
Chapter 13 

ACYCLIC DATABASE SCHEMES 

In this chapter we introduce a class of database schemes, the acyclic 
database schemes, that possess several desirable properties. We first 
enumerate the properties, then give three syntactic characterizations of 
acyclic schemes, give algorithms for two of the characterizations, and prove 
equivalence of the properties and characterizations. 

13.1 PROPERTIES OF DATABASE SCHEMES 

In this section we introduce five properties that a database scheme may 
possess. The properties are mainly “extensional’‘-they refer to a condition 
that must hold for all databases on the database scheme. The next section 
deals with “intensional” properties-ones that involve conditions on the 
database scheme alone. 

13.1.1 Existence of a Full Reducer 

We return to the semijoin operator introduced in Chapter 11. Consider a 
relational expression 

where C is some Boolean combination of comparison conditions. Such 
project-select-join expressions occur frequently as subexpressions when con- 
verting calculus-based queries to relational algebra. Suppose we are 
evaluating the expression on a distributed database system where the rela- 
tions are spread over multiple sites. It is not unusual in such a system for 
communication costs between sites to greatly exceed processing costs at a 
single site. We consider evaluating E while trying to minimize data trans- 
mitted between sites, paying no attention to local processing costs. 

439 
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A naive approach to evaluating E is to ship all the relations to a singIe site 
and evaluate the expression at that site. The problem with this approach is 
that only a small portion of each relation may be needed in the evaluation of E. 
Tuples and parts of tuples may be excluded from the evaluation by the pro- 
jection, the selection condition, and the joins, The naive approach can be im- 
proved by using the algebraic optimization techniques of Chapter 11 to push 
parts of the projection and selection down the tree to individual relations. 
The result is an expression 

We can compute 

for 1 I i ZG p, at individual sites, to be left with the expression 

E” = 7rX(UC~(Sl P-4 s2 Da * - - w sp) 

to evaluate, where presumably some of the Si’S are smaller then the corre- 
sponding Yi’s. 

Example 13.1 Consider the database d = { rl, ~2,r3) on the database scheme& 
R, = (ABC, BCD, CDE} shown in Figure 13.1. (R, will be used as a running 
example throughout this chapter.) Suppose we want to evaluate the expression 

We transform E to 

We can evaluate 

locally to get the database d ’ = {~1,~2,~3} shown in Figure 13.2. The task is 
now to evaluate 

E” = ~ADtuA&sl w S2 w S3)). 



r1u B c 1 
74 6 
84 6 
75 6 
88 6 
98 2 
9 4 11 
8 5 11 

74 6 
84 6 
7.5 6 
9 4 11 
8 5 11 
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r2@ c D) 
4 6 7 
5 6 7 
8 6 9 
8 11 9 
4 11 9 
5 11 9 
4 12 9 

Figure 13.1 

s2w c D) 
4 6 7 
5 6 7 
4 11 9 
5 11 9 
4 12 9 

Figure 13.2 

r3(C D E) 
67 1 
67 2 
675 
69 3 
87 5 
89 3 

11 9 3 
12 7 4 

s3(C D) 
6 7 
6 9 
8 9 

11 9 

Once the relations have been reduced as far as possible using projection 
and selections, it may be possible to reduce them further still through semi- 
joins. We are interested in removing all the tuples of the database d = { sl, s2, 
. . .) sP } that do not participate in the join s1 w s2 w - - . W sP. Recall: The 

fid reduction of si relative to d, FR(si,d), is the set of all tuples of Si that par- 
ticipate in wd. A semijoin program SP is a series of assignments of the form 
Si + Si [X Sj. SP is a fun reducer relative to the database scheme R if 
SP(si,d) = FR(si,d) for every database d(R) and relation si E d. 

If R has a full reducer, we can use semijoins to fully reduce sl, s2, . . . , sP 
before transmitting them to a common site for joining. Whether or not it 
pays to apply a particular semijoin program in a distributed system depends 
on the states of individual relations. In computing r(R) W s(S) in a dis- 
tributed system, it could be cheaper to send all of r to s than to send 
aR&) to r and then send r 1x s back to S. For a given database d, it can 
happen that one full reducer is beneficial to apply while another is not (see 
Exercise 13.1). 

Example 13.2 The database scheme 1; = {ABC, BCD, CD } has a full 
reducer. One full reducer is 
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s2 + s2 lx s1; 
s3 + s3 tx s2; 

s2 + s2 lx s3; 

s1 + Sl Ix s2. 

The result of applying this semijoin program to the relations in Figure 13.2 is 
shown in Figure 13.3. 

Sl(A B c 1 sz(B c D) s3(C D) 
74 6 4 6 7 6 7 
84 6 5 6 7 11 9 
75 6 4 11 9 
9 4 11 5 11 9 
8 5 11 

Figure 13.3 

Example 13.3 Consider the database scheme R, = (ABC, BCD, Cl?‘, DE ). 
(R, will also be used for many examples in this chapter,) R, has no full- 
reducers. The database on R, shown in Figure 13.4 is not fully reduced, yet 
no semijoin reduces it further. 

r,(A 13 C> f-2@ c D) r3(C E ) r4W E ) 
1 2 3 23 4 3 5 4 11 
7 8 9 8 9 10 9 11 10 5 

Figure 13.4 

13.1.2 Equivalence of a Join Dependency to Multivalued Dependencies 

Every database scheme R corresponds to a unique ID, namely *[RI. Every ID 
implies a set of MVDs. The general implication of one ID by another is given 
in the next lemma. 

Lenuna 13.1 If R and S are database schemes over the same set of attributes, 
then *[RI t= *[S] if and only if S I R.* 

*Recall that S 2 R means every relation scheme in R is contained in some relation scheme in S. 
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Proof Immediate consequence of Theorem 8.1. FIX(R) = SAT(*[RJ) and 
FIX(S) = SAT(*[S]), so S h R if and only ifHX(R) E &XX(S) if and only if 
“[RI b “[S]. 

We are interested in the MVDs implied by a ID *[RI. We want to know al1 
pairs of schemes Si, & such that *[RI I= *[Sr,Sz]. It is sufficient to consider 
IDS *[S1,Sz] where Si and Sz are exact unions of schemes in R, In particutar 
we assume there is a function 

f:{L 2, . . ..p> + (192) 

such that 

si = fcjy=i Rj, i = 1, 2. 

Let MVD(R) be all the nontrivial MVDs (two-scheme IDS) that can be so 
defined. 

Example 13.4 For R, = {ABC, BCD, CDE}, MKE’(R,) = (*[ABC, 
BCDE], *[ABCD, CDE]}. For R, = {ABC, BCD, CE, DE>, MVD(R) = 
(“[ABC, BCDE], *[ABCD, CDE], “[ABCES, BCDEI]. 

Exercise 13.4 shows that any MVD implied by *[RI is the direct conse- 
quence of some MVD in MVDfR). We are interested when MVD(R) I= *[R], 
for a database R. MVD(R,) I= *[R,], while MVZI(R,) g *[R,] (see Exercise 
13.6). Basically, MVD(R) t= *[RI means that the lossless decomposition of a 
relation T onto R can be captured as a set of two-way decompositions. Also, if 
MVD(R) E *[R], an efficient test for satisfaction of *[R] can be devised. 

13.1.3 Unique 4NF Decomposition 

In this section we formalize the condition that a unique 4NF decomposition 
follows from a set of MVDs M over a scheme U. 

Definition 13.1 Let M be a set of MVDs over a scheme U. A pair of relation 
schemes (R ,S) is a decomposition for U under M if M != *[R ,S]. A decom- 
position fR ,S) of U is tight if there is no other decomposition (R ‘,S ‘) with 
R ’ f7 S ’ properly contained in R f7 S. That is, (R ,S) is tight if the overlap of 
R and S is minimal. 
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We are actually interested in decomposing U until it is in 4NF. We can 
view A4 as applying to a subscheme U ’ of U by considering the MVDs that 
necessarily apply in aUP(SAT(M)). Thus “decomposition under M” and 
“tight decomposition under M” make sense for subschemes of U. 

Definition 13.2 Let R be a scheme over U and let M be a set of MVDs over 
U. R is in tightfourth normalform (tight 4NF) for M if R is in 4NF relative to 
M and R can be obtained by a series of tight decompositions. M uniquely 
decomposes U if there is only one database scheme R over U that is in tight 
4NF for M. 

Definition 13.3 A database scheme R over U is a unique decomposition if 
some set M of MVDs uniquely decomposes U into R. 

Example 13.5 Consider database scheme R, = {ABC, BCD, CDE) from 
previous examples. R, is a unique decomposition of A B C D E. Let M = 
{ BC -H A, CD - E) (which is MVD(R,)). We can either start by decom- 
posing ABCDE into (ABC, BCDE} or {ABCD, CDE}, but at the next step 
we always reach {ABC, BCDE, CDE}, which is in 4NF relative to M. R, = 
(ABC, BCD, CE, DE] is not a unique decomposition (see Exercise 13.11). 

13.1.4 Pair-wise Consistency Implies Total Consistency 

Let R = {RI,& . . . , R, > be a database scheme and let d = { rl,r2, . . . , rp > 
be a database over R. We have noted in previous chapters that it is computa- 
tionally hard to test if r1,r2, . . . , rp join completely. We say that d is totally 
consistent (TC) if r-1, 1-2, . . . , rp join completely. Database d is pairwise con- 
sistent (PC) if every pair of relations ri and rj join completely. Testing PC is a 
polynomial computation in the size of a database. TC necessitates PC (Exer- 
cise 13.12), but PC is not always sufficient for TC. We are interested in data- 
base schemes where every PC database is also TC. 

Example 13.6 PC does imply TC for databases on our old friend R, = 
{ABC, BCD, CDE}. Consider a database d(R,) = {r,(ABC), r2(BCD), 
r3(CDE)} that is PC. We show that every tuple in r2 enters into the join rl w 
r2 W r-3. Let t2 be a tuple in r2. Since rl joins completely with r2, it contains a 
tuple tl that joins with t 2. Likewise, r3 contains a tuple t3 that joins with t2. 
The three tuples all join together since t,(C) = t2(C) = t3(C), and C is the 
.only attribute where tl and t3 overlap. 

PC is not sufficient for TC for databases on R, = {ABC, BCD, CE, DE}. 
Figure 13.4 shows a PC database on R, that is not TC. 
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13.1.5 Small Intermediate loins 

Consider the problem of computing wd for a database d = { rl(R1), rz(Rz), 
. . ., rp(Rp)} over scheme R by a series of binary joins. Even if all the rela- 
tions in d are fully reduced, a poor choice of joins can lead to intermediate 
results larger than the final result. 

Example 13.7 Consider computing rl W r2 w r3 for the database on R, = 
{ABC, BCD, CDE} shown in Figure 13.5. If we begin by computingrl W r3, 
we get an intermediate result with 10 tuples, where the complete join has only 
6 tuples. If we start with r1 w r 2, the intermediate result has only 6 tuples. 

rl(A B 0 
1 3 5 
1 4 5 
2 3 5 
2 4 6 

r2(B C D) 

3 5 7 
4 5 8 
3 5 9 
4 6 8 

Figure 13.5 

r3(C D E) 

5 7 10 
5 8 10 
5 9 11 
6 8 11 

Example 13.8 Consider computing rl W r-2 w r3 w r4 for the database on 
R, = {ABC, BCD, CE, DE} given in Figure 13.6. Any sequence of pairwise 
joins gives at least one intermediate result with more tuples than the final 
result (see Exercise 13.14). Note that this database is fully reduced. 

rlt-4 B Cl r2(B C D ) rdC E ) r4W E 1 

1 2 3 23 8 3 9 8 9 
1 2 4 24 8 4 10 8 10 
1 2 5 2 5 11 5 14 11 13 
1 2 6 2 5 12 6 15 12 14 
1 2 7 2 6 16 7 15 16 15 

2 7 17 17 15 

Figure 13.6 

We are interested in database schemes where every fully reduced database 
can be joined through a sequence of pairwise joins where no intermediate 
result has more tuples than the final result. Moreover, we desire a sequence of 
joins that works for any database on the scheme and where intermediate 
results are always “growing.” We actually look at a stronger condition, that 
when a join is taken, the relations involved join completely. 
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Definition 13.4 Let R = {RI, Rz, . . . , R, } be a database scheme. A join 
plan for R is a rooted binary tree P with leaves labeled by relation schemes in R 
and every scheme in R labeling at least one leaf of P. Let d = ( rl ,r2, . . . , rp ) 
be a database on R. The instantiation of P by d, denoted P(d), is obtained by 
associating ri, 1 I i I p, with the leaves labeled Ri. After relations are 
associated with the leaves, associate, recursively, the join of relations at the 
children with each interior node. The relation rl w r2 w - . - w rP is, of 
course, associated with the root of P. 

Example 13.9 Figure 13.7 gives a join pian P for database scheme R, = 
{ABC, BCD, CDE}. If d is the database in Figure 13.5, Figure 13.8 shows 
the relations I-=, ~b, and t, associated with interior nodes, a, b, and c in P(d). 

r,(A B C D E ) 

1 3 5 7 10 
1 3 5 9 11 
1 4 5 8 10 
2 3 5 7 10 
2 3 5 9 11 
2 4 6 8 11 

b 
r2 r3 r4 

Figure 13.7 

q,(A B C D) r,(B C D E ) 

1 3 5 7 3 5 7 10 
i 3 5 9 4 5 8 10 
1 4 5 8 3 5 9 11 
2 3 5 7 4 6 8 11 
2 3 5 9 
2 4 6 8 

Fim 13.8 

Every join plan corresponds to a completely-parenthesized join expression. 
The join plan in Figure 13.7 corresponds to (rr w Q) w (q w r2). 

Definition 13.5 If P is a join plan for R and d is a database on R, then P(d) is 
monotone if for every interior node b of P, the relation associated with b is the 
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complete join of the relations associated with its children. P is monotone if 
P(d) is monotone for every PC database d on R. 

Example 13.10 Referring back to Example 13.9, P(d) is monotone, and, in 
fact, P is monotone. 

Example 13.11 The join plan P for R, = {ABC, BCD, CE, DE} given in 
Figure 13.9 is not monotone. In particular, P(d) is not monotone, where d is 
the database of Figure 13.6. 

a 

r4 

Figure 13.9 

Definition 13.6 A database scheme R has the increasing join property if it 
has a monotone join plan. 

13.2 SYNTACTIC CONDITIONS ON DATABASE SCHEMES 

This section introduces three syntactic conditions on database schemes: 
acyclicity, existence of a join tree, and the running intersection property. In 
the next section we introduce algorithms for testing two of these conditions. 
We also demonstrate there the equivalence of the syntactic conditions of this 
section and the more extensional properties of the last section. 

13.2.1 Acyclic Hypergraphs 

A hypergraph is similar to an ordinary undirected graph, except that edges are 
arbitrary nonempty sets of nodes, rather than just doubletons. 
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Definition 13.7 A hypergruph H is a pair (9X,&) where 3t is a set of items, 
called nodes, and E consists of nonempty subsets of 9X, called hyperedges. If it 
is clear we are dealing with hypergraphs, we may use “edges” for “hyper- 
edges.” H is reduced if no edge in G properly contains another edge and every 
node is in some edge. The reduction of H, written RED(H), is H with any 
contained edges and non-edge nodes removed. 

A database scheme is naturally viewed as a hypergraph. If R is a database 
scheme over U, then R may be viewed as the hypergraph (U,R). That is, the 
attributes in R are the nodes in the hypergraph and the relation schemes of R 
are the hyperedges. We shall simply use R in place of (U,R) when dealing with 
the hypergraph that R represents. Saying that R is reduced is saying that R is 
reduced as a hypergraph: no relation scheme in R properly contains another. 

Example 13.12 In drawing hypergraphs, nodes are represented by their 
labels and hyperedges are represented by closed curves around the nodes. The 
hypergraph for R, = {ABC, BCD, CDE} is given in Figure 13.10. The 
hypergraph for R, = (ABC, BCD, CE, DE} is given in Figure 13.11. 

Definition 13.8 Let H = (X,&) be a hypergraph, with A and B nodes in 32. 
A path from A to B in H is a sequence of edges El, EZ, . . . , Ek , k I 1, such 
thatA E El, B E Ek andEi fl Et+, # @for 1 5 i < k. WealsosaythatEi, 
E29 . . ., Ek is a path fromE, toEk. 

Figure 13.10 
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Figure 13.11 

Definition 13.9 In a hypergraph H = (X,G), two nodes or edges are COIE- 
netted if there is a path between them. A set of edges is connected if every 
pair of edges is connected. A connected component of H is a maximal con- 
nected set of edges. 

Example 13.13 Let H be the hypergraph shown in Figure 13.12. ABC, 
BCD, DE is a path from A to E and from ABC to DE, so A and E are con- 
nected, as are ABC and DE. The connected components of H are {ABC, 
BCD, DE) and (IJ, JKL, XL}. 

Figure 13.12 
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We shall be concerned mainly with hypergraphs that consist of a single 
connected component. Most of what we do generalizes to hypergraphs with 
multiple components. 

Definition 13.10 Let H = (‘X, E) and H ’ = (‘22 ‘, & ‘) be hypergraphs. H ’ is 
a subhypergraph of H if 31’ C 3t and G ’ C I. 

Definition 13.11 Let H = (32, G) be a hypergraph and let 9lZ c 37. The 
3Wzduced hypegraph for H, denoted Hm, is the hypergraph BED(( nt, En)) 
where 

Hm is not necessarily a subhypergraph of H, since Gm may contain edges 
not in E. 

Example 13.14 Let H be the hypergraph (ABCDEIJK, {ABC, BD, CDE, 
DEI, IJK }) h s own in Figure 13.13. H’ = (ABCDE, {ABC, BD, CDE)) is 
a subhypergraph of H, as well as being the ABCDE-induced hypergraph for 
H. HABcD = (ABCD, (ABC, BD, CD}), as shown in Figure 13.14. HABCD 
is not a subhypergraph of H, since CD is not an edge of H. 

We now wish to generalize the notion of “strongly connected” from or- 
dinary graphs to hypergraphs. Recall that a strongly connected graph is one 
with no articulation points. 
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Figure 13.14 

Definition 13.12 Let H = (X,&) be a hypergraph. A set F E ‘32 is an artic- 
ulation set for H if F = El n E2 for some pair of edges El, Es E 8, and Hx 1 
has more connected components than H, where 37. ’ = 37. - F: That is, re- 
moving the nodes in F from H disconnects some pair of nodes that were pre- 
viously connected in H. 

Definition 13.13 Let H = (‘X,&) be a hypergraph. A block of H is an 9% 
induced hypergraph of H with no articulation set, for some nt C X A block 
is trivial if it has only one edge. A reduced hypergraph is acyclic if it has no 
blocks; otherwise it is cyclic. An arbitrary hypergraph is cyclic or acyclic pre- 
cisely when its reduction is. 

Example 13.15 Let H be the hypergraph of Example 13.14. DE is an ar- 
ticulation set of H, since DE = CDE fl DEI, and HABcrJK has two com- 
ponents where H had one. H ABCD, shown in Figure 13.14, is a block of H, 
since it contains no articulation set. Since H is reduced, we conclude it is 
cyclic. 

Example 13.16 Consider the database scheme R, = (ABC, BCD, CDE} 
as a hypergraph. R, is acyclic. For example, consider (R,JAB~~, shown in 
Figure 13.15. It is not a block because it has B and D as articulation sets. 

We now give a slightly different definition of acyclicity that only considers 
induced hypergraphs that are subhypergraphs. 
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Figure 13.15 

Defiiition13.14 L&H= (X,E)beahypergraphandletH’= (Z’,&‘)be 
a subhypergraph of H. H ’ is closed relative to H if H ’ = Hm for some 9lZ C 3t. 
Clearly if such an 9X exists, it must be 32 ‘. Equivalently, H ’ is a closed sub- 
hypergraph of H if for any edge E E & there is an edge E ’ f E ’ such that 
E’? ‘3Z’flE. 

Definition 13.15 A reduced hypergraph H is closed-acyclic if every closed, 
connected subhypergraph of H with two or more edges has an articulation 
set: otherwise H is closed-cyclic. An arbitrary hypergraph is closed-acyclic 
and closed-cyclic exactly as its reduction is. 

Example 13.17 Let H be the hypergraph of Example 13.14. H’ = (ABCD, 
{ABC, BD }) is not closed relative to H. Consider the edge CDE of H. CDE 
fl ABCD = CD, and CD is not contained in any edge of H ‘. H” = (ABCDE, 
{ABC, BD, CDE}) is closed relative to H, since H” = HABCDE. H” is pic- 
tured in Figure 13.16. H” has no articulation set, so H is closed-cyclic. 

Acyclic and closed-acyclic are equivalent conditions (see Exercise 13.22). 
A database scheme R is acyclic if R considered as a hypergraph is acyclic. 

13.2.2 Join Trees 

Definition 13.16 Let R = {RI, RZ, . . . , R, ] be a database scheme over U. 
The complete intersection graph for R, denoted IR, is the complete undirected 
graphonnodesR1,Rz, . . . . R, and with edge labels chosen from the subsets 



Syntactic Conditions on Database Schemes 453 

Figure 13.16 

of U. For an edge e = (Ri, Rj), the label of e, denotedUe), isRi n Rj. An 
intersection graph for R is any subgraph of 1, formed by removing only 
edges. In drawing an intersection graph, we generally omit any edge e where 
L(e) = 8. 

Definition 13.17 Let R = { R1, RZ, . . . , R, } be a database scheme over U. 
Let G be an intersection graph for R and let A E U. A path el, e2, . . . , ek 
from node Ri to node Rj in G is an A-path if A E L(e;) for all 1 zs i I k. If 
el, e2. . . ., ek is an A-path, then it followsA E Ri and A E Rj. In fact, A must 
be in every node R along the A-path. 

Example 13.18 Consider the database scheme R = {ABC, BD, CDE, 
DEl, IJK} over ABCDEIJK, which corresponds to the hypergraph of Ex- 
ample 13.14. IR is shown in Figure 13.17 (omitting edges with empty labels). 
Figure 13.18 gives an intersection graph G for R. G has a D-path from BD to 
CDE. There is no B-path in G from ABC to BD, although IR has such a 
path. 

Definition 13.18 Let R = { R1, R2, . . . , R, ) be a database scheme over U. 
An intersection graph G for R is a join graph if for every pair of nodes Rip Rj 
in G, if A E Ri fl Rj then there is an A-path from Ri to Rj. A join tree is a join 
graph that is a tree. 

Example 13.19 Let R be the database scheme from Example 13.18. IR is a 
join graph for R. (The complete intersection graph is always a join graph.) 
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Figure 13.17 

Fii 13.18 

The intersection graph in Figure 13.18 is not a join graph for R, since there is 
no B-path from ABC to BD. R has no join trees. Any join graph G for R 
must have the edge (ABC,BD) to give a B-path from ABC to BD, as well as 
the edge (ABC,CDE) to give a C-path from ABC to CDE. Nodes BD and 
CDE must be connected by a D-path. The D-path cannot go through ABC, 
so G must contain a cycle. 

We are interested in database schemes where join trees exist. We shall see 
later that a join tree can be used to construct monotone join plans. 
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Example 13.20 The database scheme R, = {ABC, BCD, CDE) does have 
a join tree, as shown in Figure 13.19. 

Figure 13.19 

13.2.3 The Running Intersection Property 

Definition 13.19 Let R = (RI, R2, . . . , R, } be a database scheme. R has 
the running intersection property if there is a permutation S1, Sz, . . . , S, of 
R,,Rz, .--3 R, such that for every 1 < i 5 p, there exists a j < i such that 

(S1S* -*- Si-1) n Si G Sj. 

That is, the intersection of Si with the union of all the previous schemes is 
contained entirely within one of those schemes. 

Example 13.21 R = {ABC, CDE, BCEI} has the running intersection 
property, as witnessed by the ordering BCEI, ABC, CDE of its retation 
schemes. 

13.3 EQUIVALENCE OF CONDITIONS 

As was remarked at the beginning of the chapter, and as the running ex- 
amples R, and R, indicate, all the properties and conditions in Sections 13.1 
and 13.2 describe the same class of database schemes. Before proving the 
equivalences, we look at algorithms to decide whether a database scheme R is 
acyclic and whether R has a join tree. 
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13.3.1 Graham Reduction 

The following algorithm on hypergraphs was introduced by Graham, 
although Yu and Ozsoyoglu independently gave an essentially equivalent 
algorithm that runs on a different data structure. The Graham reduction 
algorithm consists of repeated application of two reduction rules to 
hypergraphs until neither can be applied further. LA H = (‘X,8) be a 
hypergraph. The two reduction rules are 

rE. (edge removal) If E and F are edges in E such that E is properly con- 
tained in F, remove E from G. 
rN. (node removal) If A is a node in 92, and A is contained in at most 
one edge in E, remove A from ‘JZ and also from all edges in & in which it 
appears. 

Example 13.22 Figure 13.20 shows the stages in applying the Graham 
reduction algorithm to the hypergraph for R, = {ABC, BCD, CDE). The 
labeled arrows represent applications of the corresponding reduction rule. 

Figure 13.20 
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Example 13.23 Figure 13.21 shows the stages in applying Graham reduc- 
tion to R, = (ABC, BCD, CE, DE ). 

rN 
- 

Figure 13.21 

We say the Graham reduction succeeds on hypergraph H if the result of 
applying the Graham reduction algorithm to W is the empty hypergraph, as 
for R, above. 

13.3.2 Finding Join Trees 

In this section we assume the reader is familiar with algorithms for finding 
minimum-weight spanning trees of undirected graphs with weighted edges. 
We shall actually be interested in finding maximum-weight spanning trees. 
Since all spanning trees for a graph have the same number of edges, an 
algorithm for finding a minimum-weight spanning tree can be converted to 
an algorithm for maximum-weight spanning trees by negating edge weights. 

For the following definitions we assume a database scheme R = (RI, RZ, 
,.., R, } over U and an intersection graph G for R. 

Definition 13.20 For attribute A E U, the class of A, denoted CLA.SS(A), is 
{&/A E&and&CR}. TheweightofA, denoted VT(A), is ~CLA.SS(A)~ - 1. 
The weight of R, WT(R), is 

c VT’(A). 
AEU 

: 
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Definition 13.21 The weight of A in G, denoted WT(A,G) is the number of 
edges in G that contain A in their labels. The weight of G, denoted WT(G), is 

c WT(A,G). 
AeU 

Defiition 13.22 For an edge e in G, the weight of e, denoted WT(e), is 
IL(e) 1. Observe that WT(G) could also be computed as 

C WT(e) 
eCG 

Example 13.24 Let G be the join graph in Figure 13.22 for the database 
scheme R = {ABC, BD, CDE, DEI, UK}. For R, 

WI?(A) = 0 WT(E) = 1 
WT(B) = 1 WT(I) = 1 
WT(C) = 1 WTQ = 0 
WT(D) = 2 WT(K) = 0 

and so WT(R) = 6. For G, 

Figure 13.22 
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WT(A,G) = 0 WT(E,G) = 1 
WT(B,G) = 1 WT(I,G) = 1 
WT(C,G) = 1 WT(J,G) = 0 
WT(D,G) = 2 WT(K,G) = 0 

and so WT(G) = 6. 

Theorem 13.1 If a database scheme R = {R 1, R2, . . . , R, 1 has a join tree 
G, then any maximum-weight (edge weight) spanning tree for In is a join 
tree. Furthermore, G is a maximum-weight spanning tree for 1, and 
WT(G) = WT(R). 

Proof First, we show that in G, WT(A) must equal WT(A,G) for any at- 
tribute A. There are WT(A) -t 1 nodes in G that contain A. It requires at 
least WT(A) edges to construct A-paths between every pair. Hence, 
WT(A,G) z MT(A). Any edge e with A E L(e) must connect elements of 
CLASS(A). If G contained more than WT(A) edges with A in their label, 
those edges would form a cycle among some set of the nodes in CLASS(A). 
Hence WT(A,G) 5 WT(A), so WT(A,G) = WT(A). It follows that 
WT(G) = WT(R). 

G is a spanning tree for I n. Suppose there is another spanning tree G’ for 
In with weight greater than G. There must be an attribute A with WT(A, G) < 
WT(A,G ‘). By the remarks in the last paragraph, G ’ must contain a cycle 
among some nodes in CLASS(A), contradicting the choice of G ‘. G must be 
a maximum-weight spanning tree. 

Finally, let G’ be any maximum-weight spanning tree of In. By previous 
arguments, for any attribute A, WT(A) = WT(A,G) = WT(A,G’). Since 
G ’ is a tree, and there are WT(A) edges with A in their label in G ‘, any two 
members of CLASS(A) must be connected by an A-path in G ‘. Hence G ’ is 
a join tree. 

Theorem 13.1 gives a reasonably efficient test for the existence of join trees 
for a database scheme R. Find In (only edges with non-empty labels are 
necessary) and then find a maximum-weight spanning tree G for In. If G is a 
join tree, then, obviously, R has a join tree. If G is not a join tree, then R has 
no such tree. 

Example 13.25 Figure 13.18 shows a maximum-weight spanning tree G for 
IR, where R = {ABC, BD, CDE, DEl, UK 1, G is not a join tree, so R has 
no join tree, as was noted before. 



460 Acyclic Database Schemes 

Example 13.26 Figure 13.19 shows a maximum-weight spanning tree G for 
I*,, where R, = {ABC, BCR, CDE >. As noted before, G is a join tree for R,. 

13.3.3 The Equivalence Theorem for Acyclic Database Schemes 

Theorem 13.2 Let R be a connected database scheme. The following condi- 
tions are equivalent: 

1. R is acyclic 
2. Graham reduction succeeds on R. 
3. R has a join tree. 
4. R has a full reducer. 
5. PC implies TC for R. 
6. R has the running intersection property. 
7. R has the increasing join property. 
8. RED(R) is a unique 4NF decomposition. 
9. The maximum weight spanning tree for In is a join tree. 

10. MVD(R) I= *[RI. 

Proof The proof will proceed via a series of lemmas. The equivalence of 3 
and 9 was established in Theorem 13.1. The method for the rest of the 
equivalence is 1 * 2 =,3j44S511,3~6=,7~5,8r=,1,3j10. 
The implication of any other condition by 10 is left as Exercise 13.36. The 
lemmas for these implications are shown in Figure 13.23. 

Lemma13.2 If R = (R,,R*, . . ., R, } is an acyclic database scheme, then 
Graham reduction succeeds on R. 

The proof of Lemma 13.2 proceeds through four propositions. The first 
two show that the Graham reduction algorithm neither creates nor destroys 
blocks. The second two show that one of the two removal rules is always ap- 
plicable to an acyclic hypergraph. 

Proposition 13.1 The Graham reduction algorithm preserves blocks. 

Proof Let H = (52, E) be a hypergraph such that Hnt is a block for some 
312 c X. Let H ’ be obtained from H by one application of rE (edge removal). 
Hm must be the same as H& because reduction is applied in forming an in- 
duced hypergraph. If E C F is the edge removed, then E fl %! 5 P n 3n, so 
E makes no contribution to Hnt. 
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Suppose now that rule rN (node removal) was used on node A to obtain H ‘. 
If A e 5X, and Hx is a block, then so is H 6. IPA E ‘JX, andHmisablock, we 
must show Hjn-* is a block. If I; = El n E2 is an articulation set of H&-A, 
then it must also be an articulation set of Hnt. El or Ez could be augmented 
by A in HEm, but not both, since A appears in at most one edge of H. It follows 
F is the intersection of edges in Hx. If removing F disconnects H&-*, it will 
also disconnect HM, since A cannot contribute to connectivity. We conclude 
that if H does not have an articulation set, neither does Hm. 

Application of either rE or rN preserves blocks, so Graham reduction 
preserves blocks. 

Proposition 13.2 Graham reduction does not introduce blocks. 

Proof Let H = (En, G) be a hypergraph. As noted in the last proof, if H ’ is 
obtained from H by rE, then Hm = H& for any 9X c 3t. Hence, rE cannot 
introduce blocks. 

Suppose H ’ is obtained from H by removing node A according to rN. Sup- 
pose Hm has an articulation set while HC;npA is a block. HmdA = H&-A, so 
H had a block to begin with. Since neither rE nor rN introduce blocks, 
Graham reduction does not introduce blocks. 
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If F is an articulation set of hypergraph H = (%,&), we say it: splits H into 
subhypergraphs HI, Hz, . . . , Hk if each Hi is one of the connected com- 
ponents in Hx-~ with its partial edges augmented back to full edges by the 
addition of nodes from F. Note that HI, Hz, . . . , Hit share no edges. 

Example 13.27 BC is an articulation set for H = (ABCDEIJ, {ABC, 
BCD, BEI, CEJ}). BC splits H into 

HI = (ABC, {ABC)), 
Hi = (BCD, {BCD I), and 
H3 = (BCEIJ, (BEI, CEJ)). 

Proposition 13.3 Let H = (92, E) be an acyclic hypergraph where 1 El 1 2 
and such that H is connected. H has an articulation set P that splits H into 
subhypergraphs Hi, HZ, . . . , Hk where each Hi contains an edge Ei with 
F E Ei. It follows that each Hi is a closed subhypergraph of H. 

Proof Let H be an acyclic hypergraph with fewest nodes that violates the 
lemma. Let I; = El n E2 be any articulation set of H that does not properly 
contain another articulation set. Let F split H into subhypergraphs HI, Hz, 
. . a, Hk. Suppose, without loss of generality, that HI = (37r, El) contains no 
edge containing F. Form a subhypergraph H’ of H where H’ = (‘Z1 U El, 
& U (El 1). Any edge outside H’ that intersects X1 U El must do so within 
El, so H ’ is closed with respect to H. It follows that H ’ is the (‘Xi U El)- 
induced hypergraph for H. 

Since H is acyclic, and H’ is node-induced, H’ must be acyclic (see Exer- 
cise 13.27). H ’ is smaller than H, so it has an articulation set F’ = E3 n E4 
that splits H’ into subhypergraphs Hi, Hi, . . . , HA such that every H;‘con- 
tains an edge containing F ‘. We claim that F’ is an articulation set for all of 
H. Let Hi be the subhypergraph of H ’ containing El. If any edge E of H out- 
side of H ’ touches Hi, Hj, . . . , HL outside of El, P could not have split off 
H, in the first place. 

We further claim that F’ splits H into Hi’, H& Hi, . . . , HA, where Hi’ is 
Hi plus all the nodes and edges from Hz, H3, . . . , Hk. That is, Hf’ is Hi plus 
all of H outside of HI. Certainly, F’ splits Hi, Hi, . . . , HA from H. Can F’ 
split the rest of H into more than one subhypergraph? All of Hz, H3, . . . , Hk 
touch Hi, since they all touch El in Hi. Consider F’ relative to F. If F’ 2 F, 
then both E3 and E4 contain F, and HI would have had an edge containing F. 
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We must have that P’ r\ El ‘$ F. F’ fl El disconnects part of H outside of 
H,, and P’ n El = E3 fl El or E4 n El, contradicting the minimality of F. 

We have shown that if F does not meet the requirements of the lemma, 
then F ’ does, because each of Hi’, Hi, . . . , HA contain an edge containing F ‘. 

Definition 13.23 An edge 6 in hypergraph H is a knob if E contains at least 
one node contained in no other edge of H. Such a node is called a solitary 
node. 

Example 13.28 In the hypergraph H1 = (ABCDE, {ABC, BCD, CDE}), 
both ABC and CDE are knobs. A and E are solitary nodes. The hypergraph 
H2 = (ABCDE, {ABC, BCD, CDE, ADE}) has no knobs. 

Proposition 13.4 Any reduced, acyclic hypergraph H with two or more 
edges has at least two knobs. 

Proof The proposition is clearly true for any reduced, acyclic hypergraph 
H = (X, 8) where 181 = 2. Assume the proposition holds when J&J = k - 1 
and consider the case where I&l = k. Let F be an articulation set of H as 
guaranteed in Proposition 13.3. Let F split H into HI, Hz, , . . , Hk. Each Hi 
is closed with respect to H, hence node-induced, hence acyclic. Since Hi con- 
tains only edges from H, it is reduced. 

Consider HI. If HI has more than one edge, then, by induction, it has two 
knobs. Since some edge El in HI contains F, at most one knob of H, can have 
all its solitary nodes contained in F. The other knob cannot intersect HZ, H3, 
. . ., HR outside of F, or else F would not have split off HI. Thus, the other 
knob is a knob for H. If H, is a single edge, that edge is a knob for H. 

Since the same argument holds for Hz, H has two knobs. 

Proof of Lemma 13.2 By Proposition 13.2, Graham reduction preserves 
acyclicity. At any point in Graham reduction of an acyclic hypergraph H, if 
H is not reduced, rE can be applied. If the intermediate result is reduced, 
Proposition 13.4 holds, or we are down to a single edge, so rN can be used to 
remove a solitary node. Since in Graham reduction, an application of a 
removal rule reduces the number of nodes or edges, the algorithm must even- 
tually succeed in reducing H to the empty hypergraph. 

Graham reduction cannot succeed on a cyclic hypergraph H. H must have 
at least three edges. If Graham reduction succeeded on H, there must have 
been an intermediate result with just two edges, which must therefore have 
been acyclic. Such an intermediate result contradicts Proposition 13.1. 
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Lemma 13.3 If Graham reduction succeeds on the hypergraph for a con- 
nected database scheme R, then R has a join tree. 

Proof L&R = {RI, R2, . . . . R, }. Running Graham reduction on R will 
never disconnect R. We build a join tree G for R as follows. Let REMj(R;) be 
what remains of Ri before the jth step of the reduction. If thejth step applies 
rE to remove REit,Zj(Ri) because it is contained in REMj(R& add edge (Ri, 
Rk) to G with label Ri fl Rk. 

The resulting graph G is clearIy an intersection graph. G can have no 
cycles. Each node R; in G is connected to at most one node RR in G such that 
the remainder of Rk was removed after the remainder of Ri. Any cycle must 
contain an Ri connected to two nodes whose remainders were removed after 
the remainder of Ri in Graham reduction. G is a tree by the connectivity 
remark above. 

Is G a join graph? Suppose not. Renumber the schemes in R so that there 
is an attribute A E RI rl R2 but there is no A-path from RI to R2 in G. 
Assume further that RI and R-J were chosen so as to minimize the distance 
between them in the tree G. Finally, assume the remainder of RI was re- 
moved before the remainder of R2. At some stepj, we must have REMj(Ri) C 
REMj(Rk), where R2 # R,. REMj(R,) is non-empty when REMj(R1) is 
removed. A E ~~j(R,) n REA4j(R2), because it could not have been a 
solitary node while the remainders of RI and R2 are both non-empty. 
Therefore, A f REMj(Rk). Pick a node of G as a root and orient G such that 
the remainder of any child node was removed before the remainder of its 
parent. In this orientation of G, Rk is the parent of RI. 

Rx cannot be in the subtree of G headed by RI. The path from RI to R2 
must go through R k. There is a shorter path from Rk to R2 than from R 1 to Rz. 
Since A E R2 fl RR, and by the minimum distance assumption for RI and R2, 
there is an A-path from Rk to R2 in G. The edge (RI, Rk) has A in its label. 
We conclude there is an A-path from R 1 to RZ, a contradiction. G must be a 
join graph, and hence a join tree for R. 

Lemma 13.4 Let R be a connected database scheme. If R has a join tree, 
then R has a full-reducer. 

Before proceeding with the proof of Lemma 13.4, we need some notation. 
If R = {RI,R2, . . ., R, } is a connected database scheme, and G is a join 

tree for R, let Gi represent G considered as an oriented tree with root Rip 1 5 
i I p, Let d = { rl(R1), rZ(R2), . . ., I-JR,)} be a database over R. Consider a 
semijoin program SP = sj,, sj,, . . . , sj, over d. Letj be a number between 1 
and k. SPj denotes the prefix sj,, sj,, . . . , Sjj of SP, which itself is a semijoin 
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program. SF0 is the semijoin program with no steps. For RP E R, j is a com- 
pletion point for RP in SP relative to Gi if 

1. for every child R of RI in Gi, if r is the relation on R and rp is the rela- 
tion OII re, SPj contains a step Ye + Ye DC r, and 

2. for noj ’ < j does condition 1 hold. 

That is, the completion point for RP is the step in SP at which the relation for 
RP has been semijoined with all the relations for children of Rp If j is the com- 
pletion point (should one exist) for RP in SP relative to Gi, we write CPi(Rf) = j. 
If Rp has no completion point in SP relative to Gi, we let CPi(Rf) be unde- 
fined. If Rt is a leaf of Gi, let CPi(Re) = 0. 

Example 13.29 Let R = {R1,R2,R3,R4,R~} be a database scheme where 

R, = ABC R3 = CDE R5=DJ. 
R2 = BCD R4 = DI 

Figure 13.24 contains a join tree G for R, which is oriented to be Gz. Let ~1, 
r2, r3, r4, and r5 be relations on R1, Rx, R3, R4, and Rg, respectively. For the 
semijoin program SP = 

1. r3+r3!Xr4 
2. r3*r3Kr5 
3. 7-2 + r2 DC r-1 
4. r2 i- r2 Ix r-3 

CPz(R3) = 2 and CPl(R2) = 4. If we consider SP relative to Ga, shown in 
Figure 13.25, CP3(R3) is undefined, since r3 + r3 DCC r2 does not occur in SP. 

The semijoin program SP is complete for R relative to Gi if 

1. CPi(Re) is defined for every RP e R, and 
2. if R is a child of R, in Gi, then CP,(R) < CP,(R!). 

That is, by step CPi(RS in SP, the relation for Rp, has been semijoined with 
the relations for all its children, whose relations, in turn, have been semijoin- 
ed with the relations for all their children, and so forth. 

Example 13.30 Let R and SP be as in Example 13.29. SP is complete for R 
relative to G2, but not relative to Gl, Ga, or Gq. 

For each Gi, there is at least one complete semijoin program for R. For ex- 
ample, do a postorder traversal of Gi and when a node is visited, a semijoin of 
the relation for the parent of the node with the relation for the node is added 



466 Acyclic Database Schemes 

Figure 13.25 

to the semijoin program. For each i, 1 I i I p, let SP(i) denote a minimal- 
length, complete semijoin program for R relative to Gi. 

Example 13.31 Let R and SP be as in Example 13.29. If we use a postorder 
traversal of G2, we get a complete semijoin program for R, SP(2) = 
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1. Q+QD<Yl 

2. rj + r3 D< r4 
3. r3 +- r3 D< i-5 
4. r2 + r2 D< r3. 

SP( 2) is minimal-length. 

Finally, some notation for the oriented trees G1, G2, . . . , GP. For & E R, 
TREE, is the set of schemes in the subtree of Gi headed by Re. Note that 
TREE;(Ri) = R. The extended scheme of Rg in Gi, EXi(Rf), is defined as 

EXi(R,) = U (RjlRj E TREEi(R 

That is, EXj(R,) is R! union all its descendents in Gi. 

Proposition 13.5 Let R = {RI, R2, . . . , R,) be a connected database 

scheme and Iet G be a join tree for R. Let d = jrl(R1), r2(RZ), . . . , rp(Rp)} 
be a database on R. If SP is a complete semijoin program for R relative to Gj, 
then SP(ri,d) = FR(ri,d). 

Proof We prove a slightly stronger result. For R, E R, let dp be the sub- 
database of d on the schemes in TREE,(R,). Let 4 = CPi(Re). We show that 
SP,(r!,d) 5 FR(rl,df). That is, at the completion point for RP in SP, rp is 
fully reduced relative to the relations for schemes in TREES. Further- 
more, for every tuple tp E SP,(re,d), there is a tuple up E W dgsuch that up(Re) 
= tp Note that the scheme for up is EXi(Re). 

If RI is a leaf, the containment holds, for rp is fully reduced with respect to 
itself with no semijoins being applied. That is 

Also wd, = rp, so for any tuple tp in rp, W dp contains a tuple uef =tp) such 
that Up(Rp) = tp 

Suppose now that RP is an interior node in Gi, with q = CP;(Re) in SP. For 
notational convenience, assume R 1, R2, . . . , R, are the children of Rl in Gi. 
We inductively assume the result holds for all of RI, R2, . . . , R,. Since SP is 
complete relative to Gi, CPi(Rj) < q for 1 I j 5 m. At some point in SP,, rj 
was fully reduced relative to dj. Furthermore, at that point, for every tuple 
tj f tj, there is a tuple uj E w dj with Uj(Rj) = tj. Can these properties be 
changed by semijoins subsequent to CPi(Rj)? No. The only semijoins to worry 
about are those involving relations in dj. Any semijoin that removes tuples 
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from rj will not change the properties. Any semijoins that remove tuples from 
other relations in dj must involve only relations in dj, which cannot remove 
tuples used in Wdjs (Why?) 

Let tc be a tuple in SPq(rp,d). We must exhibit a tuple U( in wdp such that 
uAR,) = tp Since 4 is the completion point for Rp, rp has been semijoined 
with all of rl, r2, . . ., rm in SP,. Each rj, 1 5 j 5 m must contain a tuple tj 
that joins with tp. (Again, semijoins subsequent to rp + rp D< rj cannot 
change this fact.) In turn, for each tj, wdj contains a tuple uj with uj(Rj> = tj. 
WecIaimwecanformupbytlWul ~24~~ ... MU,. 

We must show that te, u 1, u2, . . . , U, are joinable. To show that tp joins 
with U+ 1 5 j I m, we show that RI fl AXE E Rj. Note that EXi(Rj) is 
the scheme of Uj. If A E EXi(Rj), then A E R for some R E TREE,(Rj). If A E R, 
then there is an A-path from R to RP in Gi. This path necessarily passes 
through Rj, SO A E Rj. A similar argument shows that for 1 I j, < j, I m, 
Rf 1 EXi<Rjl) fJ EXi(Rj,), SO Ujl and Ujz only overlap in Rp. Since Ujl and Uj2 
both agree with tp on R, they agree with each other. Since tp, tilt u2, . . . , U, 
agree pairwise, they are joinable (see Exercise 13.3). If up is the result of join- 
ing h, ulr u2, . . . , u,, obviously up(Rp) = tp. We conclude SP,(rp,d) 5 
FRh,dph 

TO conclude, we have, in particular, that SP(r;,d) = SP(ri,d;) E 
FR(ri,d). Since it is always the case that SP(r;,d) 2 FR(r;,d), we have 
SP(ri,d) = FR(r;,d), 

Proof of Lemma 13.4 Let G be a join tree for R = {RI, R2, . . . , R, >. Let 
P(1) be a minimal length, complete semijoin program for R relative to G1. 
Let D’(l) be the semijoin program obtained from SP(1) by reversing the 
order of the steps and changing each step ri + ri D< rj to rj + rj D< ri. We 
leave it to the reader to show that the semijoin program SP equal to SP(1) 
followed by D(l) is complete for R relative to any G,, 1 I &? 5 p (see Exercise 
13.28). Note that SP has 2p - 2 steps; this number is necessary (see Exercise 
13.29). By Proposition 13.5, SP(rf,d) = FR(r,,d), 1 I e I p, so SP is a full- 
reducer for R. 

Lemma 13.5 Let R be a connected database scheme. If R has a full reducer 
SP, then PC implies TC for R. 

Proof We show the contrapositive. Let d be a database on R that is PC but 
not TC. Any semijoin program SP for R leaves d unchanged, so SP cannot be 
a full reducer for R. 
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For the next lemma, we need some additional concepts for hypergraphs. 
Let H = (%, I) he a connected hypergraph. An edge F in E is a bottleneck 
for H if & - {I;} can be partitioned into two non-empty sets El and E2 such 
that for any El E El and E2 E E2, El fl E2 c F. Removal of the nodes in F 
would disconnect H. Also, if El, E2, . . . , Ek is a path in H from El in G1 to 
EK in E2, then for some i, 1 5 i < k, Ei fJ Ei+l S F. Therefore, for an edge 
F not to be a bottleneck, every pair of edges in & - IF’> must be connected 
by a path that avoids Fz no two consecutive edges in the path have an in- 
tersection that lies entirely within F. 

Figure 13.26 

If F is a bottleneck to H relative to the sets El and E2, then the hypergraphs 
defined by El U {F} and E2 U (8’) must be closed relative to H. Moreover, 
if H is cyclic, at least one of &i U (F} and E2 U {F > is cyclic (see Exercise 
13.30). 

Lemma 13.6 Let R be a connected database scheme. If PC implies TC for 
R, then R is acyclic. 

Proof We show the contrapositive: If R is cyclic then there exists a PC 
database d on R that is not TC. Let R = {R i, R2, . . . , R, f be a smallest 
counterexample to the contrapositive. R is cyclic, but every PC database d on 
R is TC. Let p be minimum among all such counterexamples, and let the 
number of attributes in R be minimum relative to p. Graham reduction 
leaves R unchanged. If Graham reduction changed R to R ‘, then R ’ is 
smaller than R in attributes or schemes, and is not a counterexample. R’ 
thus has a PC database d ’ that is not TC. Database d ’ can be extended to a 
database d on R that is not TC, by Exercise 13.31. 
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Considering R as a hypergraph, since Graham reduction does not apply, 
no edge of R contains a solitary node, nor is that edge contained in another 
edge. R cannot contain a bottleneck. Suppose Rj is a bottleneck, and, for 
notational convenience, (RI, Rz, . . . , Rjwl > and (Ri+l, Ri+z, . . . , RP) are 
two sets of edges that Rj separates. Both R1 = (RI, RZ, . . , , Ri > and R2 = 
(Ri, &+I, . . . , R, ) must define closed subhypergraphs of R, at least one of 
which is cyclic. Say RI is cyclic. R1 is smaller than R in number of schemes, 
so there is a database di on R, that is PC and not TC. Database dr can be ex- 
tended into a PC database d on R by adding relations on Ri+l, Ri+*, . . . , R, 
(see Exercise 13.32). Database d is not TC. (Why?) We have a contradiction 
to the definition of R, so R must have no bottleneck. 

We are now ready to construct a database on R that is PC but not TC. Let 
AI, A29 . . . , A,, be the attributes in R ,, and let A,+ 1, An+2, . . . , A, be the 
rest of the attributes in R. We construct a relation r(A1 AZ . . * A4) with it 
tuples tl, t2, . . . , t,, defined as 

Figure 13.27 shows relation r. 

r(A1 AZ m. a Ai -*a A, A,+, An+2 .** As) 

tl 1 0 . ..o . ..o 1 1 . . . 1 
t2 0 1 . ..o . ..o 2 2 . . . 2 

. 

ti 0 0 . ..l . ..O i i . ..i 

t,O 0 . ..O ..I1 IZ n . ..n 

Figure 13.27 

Let q = xRj(r) for 1 s i I p. We claim that 12 w r3 w . . . w rp = r. 
Any two schemes in { R2, R3, . . . , R, } are connected by a path that avoids R 1, 
since RI is not a bottleneck. Hence, any tuple t E r2 w r3 w - . . w rr must 
have the same value on each ofA,+,, An+Z, . . . , A,. Suppose the value of t is i 
on all of these attributes. We show that t = ti. Consider any scheme Rj, 2 I j 
i p, that contains one or more attributes from among Al, AZ, . . . , A,. Since 
RI 2 Rj,RjalsocontainsatieastoneattibutefromamongA,+i,An+2, . ..,Aq, 
say At. If Uj is the tuple from rj that contributed to t, then uj(A) = i. It 
must be that Uj = t&Rj). We conclude that t agrees with ti wherever t is de- 
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fined. Since no attribute in R i is solitary, t must be defied on all ofAl AZ . a . A,. 
We see that r 2 r2 w r3 w - e - w rp. The other containment is a direct 
property of project-join mappings, so I = ~2 W r3 W - - - W rp. 

Since rl, r2, . . . , rp are all projections of the same relation, they are TC and 
hencePC.Lctsl=ri U{(OO... 0) }. That is, s1 is rl plus the tuple of all 0’s. 
We claim that s,, 12, r3, . . . , rp are PC. For each Rj, 2 I j I p, 

since S1 n Sj # Sj+ The projection, in both cases, contains the tuple of all o’s 
plus every tuple with one 1 and O’s elsewhere. Thus, s1 is consistent with each 
ofr29y3, -.*,rp, which are already known to be consistent among themselves. 

The database d = { sl, 12, r3, . . . , rp } is a PC database on R. However, d 
cannot be TC, since r2 w r3 W . - - w rp = r and s1 and r do not join com- 
pletely. R cannot be a counterexample, and the lemma is proved. 

Lemma 13.7 Let R be a connected database scheme. If R has a join tree 
then R has the running intersection property. 

Proof Let R = {RI, R2, . . . , R, ) and let G be a join tree for R. Assume RI, 
R2, . . ., R, are in preorder according to G1. It follows that if Rj is an 
ancestor of RK in Gi, then j < k. Consider any Ri for 2 5 i I p. One of RI, 
R2, -.., Ri-1 is the parent of Ri in G 1. Let it be Rje None of R 1, R2, . . . , 
Ri-1 is a descendent of Ri. Let A be any attribute in (RI R2 . * a Rim1) fl Ri. 
There must be an A-path from Ri to one of RI, R2, . . ., Ri-1, and this 
A-path necessarily passes through Rj. Hence Rj 2 (RI R2 es* Ri-1) n Ri 
and so R has the running intersection property. 

Lemma 13.8 Let R be a connected database scheme. If R has the running 
intersection property then R has the increasing join property. 

Proof LetRl,R2, . . . . R, be an ordering of the schemes in R such that for 
2 5 i rp,(R,R2 . - - R,-l) fl Ri E Ri for some 1 I j < i. Let d = { rl(R1), 
~(R2h . . ., rp(Rp)) be a PC database on R. Let JP be the join plan cor- 
responding to the parenthesized join expression 
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We show inductively that 

which means pi, ~2, . . . , ri are TC. 
The basis is immediate. Since rl and r2 are consistent, rRI(rl w r2) = r1 

and xK2(r1 w r2) = r2. Suppose the hypotheses are true for i - 1. Consider 
ri. Let Rj be a scheme such that j < i 

Rj 2 (RI R2 -. - RipI) fl Ri = S. 

Since 7rITRj(rl W r2 W * * * w riel) = rj, it follows that rs(rl w r2 w * - * w 

rimI) = xs(rj). Since ri is consistent with rj, ri joins completely with ns(rj) and 
hence with rl w r-2 w . . . w ridI. Since rl, r2, . . . , ri-1 join completely, so 
do rl, r-2, . . . , r;. It follows that 

7rRi(r1 W r2 W - * * W ri) = ri 

and, more generally, that 

7rRj(rl W f-2 W - - - W ri) = rj, for 1 I j 5 i. 

Since the joins 

rl W r2 W -. - W ri for 2 5 i 5 p 

are exactly the joins corresponding to the interior nodes of join plan JP, we 
see that JP is a monotone join plan. Thus, R has the increasing join property. 

Iemma 13.9 Let R be a connected database scheme. If R has the increasing 
join property, then PC implies TC for databases for R. 

Proof Let JP be a monotone join plan for R and let d be a PC database on 
R. JP gives a method to join all the relations in d such that no tuples are lost 
along the way. Therefore, d is TC. 

Lemma 13.10 Let R be a connected database scheme. If R has a join tree, 
then MVZl(R) I= *[RI. 

Prwf I.&R= (R1,R2, . . . . R, ) and let G be a join tree for R. Recall that 
G1 is G viewed as an oriented tree with RI as the root. Choose any Ri, 2 5 
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i I p, and let Rj be its parent in G 1. Let S; = EXI(R;). That is, Si is the 
union of all the schemes in the subtree headed by Ri. Let Sj be the union of 
all the rest of the schemes in R. We claim Sj n Sj = Ri n Rjs 

Si n Sj 2 Ri n Rj is immediate because Si 2 Ri and Sj 2 Rje TO see the 
other inclusion, the presence of any A in Si fl Sj implies an A-path through 
Ri and Rj, SO that A E Ri 17 Rje We thus have the equality. 

From the remarks after Lemma 13.1, we now know that *[R] t= *[Si, Sj]. 
In MVD notation, *[Si, Sj] is Ri f3 Rj tf Si]Sj. We use G1 as a plan for 
chasing the tableau 2?u so as to yield the row of all distinguished variables. 
We show, recursively, that for each Ri, 1 5 i 5 p, we can derive a row 
that is a’s (distinguished variables) on exactly EX,(R,) in computing 
chase~~(u~,(Tu). Since EX1(RI) = RI RI - - - R,, establishing this result 
proves the lemma. 

If Ri is a leaf in Gi, then EX1(Ri) = Rj and we have a row distinguished 
exactly on Ri in 7’u initially. If Ri is an interior node in Gr, let Qi, Q2, . . . , 
QR be its children. Assume that TR has been chased under MVD(R) to a 
tableau TI; that has a row wj distinguished on EXI(Qj) for 1 5 j I k. Let v 
be the row that is distinguished on Ri. For each Qj, we have that Rj fl Qj 
--H EXi(Qj) by the initial paragraphs of this proof. Applying Ri Cl Qj ++ 
EXi ( Qj) to v and +vi for 1 5 j I k will transform v into the row distinguished 
OII exactly Ri U EXl(QJ U EX,(QJ a-- U EXl(Qk). That is, v is dis- 
tinguished EX,(R;). Note that the distinguished variables that R; (7 Qj -++ 
EXi(Qj) adds to v are not removed by Rj fl Q, - EXI (Q&, j f i?, since 
4 2 EXl(Qj) n EXl(Qd. 

We shall shortly be looking at tight decompositions of a scheme U relative 
to a set of MVDs, where the set is &ND(R) for a database scheme R over U. 
If (S1,S2) is a tight decomposition of U relative to MVD(R), there can be no 
MVD *[S;,SJ in AND(R) such that Si Cl &is properly contained in S1 f7 S2. 
Since MVD(R) E *[Si,&], *[S1,S2] must be in AND(R). Thus R can be 
partitioned into RI and R2 such that UR1 = S1 and UR2 = S2. For the 
proof of the next lemma, we need the following proposition. 

Proposition 13.6 Let R be a reduced, connected, acyclic database scheme 
over U. Suppose (S1,S2) is a tight decomposition of U relative to MVZI(R). 
The set X = S, fl S2 is an articulation set for R. 

Proof Let R be partitioned intoRI and R2 such that URi = S1 and UR2 = Sz. 
The removal of the attributes in X surely disconnects R, so the only way X 
can fail to be an articulation set is by not being the intersection of two edges 
in R (treating R as a hypergraph). 
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Assume that RI has no edge containing X. We assume that every pair of 
edges in RI is connected by a path in RI that avoids X. If not, pick an edge R 
in RI. Move all the edges in RI that are not connected to R, by a path that 
avoids X, to R2. By the minimality of St (7 Sz, the movement of these edges 
preserves the property that ( UR& n ( URz) = X. 

We show a contradiction by showing that Graham reduction can never 
succeed on R. In particular, we show that the nodes in X never get removed. 
Initially, any,4 f X is contained in an edge from RI and an edge from R2, so 
it is not solitary. We show that Graham reduction preserves this property. 

First we look at Ri. Let Y1, Y2, . . , , Y, be the maximal intersections of 
edges in RI with X. That is, for each Yi, 1 CC i 5 m, RI contains an edge Ri 
such that Ri Cl X = Yi and for no other edge Rj E Ri does Rj fi X properly 
contain Ri n X. For each Yi, 1 I i 5 m, there is a Yj, i # j, with edges 
Ri 2 Yi and Rj 2 Yj in RI such that Ri and Rj are connected by a path that 
avoidsx. Let the path be Ri = S1, Sz, . . . , Sk = Rj. Node removal preserves 
this path, since no node in the intersection of successive edges can be solitary, 
and none of the nodes in Yi or Yj is solitary. If some edge St in Si, Sl, . . . , Sk 
is removed because it is contained in another edge Q, Q must be in RI, since 
S, contains a node not in X. If Q is nut in the path, replace S, by Q in the 
path. All the properties of the path are preserved. If Q is already in the path, 
remove the portion of the path from Se to Q. Q cannot contain both S1(=Rl) 
and S,(=Rj) by the maximality of Yi and Yj. In this case also, all the prop- 
erties of the path are preserved. 

Thus, at every point in Graham reductions, Yi is contained by an edge 
Ri C_ RI, and every node in X is contained in some Yi, 1 5 i I m. 

Consider the maxima1 intersections Zi, Z,, . . . , Z, of edges in Rz with X. 
IfforsomeZi,l <i<n,thereisaZj,i#j,withedgesRi2ZiandRjzZj 
with Ri and Rj connected by a path in R2 that avoidsX, then there will always 
be an edge in Rz containing Zi, by the argument above. If there is no such 
path, consider any R; 2 Zi in Rz. If Rj had nodes outside of X, then { Rj} and 
R - {R,} could have been used to form a decomposition of U that was 
“tighter” than (Si,S2). Hence Ri s X, and SO Ri = Zi. Ri cannot be con- 
tained in any other edge in R, since R is reduced. Further, every node in Ri is 
contained in some edge of RI, so RI can never be reduced by node removal. 

In either case, there is always an edge Ri in R2 containing Zi during 
Graham reduction. Since every node in X is in some Yi, 1 5 i 5 m, and 
some Zj, 1 I j I n, during Graham reduction, Graham reduction fails on 
R, a contradiction. Both RI and R2 must contain edges containing X, so X is 
an articulation set. 

Lemma 13.11 Let R be a reduced, connected, acyclic database scheme. R is 
a unique 4NF decomposition. 
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Proof Let R = {RI, RZ, . . . , R, > and let U = RI R2 . - - R,. We show that 
R is a unique decomposition for U under MVLl(R). We need only consider 
the case where p 1 2. Since R must have articulation sets, there must be 
MVDs in MVD(R) that can be used to decompose U. By the discussion 
before Proposition 13.6, if (S1,Sz) is a tight decomposition of U relative to 
MID(R), then R can be partitioned into RI and R2 with UR1 = S1 and 
UR2 = Sz. By Proposition 13.6, each of RI and R2 includes an edge that 
contains S1 Cl Sz. Thus, RI and R2 are closed relative to R. 

Let Mi be the set of MVDs that MVD(R) induces on Si, 1 I i I 2. We 
claim that Mi is equivalent to MVD(Ri). This claim is sufficient to prove the 
lemma. Since RI and R2 are closed relative to R, they are both reduced, con- 
nected, and acyclic. Every R E R is in either S, or &. If we inductively assume 
that RI is a unique decomposition for S1 relative to MVD(R,), and R2 is a 
unique decomposition for $2 relative to MVD(R2), then the claim allows us to 
conclude that R is a unique decomposition of U relative to MVD(R). 

Consider S1 and RI. The claim follows from comparing chasing tableaux 

on Sr under MVD(R,) and chasing tableaux on U under MVD(R). For a 
tableau T over Si, let T extended to U, denoted TU, be obtained by padding 
each row in T with new nondistinguished variables on U - S1. If w is a row in 
T, let w” be the corresponding row in T”. 

Suppose we are testing whether some MVD on S, is implied by *[RI]. Let 
T be the tableau for the MVD. Whatever changes made to T using *[RI] can 
be mimicked on T” using *[RI in such a way that T” restricted to S, equals 
T. Suppose RI = {RI, R2, . . . , Rq) and R2 = {R,+l, R,+z, . . ., Rp}. Sup- 
pose the J-rule for *[RI] is used on rows wl, w2, . . . , wq in T to yield row v. 
For convenience, assume R, is an edge in RI containing S1 fl Sz. We can ap- 
ply *[RI to rows WY, WY, . . . , WY, WY, . . . , w$’ to yield a row vu such that 
vU(Sr) = v. Therefore, if we ever arrive at the row of all distinguished 
variables in T, there is a row in T” that is distinguished on Si. Hence, any 
MVD on Si implied by *[RI] is an embedded MVD on U implied by *[RI. 
That is, the MVD is in M,, SO MVD(RI) c M,. 

To show the other containment, we use the following property of the chase. 
If the chase of a tableau is being computed under a single JD, then any row 
derived during the chase can be derived directly from the original rows in the 
tableau (see Exercise 13.33). Suppose we use the chase on a tableau T over U 
to show that *CR] implies an MVD embedded in Si. The chase must have 
produced a row w that was distinguished on all of Sr. That row can be pro- 
duced in one step from the original rows in T, by the property of the chase 
given above. It follows that if T’ is T restricted to Sl, then the row of all 
distinguished variables can be produced in T’ by one application of the 
J-rule for *[RI]. We conclude Ml c MVD(R1), so Ml = MVD(R1). By sym- 
metry, Mz = MVD(Rz), so the claim is established and the lemma is proved. 
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For the final lemma of this chapter, we need two more propositions and 
some definitions. 

Proposition 13.7 Let M be a set of MVDs over U. Let R E S E U. If M im- 
plies a nontrivial MVD X * Y embedded in R, then M implies some non- 
trivial MVD X --t-, Z embedded in S. 

Proof Left to the reader as Exercise 13.34. 

The next lemma states that if R is a unique decomposition, then R is 
acyclic. We shall represent tight 4NF decompositions by trees. 

Definition 13.24 Let M be a set of MVDs over U. A decomposition tree for 
U over M is a rooted binary tree with the following properties: 

1. The nodes in G are labeled with subsets of U. 
2. The root of G is labeled with U. 
3. If a node labeled R has children labeled R, and RZ, then (R1,R2) is 

a tight 4NF decomposition of R relative to M. 
4. If R labels a leaf of G, R is in 4NF relative to M. 

Clearly, if G is a decomposition tree for U under M, then the labels of the 
leaves of G form a tight 4NF decomposition for U under M. If v is an interior 
node in G, we let INT(v) be the intersection of the schemes of the children 
of v. 

Example 13.31 Let U = A B C D E and let M = {A ++ B, D --H E}. 
Figure 13.28 shows a decomposition tree G for U under M. In G, INT(vr) = 
A and INT( VJ = D. 

/\ 
v2 A6 v3 ACDE 

/\ 
v4 ACD v5 DE 

Figure 13.28 
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By Proposition 13.7, if v is an ancestor of w in a decomposition tree G, we 
cannot have INT(v) 2 INT(w), or else the decomposition at v was not tight. 
Further, the labels of nodes must be nonincreasing along every root-leaf 
path. That is, if v is an ancestor of w, the label of v contains the label of w. If 
x and y are nodes in G with labels R and S, but neither node is the ancestor 
of the other, then R 2 S. Let z be an ancestor of both x and y. INT(z) must 
contain R fl S. If R 2 S, then R n S = S. However, S 2 INT(z), and so the 
decomposition at Z was trivial. It follows that no two leaves in G can be 
labeled with the same scheme. 

Lemma 13.12 Let R be a connected database scheme. If R is a unique 
decomposition, then R is acyclic. 

Proof We show that no cyclic database scheme can be a unique decomposi- 
tion. First consider the case where R consists of a single block. Suppose R is 
a unique decomposition for U under a set M of MVDs. Let G be a decom- 
position tree for U under M. Consider an interior node v of G at one level up 
from the leaves. Let R be the label of the left child of v and S be the label of 
the right child, with INT(v) = Y fl Z = X. Both Y and Z are schemes from 
R, since they label leaves of G. By Proposition 13.7, there must be some non- 
trivial MVD X ’ ++ W on U implied by M with X’ z X. Assume that no 
nontrivial MVD on U implied by M has a left side contained in X’. 

Construct another decomposition tree G ’ for U under M by usingX ’ --H W 
to decompose U at the first step. The other decompositions in G’ are ar- 
bitrary. Since R is a unique decomposition relative to M, the labels on leaves 
of G ’ are the same as G, namely, all the schemes in R. Let R1 be all the 
labels of leaves in the left subtree of the root. Let R2 be the corresponding set 
for the right subtree. RI and R2 are disjoint by the remarks before this lem- 
ma. The removal of X ’ separates RI from R2. Since Y and Z are in R, and 
Y fl Z = X 2 X’, R has an articulation set. (Note that no edge may be con- 
tained in X.) 

The remainder of the proof is left to the reader as Exercise 13.35. The 
strategy is to show that if R is cyclic and is a unique decomposition, but has 
an articulation set, then a smaller counterexample to the lemma could be 
found by breaking R at the articulation set. 

13.3.4 Conclusions 

We have seen several syntactic and operational characterizations for acyclic 
schemes. The exercises present more characterizations. One interesting class 
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of questions about cyclic schemes is how they may be transformed or altered 
to produce acyclic schemes. Some possibilities are merging schemes, adding 
attributes to relation schemes, deleting attributes from relation schemes, 
breaking the database scheme into acyclic components, and adding new rela- 
tion schemes. Unfortunately, most of these modifications are NP-complete if 
the minimum modification is sought. Another area for further work is how to 
exploit local acyclicity in a database scheme that is globally cyclic. Also, 
much work is going on in determining how data dependencies ameliorate the 
effects of cyclicity. 

13.4 EXERCISES 

13.1 Consider the database scheme R, = {ABC, BCE, CDE}. Give a 
database d(R,) = {rl(ABC), r2(BCD), r3(CDE)} and two full- 
reducers SPi and SP2 such that SPi is beneficial to apply to d before 
computing rl w r2 w r3, but S2 is not. Assume that all domain 
values have a transmission cost of 1, the cost of ri D< rj is the cost of 
transmitting rj’s projection on T~S scheme, and the join is to be com- 
puted at the site of rl. 

13.2 Can the assignment r + r K s change r if the schemes of r and s do 
not intersect? 

13.3 Show that a database d where every relation has a single tuple can 
always be fully reduced with semijoins. (Alternatively, PC implies TC 
ford.) 

13.4 Let R = {R,, R,, . . ., R, } be a database scheme. Suppose *[RI I= 
*]S1,S2]. Show that there is a pair of relation schemes Si’, S; such 
that for some function 

f: (1, 2, .*.,P> -+ (1, 2) 

we have 

and *[Si’,SJ I= *[S1, S,]. 
13.5” If R hasp schemes, how big can MVD(R) be? 
13.6 For the database schemes R, and R, in Example 13.4, verify that 

MKD(R,) = *[R,] while MVD(R,) I$ *[R,]. 
13.7* Show that if Mm(R) I= *[RI, then there is a set of MVDs M 

equivalent to MVD(R) with no more elements than schemes in R. 
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13.9 

13.10 

13.11 

13.12 
13.13 

13.14 
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Let R be a database scheme over U. What is the time complexity of 
the obvious algorithm to test if a relation r(U) satisfies *[RI? (The 
obvious algorithm is computing nz&).) How fast can satisfaction of 
*[RI be tested if Mm(R) E *[RI? (Use Exercise 13.7.) 
Give a “non-tight” decomposition of A B C D E I under the MVDs 
{BC - E, CD - I}. 
Show that if R is a unique decomposition of U, then Mm(R) uni- 
quely decomposes U. 
Consider the database scheme R, = {ABC, BCD, CE, DE) from the 
examples. 
(a) Show that R, is not a unique decomposition. 
(b) Show two tight 4NF database schemes for A B C D E under 

MVD(R,). 
Prove that if a database d is TC it must also be PC. 
Show that for any n 2 3 there is a database d of it relations such that 
any n - 1 relations join completely but d is not TC. 
Verify that any way of computing rl w r2 w ra w r4 using pair-wise 
joins for the database in Figure 13.6 gives at least one intermediate 
result that is not the complete join of its child relations. 

13.15* Let R be a database scheme such that for any join plan P for R there 
exists a database d(R) such that P(d) is not monotone. Show that 
there is a database 2 that is such that P(a) is not monotone for any 
join plan for R. 
Let P be the join plan of Figure 13.9 and let d be the database in 
Figure 13.6. Verify that P(d) is not monotone. 
Show that the database R, = (ABC, BCE, CE, DE} has no 
monotone join plan. 
Can a database scheme have a join plan P where P(d) is never 
monotone (excluding a database of empty relations)? 
Enumerate all the reduced hypergraphs on five nodes (up to 
isomorphism) . 
Let H be a non-reduced cyclic hypergraph and let H ’ be its reduction. 
Show that H& could be a block while Hm is not, for some 3n. Can H 
have no blocks at all? 

13.16 

13.17 

13.18 

13.19 

13.20 

13.21 

13.22 
13.23 

Determine whether each of the following database schemes are cyclic 
or acyclic. 
(a) {ABC, CDE, AIE, ACE) 
(b) {ABC, BCD, ACD, ABD} 
(c) (AB, BD, CD, CE, DE} 
Prove that a hypergraph is acyclic if and only if it is closed-acyclic. 
Find join trees for the acyclic schemes in Exercise 13.21. 
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13.24 

13.25 
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Show that the acyclic schemes in Exercise 13.21 have the running in- 
tersection property. 
Show that the hypergraph for a database scheme R consists of a 
single connected component if and only if every join graph for R is 
connected. 

13.26 
13.27 

13.28 

13.29” 

13.30 

13.31 

13.32 

Find a join tree for each acyclic database scheme in Exercise 13.21. 
Show that if H = (3t,E) is an acyclic hypergraph, then so is Hm for 
any % C 3t. 
L.&R= {RI&, . . . . R, > be a connected database scheme with join 
tree G. Let SF(l) be a complete semijoin program for R relative to G1. 
Show that SP = SP(1); SP(1) is a complete semijoin program for 
any Gp, 1 I I 5 p, where s(l) is SP(l) reversed and with each 
step ri + ri D< rj changed to rj + rj D< ri. 
Let R be a database scheme. Show that if R has a full reducer SP, 
then SP must have at least 2. IRI - 2 steps. 
Let H = (Z, E) be a cyclic hypergraph. Let I; E & be a bottleneck for 
H relative to the partition &r , & of E - {F). Show that at least one of 
the hypergraphs defined by Et U {F} and E2 U (F} is cyclic, 
Let R be a connected database scheme and let R ’ be R after applying 
Graham reduction. Show that if R’ has a PC database that is not 
TC, so does R. 
Let R = {R,, R2, . . . , R, > be a connected database scheme. Suppose 
Ri is a bottleneck for R relative to (RI, RI, . , ., Ri-I} and (Ri+l, 
Ri_tZ, - * * 7 R, }. Let d ’ be a PC database on {RI, R2, . . . , Ri}. Show 
that d’ can be extended to a PC database on R by adding relations 
on &+I9 &+2, - - -, R,. 

13.33 Consider taking the chase of a tableau T under a single JD *[RI, R2, 

13.34 
13.35 
13.36* 

. . ., Rp]. Let w be a row at any point in the chase. Show that for any 
Rip 1 5 i 5 p, there is an original row v in the chase such that w(R<) 
= v(R,). 
Prove Proposition 13.7. 
Complete the proof of Lemma 13.12. 
Show that condition 10 of Theorem 13.2 implies one of the conditions 
l-9. 

Definition 13.25 Let H = (X, E) be a hypergraph and let P = El, E2, . . . , E, 
be a path in H. Define 

E = Ei n Ej+l, 1 5 i I m. 
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P is chordfess if there is no edge E in G that contains Fi U Fj U Fk for some 
1 I i < j < k < m. That is, no edge in E contains three intersections of ad- 
jacent edges in the path. P is a cycle if El = E,. 

13.37 Let H be a hypergraph. Prove: H is acyclic if and only if H contains 
no chordless cycles of 3 or more edges (counting the first and last 
edge only once). 

13.38 Give an example of an acyclic hypergraph with a cycle. 
13.39” Let d be a database on scheme R = {RI, R2, . . . , R, }. Show that if a 

full reducer exists for d, it must have at least 2p - 2 semijoins. 

Definition 13.26 Let d be a database on scheme R. A semijoin program SP is a 
maximal reducer for d if for any state of d, after applying SP to d, no semijoin 
will further reduce d (although d need not be fully reduced after applying SP). 

13.40* Show that if a database d on scheme R has no full reducer, then it 
has no maximal reducer. 

13.41 Say a join plan JP is sequential if every right child in JP is a leaf. 
Show that a database scheme R has a monotone join plan if and only 
if it has a monotone, sequential join plan. 

Definition 13.27 Let H = (%., E) be a hypergraph. Thegraph for H, GH, is an 
ordinary, undirected graph on the nodes in %. that contains an edge (A, B) 
exactly when A and B are contained in a single edge of E. 

Definition 13.28 Let G be an undirected graph. A clique of G is a subset of 
nodes of G such that every pair of nodes in the subset forms an edge in the 
graph. G is chordal if every cycle of 4 or more nodes has a chord: an edge in 
G connecting non-adjacent nodes in the cycle. 

Definition 13.29 Let H be a hypergraph. H is conformal if every set of 
nodes nt that is a clique of GH is contained in a hyperedge of H. H is chordal 
if it is conformal and GH is chordal. 

13.42 Prove that a hypergraph H is acyclic if and only if it is chordal. 

Recall that for a set of MVDs M and a set of attributes X, DEP(X) is the 
dependency basis of X. 
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Definition 13.30 Let M be a set of MVDs. Let X be a key of M if X is the 
left side of an MVD in M. Two keys X and Yin M are conflict-free if we can 
write DEP(X) and DEP( Y) as 

DEP(X) = { V,,V,, . .., VR,X,,X2, . ..,Xm,Z, Y, Y, a-- Y,,} 

and 

DEP(Y) = {Vl,V2, . . . . V,, Yl,Y2, . . . . Yn,Z2X,X2 -*X,} 

such that 

1. zr x = 22 Y, 
2. DEP(X) fI DEP( Y) = { VI, V,, . . . , V, }, and 
3. DEP(X f-7 Y) 2 { VI, V,, . . . , V, }. 

M is conflict-free if every pair of keys in M is conflict-free. 

13.43 Prove that a database scheme R is acyclic if and only if *[RI is 
equivalent to a conflict-free set of MVDs. 

13.44” Let R be a database scheme. Recall that [ .]*u is the window function 
defined by total projections of *[RI-weak instances. Give an algo- 
rithm to compute [Xl,, that is polynomial in the size of the database. 

13.45 Let R be a cyclic database scheme. 
(a) Show that R can always be transformed to an acyclic scheme by 

the addition of a single relation scheme. (Don’t think too hard.) 
(b) Give an aIgorithm that is polynomial in the size of R that deter- 

mines the size of the smallest relation scheme that will make R 
acyclic. 

13.5 BIBLIOGRAPHY AND COMMENTS 

The first manifestations of acyclic database schemes came from work on 
semijoins and on comparing pairwise consistency versus total consistency. 
The first definition of semijoin was given by Hall, Hitchcock, and Todd 
[1975], who called the operation “generalized intersection.” There is men- 
tion of “semijoin” about the same time, but the operation referred to has 
nothing to do with what we are calling semijoin. Semijoins are used exten- 
sively in the distributed query processing algorithms for SDD-1, a distributed 
database system developed by Rothnie, Bernstein, et al. [19SlJ. Bernstein 
and Chiu [1981] were the first to connect join trees with full reducers, 
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although they handled only the case of semijoins on a single attribute. Bern- 
stein and Goodman [1979a, 1979~1 extended the theory to multiattribute 
semijoins. Theorem 13.1 is due to them. Several algorithms for finding 
minimum spanning trees may be found in Aho, Hopcroft, and Ullman [1974]. 

The interest in pairwise consistency and total consistency came from the 
problem of determining when a database is a projection of a common in- 
stance. Honeyman, Ladner, and Yannakakis [1980] showed the problem was 
NP-complete in general. Graham [1979] defined a large class of database 
schemes for which PC implies TC, but his class was a proper subset of the 
acyclic schemes. He gave the reduction algorithm, which was formulated in- 
dependently by Yu and Ozsoyoglu [1979, 19801, although their algorithm is 
phrased in terms of join graphs. Honeyman [1980b] noted the connection 
between PC implying TC and the existence of full reducers, although his 
proof of equivalence is flawed. 

Namibar [1979] was among the first researchers to formulate database 
scheme problems in terms of hypergraphs. The definition of acyclic database 
scheme, as well as the characterizations and equivalences not already at- 
tributed, comes from a series of papers by Fagin, Mendelzon, and Ullman 
[1980], Beeri, Fagin, Maier, Mendelzon, et al. [1981], and Beeri, Fagin, 
Maier, and Yannakakis [1981]. 

Bernstein and Goodman [1979b, 198Oa] extend the theory of semijoins to 
involve inequality comparisons. Chiu and Ho [1980], and Chiu, Bernstein, 
and Ho [1980] give algorithms for finding the fastest full reducer for a given 
database state, provided a full reducer exists. Goodman and Shmueli [198Oa, 
198Ob, 1981a, 1981b] examine a number of questions involving full-reducers 
and join trees, including reducers that use operations other than semijoins, 
the inapplicability of chase-type computation for determining if full reducers 
exist, generalizing cycles and cliques from graphs to hypergraphs and the 
complexity of modifying cyclic schemes to be acyclic. Chase [1981] also ex- 
amines methods for eliminating acyclicity. Lien [1980] and Sciore [1981] look 
at sets of conflict-free MVDs, which can be used to characterize acyclic 
database schemes. Both argue that sets of MVDs that arise naturally from 
real world situations are conflict-free. 

Yannakakis [1981] shows that acyclic schemes admit more efficient 
algorithms for some problems than cyclic schemes do. Katsuno [198la] 
studies the interaction of acyclicity with FDs and MVDs. Maier and Ullman 
[1981] show that, in a certain sense, acyclic schemes are those where connec- 
tions among sets of attributes are unique. Atzeni and Parker 119811 question 
the applicability of acyclic database schemes. 

Exercises 13.7, 13.22, 13.41, 13.42, and 13.43 are from Beeri, Fagin, 
Maier, and Yannakakis [1981]. Exercise 13.13 is from Goodman and 
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Shmueli [1980a]. Exercise 13.28 is suggested by Bernstein and Chiu 119811. 
Exercise 13.36 is answered by Fagin, Mendelzon, and Ullman [1980]. The 
“only if” direction of Exercise 13.37 is from Maier and Ullman [1981]. The 
“if” direction was noted by Kent Laver. Exercise 13.40 follows from Bern- 
stein and Goodman [1979c]. The answer to ExerciseJ3.44 can be found in 
Yannakakis [1981]. Exercise 13.45b comes from Goodman and 
Shmueli [ 1981b]. 


