Goethe-Universität Frankfurt am Main Institut für Informatik Theorie Komplexer Systeme Dr. Mariano Zelke

Datenstrukturen

Sommersemester 2012

Übungsblatt 1

Abgabe: bis 24. April 2012, 8.15 Uhr (vor der Vorlesung oder in Raum RM 11-15/113)

Bitte achten Sie darauf, dass Sie auf der Abgabe Ihrer Lösung Ihren **Namen**, Ihre **Matrikelnummer** und Ihre **Übungsgruppe** angeben. Fehlt eine dieser Angaben, müssen Sie mit **Punktabzug** rechnen. Mehrseitige Abgaben müssen zusammengeheftet werden.

Aufgabe 1: (9 Punkte)

Es seien die folgenden drei Funktionen gegeben:

$$f_1: \mathbb{N} \to \mathbb{R}_{\geq 0} \text{ mit } f_1(n) = 4$$

 $f_2: \mathbb{N} \to \mathbb{R}_{\geq 0} \text{ mit } f_2(n) = 2n + 2$
 $f_3: \mathbb{N} \to \mathbb{R}_{\geq 0} \text{ mit } f_3(n) = n^2 - 4n + 4$

- (a) Für zwei Funktionen $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$ schreiben wir $f \leq g$, falls $f(n) \leq g(n)$ für alle $n \in \mathbb{N}$. Entscheiden Sie für jedes Paar f_i, f_j mit i < j von oben angegebenen Funktionen, ob $f_i \leq f_j$ gilt und begründen Sie Ihre Antwort.
- (b) Für zwei Funktionen $f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}$ schreiben wir $f \triangleleft g$, falls es eine reelle Zahl c > 0 gibt mit $f(n) \leq c \cdot g(n)$ für alle $n \in \mathbb{N}$. Entscheiden Sie für jedes Paar f_i, f_j mit i < j von oben angegebenen Funktionen, ob $f_i \triangleleft f_j$ gilt. Begründen Sie Ihre Antwort, indem Sie ein c > 0 angeben, so dass $f_i(n) \leq c \cdot f_j(n)$ für alle $n \in \mathbb{N}$ gilt oder argumentieren, dass ein solches c nicht existiert.
- (c) Entscheiden Sie für jedes Paar f_i, f_j mit i < j von oben angegebenen Funktionen, ob $f_i = \mathcal{O}(f_j)$ gilt. Begründen Sie Ihre Antwort, indem Sie ein c > 0 und ein $n_0 \in \mathbb{N}$ angeben, so dass $f_i(n) \leq c \cdot f_j(n)$ für alle $n \geq n_0$ gilt oder argumentieren, dass solche c und n_0 nicht existieren.

Aufgabe 2: (12 Punkte)

Bestimmen Sie für jedes der folgenden Paare von Funktionen f und g welche der Beziehungen $f = \mathcal{O}(g), f = o(g), f = \Omega(g), f = \omega(g)$ und $f = \Theta(g)$ gelten. Geben Sie jeweils (mit kurzer Begründung) jede geltende Beziehung an; Beziehungen, die jeweils nicht gelten, brauchen nicht berücksichtigt zu werden.

(a)
$$f(n) = n^3$$
, $g(n) = \frac{1}{2}n^3 - 3n^2 + n$

(b)
$$f(n) = \log_3(n^4), \quad g(n) = \log_9 \sqrt{n}$$

(c) $f(n) = \text{Anzahl der Teilmengen von } \{1, \dots, n\},\$ $g(n) = \text{Anzahl der Permutationen von } \{1, \dots, n\}$

(d)
$$f(n) = 3n^4$$
, $g(n) = \begin{cases} n^4 & \text{falls } n \text{ eine Primzahl ist,} \\ n^3 & \text{sonst.} \end{cases}$

(e)
$$f(n) = n$$
, $g(n) = \frac{\log_2 n}{\sqrt{n}}$

(f)
$$f(n) = \frac{\log_2 n}{\log_8 n}$$
, $g(n) = \sum_{i=0}^n (1/3)^i$

Aufgabe 3: (12 Punkte)

Es seien $f, f_1, f_2, g, g_1, g_2 : \mathbb{N} \to \mathbb{R}_{\geq 0}$ Funktionen, die Laufzeiten bestimmen. Zeigen oder widerlegen Sie die folgenden Aussagen:

(a) Aus
$$f_1 = \mathcal{O}(g_1)$$
 und $f_2 = \mathcal{O}(g_2)$ folgt $f_1 + f_2 = \mathcal{O}(g_1 + g_2)$.

(b) Aus
$$f_1 = \mathcal{O}(g_1)$$
 und $f_2 = \mathcal{O}(g_2)$ folgt $f_1 \cdot f_2 = \mathcal{O}(g_1 \cdot g_2)$.

(c) Aus
$$f = \Theta(g)$$
 folgt $3^f = \Theta(3^g)$.

(d) Aus
$$f = o(g)$$
 folgt $f = \mathcal{O}(g)$.

(e) Aus
$$f = \mathcal{O}(g)$$
 folgt $f = o(g)$.

(f) Es gilt stets $f(n) = \Theta(f(2n))$.

Aufgabe 4: (10 Punkte)

Es sei der folgende Algorithmus A für eine ganzzahlige Eingabe n gegeben:

Algorithmus A

var
$$sum = 0$$

for $(i = 1; i \le n; i + +)$ {
for $(j = 1; j \le f(i); j + +)$ {
 $sum = sum + 1;$
}

Welchen Wert hat die Variable sum an Ende der Berechnung, wenn gilt

(a)
$$f(i) = 5$$

(b)
$$f(i) = n$$

(c)
$$f(i) = 2n - i$$

(d)
$$f(i) = 2^i - 1$$

(e) $f(i) = n/(2^i)$ Für diese Teilaufgabe können Sie annehmen, dass n eine Zweierpotenz ist.