Goethe-Universität Frankfurt am Main Institut für Informatik Theorie Komplexer Systeme Dr. Mariano Zelke

Datenstrukturen

Sommersemester 2012

Präsenzaufgaben

zur Bearbeitung am ersten Übungstermin

Die folgenden Aufgaben behandeln grundlegende Schreibweisen sowie Zusammenhänge, deren Kenntnis wichtig zum Verständnis der Vorlesung ist. Die Aufgaben dieses Blattes werden in den Übungsgruppen besprochen, es findet keine schriftliche Abgabe statt.

Mit $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ bezeichnen wir die natürlichen Zahlen, mit $\mathbb{N}_{>0}$ bezeichnen wir die natürlichen Zahlen ohne die Null. Mit \mathbb{R} bezeichnen wir die reellen Zahlen und mit $\mathbb{R}_{\geq 0}$ die nicht-negativen reellen Zahlen.

Seien A und B zwei Mengen und sei $f:A\to B$ eine Funktion. Der Graph von f ist die Menge $\{(a,f(a))\,|\,a\in A\}\subseteq A\times B.$

Aufgabe 1:

Es seien die folgenden sechs Funktionen gegeben:

$$f_1: \mathbb{N}_{>0} \to \mathbb{R}_{\geq 0} \text{ mit } f_1(n) = \log_2 n$$

$$f_2: \mathbb{N} \to \mathbb{R}_{\geq 0} \quad \text{mit } f_2(n) = \sqrt{n}$$

$$f_3: \mathbb{N} \to \mathbb{R}_{\geq 0} \quad \text{mit } f_3(n) = n$$

$$f_4: \mathbb{N} \to \mathbb{R}_{\geq 0} \quad \text{mit } f_4(n) = n^2$$

$$f_5: \mathbb{N} \to \mathbb{R}_{\geq 0} \quad \text{mit } f_5(n) = 2^n$$

$$f_6: \mathbb{N} \to \mathbb{R}_{>0} \quad \text{mit } f_6(n) = n!$$

- (a) Skizzieren Sie die Graphen der Funktionen f_1, \ldots, f_6 .
- (b) Geben Sie für jede der Funktionen f_i mit $1 \le i \le 6$ ein Beispiel aus dem Alltag an, das (bis auf kleine Abweichungen) durch f_i beschrieben werden kann.

Aufgabe 2:

Beweisen Sie die folgenden Aussagen durch vollständige Induktion nach n.

(a) Für alle
$$n \in \mathbb{N}$$
 mit $n \ge 1$ gilt: $\sum_{i=1}^{n} (2i-1) = n^2$

(b) Für alle
$$n \in \mathbb{N}$$
 mit $n \ge 5$ gilt: $2^n > n(n+1)$

Aufgabe 3:

Für ein Problem seien sechs Algorithmen A_1, \ldots, A_6 gegeben, die das Problem lösen. Dabei benötigt der Algorithmus A_i für die Eingabelänge n einen Berechnungsaufwand (also eine Anzahl von Operationen) von $b_i(n)$, und es gilt:

$$b_1(n) = n, \qquad b_2(n) = n^2, \qquad b_3(n) = 1000n^2, \qquad b_4(n) = n^3, \qquad b_5(n) = n\log_2 n, \qquad b_6(n) = 2^n$$

Wie verändert sich der Berechnungsaufwand, wenn

Aufgabe 4:

Es sei a, b > 1 und x > 0.

(a) Vereinfachen Sie die folgenden Terme:

(i)
$$\log_b b^x$$

(iii)
$$x^{1/\log_b x}$$
 für $x \neq 1$

- (ii) $a^{b \log_a x}$
- (b) Zeigen Sie die Korrektheit der folgenden Gleichungen:

(i)
$$\log_{b^2} x = \log_b \sqrt{x}$$

(ii)
$$\log_b \frac{1}{x} + \log_a(x^{1/\log_a b}) = 0$$