Goethe-Universität Frankfurt am Main Institut für Informatik Theorie komplexer Systeme Prof. Dr. Nicole Schweikardt

Diskrete Modellierung

Wintersemester 2008/2009

Übungsblatt 4

Abgabe: bis 19. November 2008, 8.15 Uhr (vor der Vorlesung oder in Raum RM 11-15/113)

Aufgabe 1:

$$(8+12+5=25 \text{ Punkte})$$

- (a) Betrachten Sie die folgenden Wörter und beweisen Sie jeweils, dass das Wort gemäß Definition 3.3 zur Sprache AL gehört oder begründen Sie, warum das Wort nicht zu AL gehört.
 - (i) $\neg ((V_3 \land \neg \mathbf{0}) \rightarrow (V_0 \lor (\neg \neg V_1 \land V_4)))$
 - (ii) $(V_5 \leftrightarrow X) \land (V_{23} \rightarrow (V_1 \land \mathbf{0}))$
 - (iii) $(V_{11} \leftarrow V_7) \lor \neg \neg V_5$
 - (iv) $((V_9 \lor \neg(\neg V_{42}) \lor \neg V_2) \to \mathbf{1})$
- (b) Betrachten Sie die aussagenlogische Formel

$$\varphi := \left((\neg V_0 \wedge V_1) \to \left(V_0 \wedge (V_1 \vee \neg V_2) \right) \right)$$

und die Belegung $\mathcal{B}: \operatorname{Var}(\varphi) \to \{0,1\}$ mit $\mathcal{B}(V_0) = 1$ und $\mathcal{B}(V_1) = \mathcal{B}(V_2) = 0$. Berechnen Sie den Wert $\llbracket \varphi \rrbracket^{\mathcal{B}}$ in nachvollziehbaren Schritten analog zu Beispiel 3.9 aus der Vorlesung.

(c) Geben Sie den Syntaxbaum und die ASCII-Darstellung der Formel φ aus (b) an.

Aufgabe 2:

$$(15 + 5 + 10 = 30 \text{ Punkte})$$

USA, 4. November 2008. Vor einem Wahllokal befragt ein Journalist vier Freunde A, B, C und D, die gerade das Wahllokal verlassen haben, wie sie gewählt haben. A sagt: "Falls B für Obama gestimmt hat, dann haben auch C und D für Obama gestimmt." B sagt: "A hat auf keinen Fall für Obama gestimmt, aber D." C sagt: "B hat nur dann für McCain gestimmt, wenn A für Obama gestimmt hat." D sagt schließlich: "Wenn C für Obama gestimmt hat, dann hat A für McCain oder B für Obama gestimmt." Wir nehmen an, dass jeder die Wahrheit gesagt und entweder Obama oder McCain gewählt hat.

- (a) Zerlegen Sie den obigen Text in atomare Aussagen und geben Sie eine aussagenlogische Formel φ an, die das im Text zusammengefasste Wissen repräsentiert (ähnlich wie in den Beispielen 3.1, 3.17 und 3.19 im Skript).
- (b) Geben Sie für Ihre Formel φ aus (a) eine Belegung \mathcal{B} an, die besagt, dass A, B und C Obama gewählt haben und D für McCain gestimmt hat. Erfüllt \mathcal{B} die Formel φ ?

(c) Wen haben A, B, C und D jeweils gewählt? Falls es mehrere Möglichkeiten gibt, geben Sie alle an.

Aufgabe 3: (12 + 13 = 25 Punkte)

Zwei Analysten streiten sich, wer von ihnen denn nun am besten Aktienkurse voraussagen kann. Dazu wollen sie drei zufällig anwesende Anleger A, B und C befragen. Das wäre nicht weiter schwierig, wenn sich A, B und C nicht folgendes (repräsentiert durch aussagenlogische Formeln) vorwerfen würden:

- A behauptet: $\varphi_A := (\neg B \lor \neg C)$
- B behauptet: $\varphi_B := \neg A$
- C behauptet: $\varphi_C := (A \wedge \neg B)$

Hierbei bedeuten die Aussagenvariablen:

- A: A sagt die Wahrheit.
- B: B sagt die Wahrheit.
- C: C sagt die Wahrheit.
- (a) Beschreiben Sie umgangssprachlich, was jede der Formeln φ_A , φ_B , φ_C aussagt.
- (b) Wem können die Analysten glauben und wem nicht? Falls es mehrere Möglichkeiten gibt, geben Sie alle an.

Aufgabe 4: (10 + 10 = 20 Punkte)

Beweisen Sie Beobachtung 3.27 (b) und (d) aus dem Skript, d.h. beweisen Sie, dass für alle aussagenlogischen Formeln φ und ψ gilt:

- (a) $\varphi \models \mathbf{0} \iff \varphi$ ist unerfüllbar.
- (b) $\varphi \models \psi \iff (\varphi \land \neg \psi)$ ist unerfüllbar.