, x_1 = x_2\}.$$

If *A* is a DFA with input $x = x_1x_2$ and $|x_1| = |x_2|$: Alice simulates *A* on prefix x_1 and sends the final state to Bob. Bob completes the simulation of *A* on suffix x_2 .

- A DFA with *q* states is simulated by a one-way deterministic protocol with at most *q* messages.
- Consider the language

$$L_n = \{0^{2n}x_1x_2 : |x_1| = |x_2| = n, x_1 = x_2\}.$$

Two messages suffice, but a minimal DFA has at least 2^n states.

If *A* is a DFA with input $x = x_1x_2$ and $|x_1| = |x_2|$: Alice simulates *A* on prefix x_1 and sends the final state to Bob. Bob completes the simulation of *A* on suffix x_2 .

- A DFA with *q* states is simulated by a one-way deterministic protocol with at most *q* messages.
- Consider the language

$$L_n = \{0^{2n}x_1x_2 : |x_1| = |x_2| = n, x_1 = x_2\}.$$

Two messages suffice, but a minimal DFA has at least 2^n states.

Is one-way communication inherently too powerful?

Require that one-way protocols are uniform: require that the communication protocol "works" for any input partition $x = x_1 x_2$ with an arbitrary prefix x_1 and an arbitrary suffix x_2 .

< (□) < 三 > (□)

Require that one-way protocols are uniform: require that the communication protocol "works" for any input partition $x = x_1 x_2$ with an arbitrary prefix x_1 and an arbitrary suffix x_2 .

• The minimal number of messages equals the number of different rows in the (infinite) communication matrix.

Require that one-way protocols are uniform: require that the communication protocol "works" for any input partition $x = x_1 x_2$ with an arbitrary prefix x_1 and an arbitrary suffix x_2 .

- The minimal number of messages equals the number of different rows in the (infinite) communication matrix.
- Within the communication matrix: the rows for prefix *u* and prefix *v* coincide iff *u* and *v* are Nerode equivalent.

Require that one-way protocols are uniform: require that the communication protocol "works" for any input partition $x = x_1 x_2$ with an arbitrary prefix x_1 and an arbitrary suffix x_2 .

- The minimal number of messages equals the number of different rows in the (infinite) communication matrix.
- Within the communication matrix: the rows for prefix *u* and prefix *v* coincide iff *u* and *v* are Nerode equivalent.

DFA and Communication

The minimal number of states of a DFA for a language *L* coincides with the minimal number of messages of a uniform one-way protocol for *L*.

A Las Vegas automaton never errs and may output a question mark with probability at most $\frac{1}{2}$.

A .

A Las Vegas automaton never errs and may output a question mark with probability at most $\frac{1}{2}$.

 If a Las Vegas one-way protocol sends at most *m* messages, then there is an equivalent deterministic protocol sending at most O(m²) messages (Hromkovic and S, 2001).

A Las Vegas automaton never errs and may output a question mark with probability at most $\frac{1}{2}$.

- If a Las Vegas one-way protocol sends at most *m* messages, then there is an equivalent deterministic protocol sending at most O(m²) messages (Hromkovic and S, 2001).
- The minimal number of states of a Las Vegas automaton is at most quadratic in the minimal number of states of a deterministic finite automaton.

A Las Vegas automaton never errs and may output a question mark with probability at most $\frac{1}{2}$.

- If a Las Vegas one-way protocol sends at most *m* messages, then there is an equivalent deterministic protocol sending at most O(m²) messages (Hromkovic and S, 2001).
- The minimal number of states of a Las Vegas automaton is at most quadratic in the minimal number of states of a deterministic finite automaton.

Las Vegas Automata and Communication

The minimal number of states of a Las Vegas automaton for a language L is at most quadratic in the minimal number of messages of a uniform Las Vegas protocol for L.

イロン 人間 とくほ とくほう

Given an NFA of size *n*, determine the size of an equivalent minimal NFA:

Given an NFA of size *n*, determine the size of an equivalent minimal NFA:

Unless P \neq PSPACE, no efficient approximation algorithm reaches approximation factor o(n).

・ロト ・聞 ト ・ ヨト ・ ヨト

Given an NFA of size *n*, determine the size of an equivalent minimal NFA:

Unless P \neq PSPACE, no efficient approximation algorithm reaches approximation factor o(n).

Given a DFA of size *n*, determine the size of an equivalent minimal NFA:

<ロト <回ト < 回ト < 回

Given an NFA of size *n*, determine the size of an equivalent minimal NFA:

Unless P \neq PSPACE, no efficient approximation algorithm reaches approximation factor o(n).

Given a DFA of size *n*, determine the size of an equivalent minimal NFA:

If strong pseudo-random functions exist in non-uniform NC¹, then no efficient approximation algorithm reaches approximation factor $O(\sqrt{n}/\text{poly}(\log_2 n))$.

< ロ > < 同 > < 回 > < 回 >

Given an NFA of size *n*, determine the size of an equivalent minimal NFA:

Unless P \neq PSPACE, no efficient approximation algorithm reaches approximation factor o(n).

Given a DFA of size *n*, determine the size of an equivalent minimal NFA:

If strong pseudo-random functions exist in non-uniform NC¹, then no efficient approximation algorithm reaches approximation factor $O(\sqrt{n}/\text{poly}(\log_2 n))$.

If size is measured as the number of transitions, then approximation factor $O(n/\text{poly}(\log_2 n))$ cannot be reached. (Gramlich and S, 2007)

There are languages L_n such that NFA for L_n have at least $2^{\Omega(n)}$ states. However uniform nondeterministic protocols with $O(n^2)$ messages exist.

A (1) > A (2) > A

There are languages L_n such that NFA for L_n have at least $2^{\Omega(n)}$ states. However uniform nondeterministic protocols with $O(n^2)$ messages exist.

Two-Party protocols fail. What about uniform multi-party protocols with *k* players?

A (1) > A (2) > A

There are languages L_n such that NFA for L_n have at least $2^{\Omega(n)}$ states. However uniform nondeterministic protocols with $O(n^2)$ messages exist.

Two-Party protocols fail. What about uniform multi-party protocols with *k* players?

• Partition an input $x = x_1 \cdots x_k$ into *k* arbitrary substrings.

There are languages L_n such that NFA for L_n have at least $2^{\Omega(n)}$ states. However uniform nondeterministic protocols with $O(n^2)$ messages exist.

Two-Party protocols fail. What about uniform multi-party protocols with k players?

- Partition an input $x = x_1 \cdots x_k$ into k arbitrary substrings.
- Player i receives x_i.

There are languages L_n such that NFA for L_n have at least $2^{\Omega(n)}$ states. However uniform nondeterministic protocols with $O(n^2)$ messages exist.

Two-Party protocols fail. What about uniform multi-party protocols with k players?

- Partition an input $x = x_1 \cdots x_k$ into k arbitrary substrings.
- Player *i* receives *x_i*. Upon receiving a message *m_{i-1}* from its predecessor player *i* sends a nondeterministic message *m_i* to player *i* + 1.

A (10) A (10) A (10)

There are languages L_n such that NFA for L_n have at least $2^{\Omega(n)}$ states. However uniform nondeterministic protocols with $O(n^2)$ messages exist.

Two-Party protocols fail. What about uniform multi-party protocols with k players?

- Partition an input $x = x_1 \cdots x_k$ into k arbitrary substrings.
- Player *i* receives *x_i*. Upon receiving a message *m_{i-1}* from its predecessor player *i* sends a nondeterministic message *m_i* to player *i* + 1.
- Player k decides.

・ 同 ト ・ ヨ ト ・ ヨ ト

There are languages L_n such that NFA for L_n have at least $2^{\Omega(n)}$ states. However uniform nondeterministic protocols with $O(n^2)$ messages exist.

Two-Party protocols fail. What about uniform multi-party protocols with *k* players?

- Partition an input $x = x_1 \cdots x_k$ into k arbitrary substrings.
- Player *i* receives x_i . Upon receiving a message m_{i-1} from its predecessor player *i* sends a nondeterministic message m_i to player i + 1.
- Player *k* decides.
- The communication complexity of a protocol is the maximum, over all players *i*, of

イロト イヨト イヨト イヨト

There are languages L_n such that NFA for L_n have at least $2^{\Omega(n)}$ states. However uniform nondeterministic protocols with $O(n^2)$ messages exist.

Two-Party protocols fail. What about uniform multi-party protocols with *k* players?

- Partition an input $x = x_1 \cdots x_k$ into *k* arbitrary substrings.
- Player *i* receives x_i . Upon receiving a message m_{i-1} from its predecessor player *i* sends a nondeterministic message m_i to player i + 1.
- Player *k* decides.
- The communication complexity of a protocol is the maximum, over all players *i*, of the number of different messages *m_i* sent by player *i*.

イロト イヨト イヨト イヨト

Assume that a language *L* has a minimal NFA with *q* states. Do multi-party protocols with, say, *q* players have communication complexity $\Omega(q)$?

< ロ > < 同 > < 回 > < 回 >

Assume that a language *L* has a minimal NFA with *q* states. Do multi-party protocols with, say, *q* players have communication complexity $\Omega(q)$?

Consider the unary language $L_n = \{1^m : m \neq n\}$.

• The minimal NFA for L_n has $\Theta(\sqrt{n})$ states.

Assume that a language *L* has a minimal NFA with *q* states. Do multi-party protocols with, say, *q* players have communication complexity $\Omega(q)$?

Consider the unary language $L_n = \{1^m : m \neq n\}$.

- The minimal NFA for L_n has $\Theta(\sqrt{n})$ states.
- There are uniform k-party protocols for L_n exchanging at most log²₂(kn) messages.

Assume that a language *L* has a minimal NFA with *q* states. Do multi-party protocols with, say, *q* players have communication complexity $\Omega(q)$?

Consider the unary language $L_n = \{1^m : m \neq n\}$.

- The minimal NFA for L_n has $\Theta(\sqrt{n})$ states.
- There are uniform k-party protocols for L_n exchanging at most log²₂(kn) messages.
- Even for $k = 2^{\Omega(n^{1/4})}$ players, communication complexity is smaller than the number of states.

A (10) > A (10) > A

Assume that a language *L* has a minimal NFA with *q* states. Do multi-party protocols with, say, *q* players have communication complexity $\Omega(q)$?

Consider the unary language $L_n = \{1^m : m \neq n\}$.

- The minimal NFA for L_n has $\Theta(\sqrt{n})$ states.
- There are uniform k-party protocols for L_n exchanging at most log²₂(kn) messages.
- Even for $k = 2^{\Omega(n^{1/4})}$ players, communication complexity is smaller than the number of states. (Hromkovic and S, 2008)

How to predict the size of NFA?

イロト イヨト イヨト イヨト

Assume that a language *L* has a minimal NFA with *q* states. Do multi-party protocols with, say, *q* players have communication complexity $\Omega(q)$?

Consider the unary language $L_n = \{1^m : m \neq n\}$.

- The minimal NFA for L_n has $\Theta(\sqrt{n})$ states.
- There are uniform k-party protocols for L_n exchanging at most log²₂(kn) messages.
- Even for $k = 2^{\Omega(n^{1/4})}$ players, communication complexity is smaller than the number of states. (Hromkovic and S, 2008)

How to predict the size of NFA? No idea!

Two-Way Automata

THE Open Problem for Two-Way Automata

2-DFA versus 2-NFA

Are there languages L_n with two-way NFA of size O(n) such that any two-way DFA for L_n requires more than poly(n) states?

Two-Way Automata

THE Open Problem for Two-Way Automata

2-DFA versus 2-NFA

Are there languages L_n with two-way NFA of size O(n) such that any two-way DFA for L_n requires more than poly(n) states?

 Communication fails, since automata with *q* states seem to require simulating protocols with *q*^{Ω(q)} messages:

THE Open Problem for Two-Way Automata

2-DFA versus 2-NFA

Are there languages L_n with two-way NFA of size O(n) such that any two-way DFA for L_n requires more than poly(n) states?

 Communication fails, since automata with *q* states seem to require simulating protocols with *q*^{Ω(q)} messages: crossing sequences may be of length Ω(*q*).

THE Open Problem for Two-Way Automata

2-DFA versus 2-NFA

Are there languages L_n with two-way NFA of size O(n) such that any two-way DFA for L_n requires more than poly(n) states?

- Communication fails, since automata with *q* states seem to require simulating protocols with *q*^{Ω(q)} messages: crossing sequences may be of length Ω(*q*).
- A rotating automaton scans its input from left to right. After reaching the right end of the input it stops or starts a new left-to-right sweep.

(4月) (4日) (4

THE Open Problem for Two-Way Automata

2-DFA versus 2-NFA

Are there languages L_n with two-way NFA of size O(n) such that any two-way DFA for L_n requires more than poly(n) states?

- Communication fails, since automata with *q* states seem to require simulating protocols with *q*^{Ω(q)} messages: crossing sequences may be of length Ω(*q*).
- A rotating automaton scans its input from left to right. After reaching the right end of the input it stops or starts a new left-to-right sweep.

If uniform nondeterministic protocols for the complement of *L* require at least *s* messages, then any deterministic rotating automaton for $(L\$)^*$ has to have at least $\Omega(\sqrt{s})$ states (Hromkovic and S, 2008).

• Given is an arbitrary subset $S \subseteq \{1, \ldots, n\}$.

- Given is an arbitrary subset $S \subseteq \{1, \ldots, n\}$.
- Alice receives $x \in \{1, ..., n\}$, Bob receives $y \in \{1, ..., n\}$.

- Given is an arbitrary subset $S \subseteq \{1, \ldots, n\}$.
- Alice receives $x \in \{1, ..., n\}$, Bob receives $y \in \{1, ..., n\}$.
- They have to determine whether $x + y \in S$ by using a probabilistic, bounded error one-way protocol.

A I > A I > A

- Given is an arbitrary subset $S \subseteq \{1, \ldots, n\}$.
- Alice receives $x \in \{1, ..., n\}$, Bob receives $y \in \{1, ..., n\}$.
- They have to determine whether $x + y \in S$ by using a probabilistic, bounded error one-way protocol.

If at least $\log_2 n \cdot |S|^{\Omega(1)}$ messages are required for **any** set *S*, then

- Given is an arbitrary subset $S \subseteq \{1, \ldots, n\}$.
- Alice receives $x \in \{1, ..., n\}$, Bob receives $y \in \{1, ..., n\}$.
- They have to determine whether $x + y \in S$ by using a probabilistic, bounded error one-way protocol.

If at least $\log_2 n \cdot |S|^{\Omega(1)}$ messages are required for **any** set *S*, then unary bounded-error automata have a **normal form** which is optimal up to a polynomial.