
Chapter 13

ACYCLIC DATABASE SCHEMES

In this chapter we introduce a class of database schemes, the acyclic
database schemes, that possess several desirable properties. We first
enumerate the properties, then give three syntactic characterizations of
acyclic schemes, give algorithms for two of the characterizations, and prove
equivalence of the properties and characterizations.

13.1 PROPERTIES OF DATABASE SCHEMES

In this section we introduce five properties that a database scheme may
possess. The properties are mainly “extensional’‘-they refer to a condition
that must hold for all databases on the database scheme. The next section
deals with “intensional” properties-ones that involve conditions on the
database scheme alone.

13.1.1 Existence of a Full Reducer

We return to the semijoin operator introduced in Chapter 11. Consider a
relational expression

where C is some Boolean combination of comparison conditions. Such
project-select-join expressions occur frequently as subexpressions when con-
verting calculus-based queries to relational algebra. Suppose we are
evaluating the expression on a distributed database system where the rela-
tions are spread over multiple sites. It is not unusual in such a system for
communication costs between sites to greatly exceed processing costs at a
single site. We consider evaluating E while trying to minimize data trans-
mitted between sites, paying no attention to local processing costs.

439

440 Acyclic Database Schemes

A naive approach to evaluating E is to ship all the relations to a singIe site
and evaluate the expression at that site. The problem with this approach is
that only a small portion of each relation may be needed in the evaluation of E.
Tuples and parts of tuples may be excluded from the evaluation by the pro-
jection, the selection condition, and the joins, The naive approach can be im-
proved by using the algebraic optimization techniques of Chapter 11 to push
parts of the projection and selection down the tree to individual relations.
The result is an expression

We can compute

for 1 I i ZG p, at individual sites, to be left with the expression

E” = 7rX(UC~(Sl P-4 s2 Da * - - w sp)

to evaluate, where presumably some of the Si’S are smaller then the corre-
sponding Yi’s.

Example 13.1 Consider the database d = { rl, ~2,r3) on the database scheme&
R, = (ABC, BCD, CDE} shown in Figure 13.1. (R, will be used as a running
example throughout this chapter.) Suppose we want to evaluate the expression

We transform E to

We can evaluate

locally to get the database d ’ = {~1,~2,~3} shown in Figure 13.2. The task is
now to evaluate

E” = ~ADtuA&sl w S2 w S3)).

r1u B c 1
74 6
84 6
75 6
88 6
98 2
9 4 11
8 5 11

74 6
84 6
7.5 6
9 4 11
8 5 11

Properties of Database Schemes 441

r2@ c D)
4 6 7
5 6 7
8 6 9
8 11 9
4 11 9
5 11 9
4 12 9

Figure 13.1

s2w c D)
4 6 7
5 6 7
4 11 9
5 11 9
4 12 9

Figure 13.2

r3(C D E)
67 1
67 2
675
69 3
87 5
89 3

11 9 3
12 7 4

s3(C D)
6 7
6 9
8 9

11 9

Once the relations have been reduced as far as possible using projection
and selections, it may be possible to reduce them further still through semi-
joins. We are interested in removing all the tuples of the database d = { sl, s2,
. . .) sP } that do not participate in the join s1 w s2 w - - . W sP. Recall: The

fid reduction of si relative to d, FR(si,d), is the set of all tuples of Si that par-
ticipate in wd. A semijoin program SP is a series of assignments of the form
Si + Si [X Sj. SP is a fun reducer relative to the database scheme R if
SP(si,d) = FR(si,d) for every database d(R) and relation si E d.

If R has a full reducer, we can use semijoins to fully reduce sl, s2, . . . , sP
before transmitting them to a common site for joining. Whether or not it
pays to apply a particular semijoin program in a distributed system depends
on the states of individual relations. In computing r(R) W s(S) in a dis-
tributed system, it could be cheaper to send all of r to s than to send
aR&) to r and then send r 1x s back to S. For a given database d, it can
happen that one full reducer is beneficial to apply while another is not (see
Exercise 13.1).

Example 13.2 The database scheme 1; = {ABC, BCD, CD } has a full
reducer. One full reducer is

442 Acyclic Database Schemes

s2 + s2 lx s1;
s3 + s3 tx s2;

s2 + s2 lx s3;

s1 + Sl Ix s2.

The result of applying this semijoin program to the relations in Figure 13.2 is
shown in Figure 13.3.

Sl(A B c 1 sz(B c D) s3(C D)
74 6 4 6 7 6 7
84 6 5 6 7 11 9
75 6 4 11 9
9 4 11 5 11 9
8 5 11

Figure 13.3

Example 13.3 Consider the database scheme R, = (ABC, BCD, Cl?‘, DE).
(R, will also be used for many examples in this chapter,) R, has no full-
reducers. The database on R, shown in Figure 13.4 is not fully reduced, yet
no semijoin reduces it further.

r,(A 13 C> f-2@ c D) r3(C E) r4W E)
1 2 3 23 4 3 5 4 11
7 8 9 8 9 10 9 11 10 5

Figure 13.4

13.1.2 Equivalence of a Join Dependency to Multivalued Dependencies

Every database scheme R corresponds to a unique ID, namely *[RI. Every ID
implies a set of MVDs. The general implication of one ID by another is given
in the next lemma.

Lenuna 13.1 If R and S are database schemes over the same set of attributes,
then *[RI t= *[S] if and only if S I R.*

*Recall that S 2 R means every relation scheme in R is contained in some relation scheme in S.

Properties of Database Schemes 443

Proof Immediate consequence of Theorem 8.1. FIX(R) = SAT(*[RJ) and
FIX(S) = SAT(*[S]), so S h R if and only ifHX(R) E &XX(S) if and only if
“[RI b “[S].

We are interested in the MVDs implied by a ID *[RI. We want to know al1
pairs of schemes Si, & such that *[RI I= *[Sr,Sz]. It is sufficient to consider
IDS *[S1,Sz] where Si and Sz are exact unions of schemes in R, In particutar
we assume there is a function

f:{L 2,p> + (192)

such that

si = fcjy=i Rj, i = 1, 2.

Let MVD(R) be all the nontrivial MVDs (two-scheme IDS) that can be so
defined.

Example 13.4 For R, = {ABC, BCD, CDE}, MKE’(R,) = (*[ABC,
BCDE], *[ABCD, CDE]}. For R, = {ABC, BCD, CE, DE>, MVD(R) =
(“[ABC, BCDE], *[ABCD, CDE], “[ABCES, BCDEI].

Exercise 13.4 shows that any MVD implied by *[RI is the direct conse-
quence of some MVD in MVDfR). We are interested when MVD(R) I= *[R],
for a database R. MVD(R,) I= *[R,], while MVZI(R,) g *[R,] (see Exercise
13.6). Basically, MVD(R) t= *[RI means that the lossless decomposition of a
relation T onto R can be captured as a set of two-way decompositions. Also, if
MVD(R) E *[R], an efficient test for satisfaction of *[R] can be devised.

13.1.3 Unique 4NF Decomposition

In this section we formalize the condition that a unique 4NF decomposition
follows from a set of MVDs M over a scheme U.

Definition 13.1 Let M be a set of MVDs over a scheme U. A pair of relation
schemes (R ,S) is a decomposition for U under M if M != *[R ,S]. A decom-
position fR ,S) of U is tight if there is no other decomposition (R ‘,S ‘) with
R ’ f7 S ’ properly contained in R f7 S. That is, (R ,S) is tight if the overlap of
R and S is minimal.

444 Acyclic Database Schemes

We are actually interested in decomposing U until it is in 4NF. We can
view A4 as applying to a subscheme U ’ of U by considering the MVDs that
necessarily apply in aUP(SAT(M)). Thus “decomposition under M” and
“tight decomposition under M” make sense for subschemes of U.

Definition 13.2 Let R be a scheme over U and let M be a set of MVDs over
U. R is in tightfourth normalform (tight 4NF) for M if R is in 4NF relative to
M and R can be obtained by a series of tight decompositions. M uniquely
decomposes U if there is only one database scheme R over U that is in tight
4NF for M.

Definition 13.3 A database scheme R over U is a unique decomposition if
some set M of MVDs uniquely decomposes U into R.

Example 13.5 Consider database scheme R, = {ABC, BCD, CDE) from
previous examples. R, is a unique decomposition of A B C D E. Let M =
{ BC -H A, CD - E) (which is MVD(R,)). We can either start by decom-
posing ABCDE into (ABC, BCDE} or {ABCD, CDE}, but at the next step
we always reach {ABC, BCDE, CDE}, which is in 4NF relative to M. R, =
(ABC, BCD, CE, DE] is not a unique decomposition (see Exercise 13.11).

13.1.4 Pair-wise Consistency Implies Total Consistency

Let R = {RI,& . . . , R, > be a database scheme and let d = { rl,r2, . . . , rp >
be a database over R. We have noted in previous chapters that it is computa-
tionally hard to test if r1,r2, . . . , rp join completely. We say that d is totally
consistent (TC) if r-1, 1-2, . . . , rp join completely. Database d is pairwise con-
sistent (PC) if every pair of relations ri and rj join completely. Testing PC is a
polynomial computation in the size of a database. TC necessitates PC (Exer-
cise 13.12), but PC is not always sufficient for TC. We are interested in data-
base schemes where every PC database is also TC.

Example 13.6 PC does imply TC for databases on our old friend R, =
{ABC, BCD, CDE}. Consider a database d(R,) = {r,(ABC), r2(BCD),
r3(CDE)} that is PC. We show that every tuple in r2 enters into the join rl w
r2 W r-3. Let t2 be a tuple in r2. Since rl joins completely with r2, it contains a
tuple tl that joins with t 2. Likewise, r3 contains a tuple t3 that joins with t2.
The three tuples all join together since t,(C) = t2(C) = t3(C), and C is the
.only attribute where tl and t3 overlap.

PC is not sufficient for TC for databases on R, = {ABC, BCD, CE, DE}.
Figure 13.4 shows a PC database on R, that is not TC.

Properties of Database Schemes 445

13.1.5 Small Intermediate loins

Consider the problem of computing wd for a database d = { rl(R1), rz(Rz),
. . ., rp(Rp)} over scheme R by a series of binary joins. Even if all the rela-
tions in d are fully reduced, a poor choice of joins can lead to intermediate
results larger than the final result.

Example 13.7 Consider computing rl W r2 w r3 for the database on R, =
{ABC, BCD, CDE} shown in Figure 13.5. If we begin by computingrl W r3,
we get an intermediate result with 10 tuples, where the complete join has only
6 tuples. If we start with r1 w r 2, the intermediate result has only 6 tuples.

rl(A B 0
1 3 5
1 4 5
2 3 5
2 4 6

r2(B C D)

3 5 7
4 5 8
3 5 9
4 6 8

Figure 13.5

r3(C D E)

5 7 10
5 8 10
5 9 11
6 8 11

Example 13.8 Consider computing rl W r-2 w r3 w r4 for the database on
R, = {ABC, BCD, CE, DE} given in Figure 13.6. Any sequence of pairwise
joins gives at least one intermediate result with more tuples than the final
result (see Exercise 13.14). Note that this database is fully reduced.

rlt-4 B Cl r2(B C D) rdC E) r4W E 1

1 2 3 23 8 3 9 8 9
1 2 4 24 8 4 10 8 10
1 2 5 2 5 11 5 14 11 13
1 2 6 2 5 12 6 15 12 14
1 2 7 2 6 16 7 15 16 15

2 7 17 17 15

Figure 13.6

We are interested in database schemes where every fully reduced database
can be joined through a sequence of pairwise joins where no intermediate
result has more tuples than the final result. Moreover, we desire a sequence of
joins that works for any database on the scheme and where intermediate
results are always “growing.” We actually look at a stronger condition, that
when a join is taken, the relations involved join completely.

446 Acyclic Database Schemes

Definition 13.4 Let R = {RI, Rz, . . . , R, } be a database scheme. A join
plan for R is a rooted binary tree P with leaves labeled by relation schemes in R
and every scheme in R labeling at least one leaf of P. Let d = (rl ,r2, . . . , rp)
be a database on R. The instantiation of P by d, denoted P(d), is obtained by
associating ri, 1 I i I p, with the leaves labeled Ri. After relations are
associated with the leaves, associate, recursively, the join of relations at the
children with each interior node. The relation rl w r2 w - . - w rP is, of
course, associated with the root of P.

Example 13.9 Figure 13.7 gives a join pian P for database scheme R, =
{ABC, BCD, CDE}. If d is the database in Figure 13.5, Figure 13.8 shows
the relations I-=, ~b, and t, associated with interior nodes, a, b, and c in P(d).

r,(A B C D E)

1 3 5 7 10
1 3 5 9 11
1 4 5 8 10
2 3 5 7 10
2 3 5 9 11
2 4 6 8 11

b
r2 r3 r4

Figure 13.7

q,(A B C D) r,(B C D E)

1 3 5 7 3 5 7 10
i 3 5 9 4 5 8 10
1 4 5 8 3 5 9 11
2 3 5 7 4 6 8 11
2 3 5 9
2 4 6 8

Fim 13.8

Every join plan corresponds to a completely-parenthesized join expression.
The join plan in Figure 13.7 corresponds to (rr w Q) w (q w r2).

Definition 13.5 If P is a join plan for R and d is a database on R, then P(d) is
monotone if for every interior node b of P, the relation associated with b is the

Syntactic Conditions on Database Schemes 447

complete join of the relations associated with its children. P is monotone if
P(d) is monotone for every PC database d on R.

Example 13.10 Referring back to Example 13.9, P(d) is monotone, and, in
fact, P is monotone.

Example 13.11 The join plan P for R, = {ABC, BCD, CE, DE} given in
Figure 13.9 is not monotone. In particular, P(d) is not monotone, where d is
the database of Figure 13.6.

a

r4

Figure 13.9

Definition 13.6 A database scheme R has the increasing join property if it
has a monotone join plan.

13.2 SYNTACTIC CONDITIONS ON DATABASE SCHEMES

This section introduces three syntactic conditions on database schemes:
acyclicity, existence of a join tree, and the running intersection property. In
the next section we introduce algorithms for testing two of these conditions.
We also demonstrate there the equivalence of the syntactic conditions of this
section and the more extensional properties of the last section.

13.2.1 Acyclic Hypergraphs

A hypergraph is similar to an ordinary undirected graph, except that edges are
arbitrary nonempty sets of nodes, rather than just doubletons.

448 Acyclic Database Schemes

Definition 13.7 A hypergruph H is a pair (9X,&) where 3t is a set of items,
called nodes, and E consists of nonempty subsets of 9X, called hyperedges. If it
is clear we are dealing with hypergraphs, we may use “edges” for “hyper-
edges.” H is reduced if no edge in G properly contains another edge and every
node is in some edge. The reduction of H, written RED(H), is H with any
contained edges and non-edge nodes removed.

A database scheme is naturally viewed as a hypergraph. If R is a database
scheme over U, then R may be viewed as the hypergraph (U,R). That is, the
attributes in R are the nodes in the hypergraph and the relation schemes of R
are the hyperedges. We shall simply use R in place of (U,R) when dealing with
the hypergraph that R represents. Saying that R is reduced is saying that R is
reduced as a hypergraph: no relation scheme in R properly contains another.

Example 13.12 In drawing hypergraphs, nodes are represented by their
labels and hyperedges are represented by closed curves around the nodes. The
hypergraph for R, = {ABC, BCD, CDE} is given in Figure 13.10. The
hypergraph for R, = (ABC, BCD, CE, DE} is given in Figure 13.11.

Definition 13.8 Let H = (X,&) be a hypergraph, with A and B nodes in 32.
A path from A to B in H is a sequence of edges El, EZ, . . . , Ek , k I 1, such
thatA E El, B E Ek andEi fl Et+, # @for 1 5 i < k. WealsosaythatEi,
E29 . . ., Ek is a path fromE, toEk.

Figure 13.10

Syntactic Conditions on Database Schemes 449

Figure 13.11

Definition 13.9 In a hypergraph H = (X,G), two nodes or edges are COIE-
netted if there is a path between them. A set of edges is connected if every
pair of edges is connected. A connected component of H is a maximal con-
nected set of edges.

Example 13.13 Let H be the hypergraph shown in Figure 13.12. ABC,
BCD, DE is a path from A to E and from ABC to DE, so A and E are con-
nected, as are ABC and DE. The connected components of H are {ABC,
BCD, DE) and (IJ, JKL, XL}.

Figure 13.12

450 Acyclic Database Schemes

We shall be concerned mainly with hypergraphs that consist of a single
connected component. Most of what we do generalizes to hypergraphs with
multiple components.

Definition 13.10 Let H = (‘X, E) and H ’ = (‘22 ‘, & ‘) be hypergraphs. H ’ is
a subhypergraph of H if 31’ C 3t and G ’ C I.

Definition 13.11 Let H = (32, G) be a hypergraph and let 9lZ c 37. The
3Wzduced hypegraph for H, denoted Hm, is the hypergraph BED((nt, En))
where

Hm is not necessarily a subhypergraph of H, since Gm may contain edges
not in E.

Example 13.14 Let H be the hypergraph (ABCDEIJK, {ABC, BD, CDE,
DEI, IJK }) h s own in Figure 13.13. H’ = (ABCDE, {ABC, BD, CDE)) is
a subhypergraph of H, as well as being the ABCDE-induced hypergraph for
H. HABcD = (ABCD, (ABC, BD, CD}), as shown in Figure 13.14. HABCD
is not a subhypergraph of H, since CD is not an edge of H.

We now wish to generalize the notion of “strongly connected” from or-
dinary graphs to hypergraphs. Recall that a strongly connected graph is one
with no articulation points.

Syntactic Conditions on Database Schemes 451

Figure 13.14

Definition 13.12 Let H = (X,&) be a hypergraph. A set F E ‘32 is an artic-
ulation set for H if F = El n E2 for some pair of edges El, Es E 8, and Hx 1
has more connected components than H, where 37. ’ = 37. - F: That is, re-
moving the nodes in F from H disconnects some pair of nodes that were pre-
viously connected in H.

Definition 13.13 Let H = (‘X,&) be a hypergraph. A block of H is an 9%
induced hypergraph of H with no articulation set, for some nt C X A block
is trivial if it has only one edge. A reduced hypergraph is acyclic if it has no
blocks; otherwise it is cyclic. An arbitrary hypergraph is cyclic or acyclic pre-
cisely when its reduction is.

Example 13.15 Let H be the hypergraph of Example 13.14. DE is an ar-
ticulation set of H, since DE = CDE fl DEI, and HABcrJK has two com-
ponents where H had one. H ABCD, shown in Figure 13.14, is a block of H,
since it contains no articulation set. Since H is reduced, we conclude it is
cyclic.

Example 13.16 Consider the database scheme R, = (ABC, BCD, CDE}
as a hypergraph. R, is acyclic. For example, consider (R,JAB~~, shown in
Figure 13.15. It is not a block because it has B and D as articulation sets.

We now give a slightly different definition of acyclicity that only considers
induced hypergraphs that are subhypergraphs.

452 Acyclic Database Schemes

Figure 13.15

Defiiition13.14 L&H= (X,E)beahypergraphandletH’= (Z’,&‘)be
a subhypergraph of H. H ’ is closed relative to H if H ’ = Hm for some 9lZ C 3t.
Clearly if such an 9X exists, it must be 32 ‘. Equivalently, H ’ is a closed sub-
hypergraph of H if for any edge E E & there is an edge E ’ f E ’ such that
E’? ‘3Z’flE.

Definition 13.15 A reduced hypergraph H is closed-acyclic if every closed,
connected subhypergraph of H with two or more edges has an articulation
set: otherwise H is closed-cyclic. An arbitrary hypergraph is closed-acyclic
and closed-cyclic exactly as its reduction is.

Example 13.17 Let H be the hypergraph of Example 13.14. H’ = (ABCD,
{ABC, BD }) is not closed relative to H. Consider the edge CDE of H. CDE
fl ABCD = CD, and CD is not contained in any edge of H ‘. H” = (ABCDE,
{ABC, BD, CDE}) is closed relative to H, since H” = HABCDE. H” is pic-
tured in Figure 13.16. H” has no articulation set, so H is closed-cyclic.

Acyclic and closed-acyclic are equivalent conditions (see Exercise 13.22).
A database scheme R is acyclic if R considered as a hypergraph is acyclic.

13.2.2 Join Trees

Definition 13.16 Let R = {RI, RZ, . . . , R,] be a database scheme over U.
The complete intersection graph for R, denoted IR, is the complete undirected
graphonnodesR1,Rz, R, and with edge labels chosen from the subsets

Syntactic Conditions on Database Schemes 453

Figure 13.16

of U. For an edge e = (Ri, Rj), the label of e, denotedUe), isRi n Rj. An
intersection graph for R is any subgraph of 1, formed by removing only
edges. In drawing an intersection graph, we generally omit any edge e where
L(e) = 8.

Definition 13.17 Let R = { R1, RZ, . . . , R, } be a database scheme over U.
Let G be an intersection graph for R and let A E U. A path el, e2, . . . , ek
from node Ri to node Rj in G is an A-path if A E L(e;) for all 1 zs i I k. If
el, e2. . . ., ek is an A-path, then it followsA E Ri and A E Rj. In fact, A must
be in every node R along the A-path.

Example 13.18 Consider the database scheme R = {ABC, BD, CDE,
DEl, IJK} over ABCDEIJK, which corresponds to the hypergraph of Ex-
ample 13.14. IR is shown in Figure 13.17 (omitting edges with empty labels).
Figure 13.18 gives an intersection graph G for R. G has a D-path from BD to
CDE. There is no B-path in G from ABC to BD, although IR has such a
path.

Definition 13.18 Let R = { R1, R2, . . . , R,) be a database scheme over U.
An intersection graph G for R is a join graph if for every pair of nodes Rip Rj
in G, if A E Ri fl Rj then there is an A-path from Ri to Rj. A join tree is a join
graph that is a tree.

Example 13.19 Let R be the database scheme from Example 13.18. IR is a
join graph for R. (The complete intersection graph is always a join graph.)

454 Acyclic Database Schemes

Figure 13.17

Fii 13.18

The intersection graph in Figure 13.18 is not a join graph for R, since there is
no B-path from ABC to BD. R has no join trees. Any join graph G for R
must have the edge (ABC,BD) to give a B-path from ABC to BD, as well as
the edge (ABC,CDE) to give a C-path from ABC to CDE. Nodes BD and
CDE must be connected by a D-path. The D-path cannot go through ABC,
so G must contain a cycle.

We are interested in database schemes where join trees exist. We shall see
later that a join tree can be used to construct monotone join plans.

Equivalence of Conditions 455

Example 13.20 The database scheme R, = {ABC, BCD, CDE) does have
a join tree, as shown in Figure 13.19.

Figure 13.19

13.2.3 The Running Intersection Property

Definition 13.19 Let R = (RI, R2, . . . , R, } be a database scheme. R has
the running intersection property if there is a permutation S1, Sz, . . . , S, of
R,,Rz, .--3 R, such that for every 1 < i 5 p, there exists a j < i such that

(S1S* -*- Si-1) n Si G Sj.

That is, the intersection of Si with the union of all the previous schemes is
contained entirely within one of those schemes.

Example 13.21 R = {ABC, CDE, BCEI} has the running intersection
property, as witnessed by the ordering BCEI, ABC, CDE of its retation
schemes.

13.3 EQUIVALENCE OF CONDITIONS

As was remarked at the beginning of the chapter, and as the running ex-
amples R, and R, indicate, all the properties and conditions in Sections 13.1
and 13.2 describe the same class of database schemes. Before proving the
equivalences, we look at algorithms to decide whether a database scheme R is
acyclic and whether R has a join tree.

456 Acyclic Database Schemes

13.3.1 Graham Reduction

The following algorithm on hypergraphs was introduced by Graham,
although Yu and Ozsoyoglu independently gave an essentially equivalent
algorithm that runs on a different data structure. The Graham reduction
algorithm consists of repeated application of two reduction rules to
hypergraphs until neither can be applied further. LA H = (‘X,8) be a
hypergraph. The two reduction rules are

rE. (edge removal) If E and F are edges in E such that E is properly con-
tained in F, remove E from G.
rN. (node removal) If A is a node in 92, and A is contained in at most
one edge in E, remove A from ‘JZ and also from all edges in & in which it
appears.

Example 13.22 Figure 13.20 shows the stages in applying the Graham
reduction algorithm to the hypergraph for R, = {ABC, BCD, CDE). The
labeled arrows represent applications of the corresponding reduction rule.

Figure 13.20

Equivalence of Conditions 457

Example 13.23 Figure 13.21 shows the stages in applying Graham reduc-
tion to R, = (ABC, BCD, CE, DE).

rN
-

Figure 13.21

We say the Graham reduction succeeds on hypergraph H if the result of
applying the Graham reduction algorithm to W is the empty hypergraph, as
for R, above.

13.3.2 Finding Join Trees

In this section we assume the reader is familiar with algorithms for finding
minimum-weight spanning trees of undirected graphs with weighted edges.
We shall actually be interested in finding maximum-weight spanning trees.
Since all spanning trees for a graph have the same number of edges, an
algorithm for finding a minimum-weight spanning tree can be converted to
an algorithm for maximum-weight spanning trees by negating edge weights.

For the following definitions we assume a database scheme R = (RI, RZ,
,.., R, } over U and an intersection graph G for R.

Definition 13.20 For attribute A E U, the class of A, denoted CLA.SS(A), is
{&/A E&and&CR}. TheweightofA, denoted VT(A), is ~CLA.SS(A)~ - 1.
The weight of R, WT(R), is

c VT’(A).
AEU

:

458 Acyclic Database Schemes

Definition 13.21 The weight of A in G, denoted WT(A,G) is the number of
edges in G that contain A in their labels. The weight of G, denoted WT(G), is

c WT(A,G).
AeU

Defiition 13.22 For an edge e in G, the weight of e, denoted WT(e), is
IL(e) 1. Observe that WT(G) could also be computed as

C WT(e)
eCG

Example 13.24 Let G be the join graph in Figure 13.22 for the database
scheme R = {ABC, BD, CDE, DEI, UK}. For R,

WI?(A) = 0 WT(E) = 1
WT(B) = 1 WT(I) = 1
WT(C) = 1 WTQ = 0
WT(D) = 2 WT(K) = 0

and so WT(R) = 6. For G,

Figure 13.22

Equivalence of Conditions 459

WT(A,G) = 0 WT(E,G) = 1
WT(B,G) = 1 WT(I,G) = 1
WT(C,G) = 1 WT(J,G) = 0
WT(D,G) = 2 WT(K,G) = 0

and so WT(G) = 6.

Theorem 13.1 If a database scheme R = {R 1, R2, . . . , R, 1 has a join tree
G, then any maximum-weight (edge weight) spanning tree for In is a join
tree. Furthermore, G is a maximum-weight spanning tree for 1, and
WT(G) = WT(R).

Proof First, we show that in G, WT(A) must equal WT(A,G) for any at-
tribute A. There are WT(A) -t 1 nodes in G that contain A. It requires at
least WT(A) edges to construct A-paths between every pair. Hence,
WT(A,G) z MT(A). Any edge e with A E L(e) must connect elements of
CLASS(A). If G contained more than WT(A) edges with A in their label,
those edges would form a cycle among some set of the nodes in CLASS(A).
Hence WT(A,G) 5 WT(A), so WT(A,G) = WT(A). It follows that
WT(G) = WT(R).

G is a spanning tree for I n. Suppose there is another spanning tree G’ for
In with weight greater than G. There must be an attribute A with WT(A, G) <
WT(A,G ‘). By the remarks in the last paragraph, G ’ must contain a cycle
among some nodes in CLASS(A), contradicting the choice of G ‘. G must be
a maximum-weight spanning tree.

Finally, let G’ be any maximum-weight spanning tree of In. By previous
arguments, for any attribute A, WT(A) = WT(A,G) = WT(A,G’). Since
G ’ is a tree, and there are WT(A) edges with A in their label in G ‘, any two
members of CLASS(A) must be connected by an A-path in G ‘. Hence G ’ is
a join tree.

Theorem 13.1 gives a reasonably efficient test for the existence of join trees
for a database scheme R. Find In (only edges with non-empty labels are
necessary) and then find a maximum-weight spanning tree G for In. If G is a
join tree, then, obviously, R has a join tree. If G is not a join tree, then R has
no such tree.

Example 13.25 Figure 13.18 shows a maximum-weight spanning tree G for
IR, where R = {ABC, BD, CDE, DEl, UK 1, G is not a join tree, so R has
no join tree, as was noted before.

460 Acyclic Database Schemes

Example 13.26 Figure 13.19 shows a maximum-weight spanning tree G for
I*,, where R, = {ABC, BCR, CDE >. As noted before, G is a join tree for R,.

13.3.3 The Equivalence Theorem for Acyclic Database Schemes

Theorem 13.2 Let R be a connected database scheme. The following condi-
tions are equivalent:

1. R is acyclic
2. Graham reduction succeeds on R.
3. R has a join tree.
4. R has a full reducer.
5. PC implies TC for R.
6. R has the running intersection property.
7. R has the increasing join property.
8. RED(R) is a unique 4NF decomposition.
9. The maximum weight spanning tree for In is a join tree.

10. MVD(R) I= *[RI.

Proof The proof will proceed via a series of lemmas. The equivalence of 3
and 9 was established in Theorem 13.1. The method for the rest of the
equivalence is 1 * 2 =,3j44S511,3~6=,7~5,8r=,1,3j10.
The implication of any other condition by 10 is left as Exercise 13.36. The
lemmas for these implications are shown in Figure 13.23.

Lemma13.2 If R = (R,,R*, . . ., R, } is an acyclic database scheme, then
Graham reduction succeeds on R.

The proof of Lemma 13.2 proceeds through four propositions. The first
two show that the Graham reduction algorithm neither creates nor destroys
blocks. The second two show that one of the two removal rules is always ap-
plicable to an acyclic hypergraph.

Proposition 13.1 The Graham reduction algorithm preserves blocks.

Proof Let H = (52, E) be a hypergraph such that Hnt is a block for some
312 c X. Let H ’ be obtained from H by one application of rE (edge removal).
Hm must be the same as H& because reduction is applied in forming an in-
duced hypergraph. If E C F is the edge removed, then E fl %! 5 P n 3n, so
E makes no contribution to Hnt.

Equivalence of Conditiins 461

Lm 13.0

Lm

9

t

Th 13.

m 13.6
’ - - ’

10 Lm 13.2

Ex 13.36

Figure 13.23

Suppose now that rule rN (node removal) was used on node A to obtain H ‘.
If A e 5X, and Hx is a block, then so is H 6. IPA E ‘JX, andHmisablock, we
must show Hjn-* is a block. If I; = El n E2 is an articulation set of H&-A,
then it must also be an articulation set of Hnt. El or Ez could be augmented
by A in HEm, but not both, since A appears in at most one edge of H. It follows
F is the intersection of edges in Hx. If removing F disconnects H&-*, it will
also disconnect HM, since A cannot contribute to connectivity. We conclude
that if H does not have an articulation set, neither does Hm.

Application of either rE or rN preserves blocks, so Graham reduction
preserves blocks.

Proposition 13.2 Graham reduction does not introduce blocks.

Proof Let H = (En, G) be a hypergraph. As noted in the last proof, if H ’ is
obtained from H by rE, then Hm = H& for any 9X c 3t. Hence, rE cannot
introduce blocks.

Suppose H ’ is obtained from H by removing node A according to rN. Sup-
pose Hm has an articulation set while HC;npA is a block. HmdA = H&-A, so
H had a block to begin with. Since neither rE nor rN introduce blocks,
Graham reduction does not introduce blocks.

462 Acyck Database Schemes

If F is an articulation set of hypergraph H = (%,&), we say it: splits H into
subhypergraphs HI, Hz, . . . , Hk if each Hi is one of the connected com-
ponents in Hx-~ with its partial edges augmented back to full edges by the
addition of nodes from F. Note that HI, Hz, . . . , Hit share no edges.

Example 13.27 BC is an articulation set for H = (ABCDEIJ, {ABC,
BCD, BEI, CEJ}). BC splits H into

HI = (ABC, {ABC)),
Hi = (BCD, {BCD I), and
H3 = (BCEIJ, (BEI, CEJ)).

Proposition 13.3 Let H = (92, E) be an acyclic hypergraph where 1 El 1 2
and such that H is connected. H has an articulation set P that splits H into
subhypergraphs Hi, HZ, . . . , Hk where each Hi contains an edge Ei with
F E Ei. It follows that each Hi is a closed subhypergraph of H.

Proof Let H be an acyclic hypergraph with fewest nodes that violates the
lemma. Let I; = El n E2 be any articulation set of H that does not properly
contain another articulation set. Let F split H into subhypergraphs HI, Hz,
. . a, Hk. Suppose, without loss of generality, that HI = (37r, El) contains no
edge containing F. Form a subhypergraph H’ of H where H’ = (‘Z1 U El,
& U (El 1). Any edge outside H’ that intersects X1 U El must do so within
El, so H ’ is closed with respect to H. It follows that H ’ is the (‘Xi U El)-
induced hypergraph for H.

Since H is acyclic, and H’ is node-induced, H’ must be acyclic (see Exer-
cise 13.27). H ’ is smaller than H, so it has an articulation set F’ = E3 n E4
that splits H’ into subhypergraphs Hi, Hi, . . . , HA such that every H;‘con-
tains an edge containing F ‘. We claim that F’ is an articulation set for all of
H. Let Hi be the subhypergraph of H ’ containing El. If any edge E of H out-
side of H ’ touches Hi, Hj, . . . , HL outside of El, P could not have split off
H, in the first place.

We further claim that F’ splits H into Hi’, H& Hi, . . . , HA, where Hi’ is
Hi plus all the nodes and edges from Hz, H3, . . . , Hk. That is, Hf’ is Hi plus
all of H outside of HI. Certainly, F’ splits Hi, Hi, . . . , HA from H. Can F’
split the rest of H into more than one subhypergraph? All of Hz, H3, . . . , Hk
touch Hi, since they all touch El in Hi. Consider F’ relative to F. If F’ 2 F,
then both E3 and E4 contain F, and HI would have had an edge containing F.

Equivalence of Conditions 443

We must have that P’ r\ El ‘$ F. F’ fl El disconnects part of H outside of
H,, and P’ n El = E3 fl El or E4 n El, contradicting the minimality of F.

We have shown that if F does not meet the requirements of the lemma,
then F ’ does, because each of Hi’, Hi, . . . , HA contain an edge containing F ‘.

Definition 13.23 An edge 6 in hypergraph H is a knob if E contains at least
one node contained in no other edge of H. Such a node is called a solitary
node.

Example 13.28 In the hypergraph H1 = (ABCDE, {ABC, BCD, CDE}),
both ABC and CDE are knobs. A and E are solitary nodes. The hypergraph
H2 = (ABCDE, {ABC, BCD, CDE, ADE}) has no knobs.

Proposition 13.4 Any reduced, acyclic hypergraph H with two or more
edges has at least two knobs.

Proof The proposition is clearly true for any reduced, acyclic hypergraph
H = (X, 8) where 181 = 2. Assume the proposition holds when J&J = k - 1
and consider the case where I&l = k. Let F be an articulation set of H as
guaranteed in Proposition 13.3. Let F split H into HI, Hz, , . . , Hk. Each Hi
is closed with respect to H, hence node-induced, hence acyclic. Since Hi con-
tains only edges from H, it is reduced.

Consider HI. If HI has more than one edge, then, by induction, it has two
knobs. Since some edge El in HI contains F, at most one knob of H, can have
all its solitary nodes contained in F. The other knob cannot intersect HZ, H3,
. . ., HR outside of F, or else F would not have split off HI. Thus, the other
knob is a knob for H. If H, is a single edge, that edge is a knob for H.

Since the same argument holds for Hz, H has two knobs.

Proof of Lemma 13.2 By Proposition 13.2, Graham reduction preserves
acyclicity. At any point in Graham reduction of an acyclic hypergraph H, if
H is not reduced, rE can be applied. If the intermediate result is reduced,
Proposition 13.4 holds, or we are down to a single edge, so rN can be used to
remove a solitary node. Since in Graham reduction, an application of a
removal rule reduces the number of nodes or edges, the algorithm must even-
tually succeed in reducing H to the empty hypergraph.

Graham reduction cannot succeed on a cyclic hypergraph H. H must have
at least three edges. If Graham reduction succeeded on H, there must have
been an intermediate result with just two edges, which must therefore have
been acyclic. Such an intermediate result contradicts Proposition 13.1.

464 Acyclic Database Schemes

Lemma 13.3 If Graham reduction succeeds on the hypergraph for a con-
nected database scheme R, then R has a join tree.

Proof L&R = {RI, R2, R, }. Running Graham reduction on R will
never disconnect R. We build a join tree G for R as follows. Let REMj(R;) be
what remains of Ri before the jth step of the reduction. If thejth step applies
rE to remove REit,Zj(Ri) because it is contained in REMj(R& add edge (Ri,
Rk) to G with label Ri fl Rk.

The resulting graph G is clearIy an intersection graph. G can have no
cycles. Each node R; in G is connected to at most one node RR in G such that
the remainder of Rk was removed after the remainder of Ri. Any cycle must
contain an Ri connected to two nodes whose remainders were removed after
the remainder of Ri in Graham reduction. G is a tree by the connectivity
remark above.

Is G a join graph? Suppose not. Renumber the schemes in R so that there
is an attribute A E RI rl R2 but there is no A-path from RI to R2 in G.
Assume further that RI and R-J were chosen so as to minimize the distance
between them in the tree G. Finally, assume the remainder of RI was re-
moved before the remainder of R2. At some stepj, we must have REMj(Ri) C
REMj(Rk), where R2 # R,. REMj(R,) is non-empty when REMj(R1) is
removed. A E ~~j(R,) n REA4j(R2), because it could not have been a
solitary node while the remainders of RI and R2 are both non-empty.
Therefore, A f REMj(Rk). Pick a node of G as a root and orient G such that
the remainder of any child node was removed before the remainder of its
parent. In this orientation of G, Rk is the parent of RI.

Rx cannot be in the subtree of G headed by RI. The path from RI to R2
must go through R k. There is a shorter path from Rk to R2 than from R 1 to Rz.
Since A E R2 fl RR, and by the minimum distance assumption for RI and R2,
there is an A-path from Rk to R2 in G. The edge (RI, Rk) has A in its label.
We conclude there is an A-path from R 1 to RZ, a contradiction. G must be a
join graph, and hence a join tree for R.

Lemma 13.4 Let R be a connected database scheme. If R has a join tree,
then R has a full-reducer.

Before proceeding with the proof of Lemma 13.4, we need some notation.
If R = {RI,R2, . . ., R, } is a connected database scheme, and G is a join

tree for R, let Gi represent G considered as an oriented tree with root Rip 1 5
i I p, Let d = { rl(R1), rZ(R2), . . ., I-JR,)} be a database over R. Consider a
semijoin program SP = sj,, sj,, . . . , sj, over d. Letj be a number between 1
and k. SPj denotes the prefix sj,, sj,, . . . , Sjj of SP, which itself is a semijoin

Equivalence of Conditions 465

program. SF0 is the semijoin program with no steps. For RP E R, j is a com-
pletion point for RP in SP relative to Gi if

1. for every child R of RI in Gi, if r is the relation on R and rp is the rela-
tion OII re, SPj contains a step Ye + Ye DC r, and

2. for noj ’ < j does condition 1 hold.

That is, the completion point for RP is the step in SP at which the relation for
RP has been semijoined with all the relations for children of Rp If j is the com-
pletion point (should one exist) for RP in SP relative to Gi, we write CPi(Rf) = j.
If Rp has no completion point in SP relative to Gi, we let CPi(Rf) be unde-
fined. If Rt is a leaf of Gi, let CPi(Re) = 0.

Example 13.29 Let R = {R1,R2,R3,R4,R~} be a database scheme where

R, = ABC R3 = CDE R5=DJ.
R2 = BCD R4 = DI

Figure 13.24 contains a join tree G for R, which is oriented to be Gz. Let ~1,
r2, r3, r4, and r5 be relations on R1, Rx, R3, R4, and Rg, respectively. For the
semijoin program SP =

1. r3+r3!Xr4
2. r3*r3Kr5
3. 7-2 + r2 DC r-1
4. r2 i- r2 Ix r-3

CPz(R3) = 2 and CPl(R2) = 4. If we consider SP relative to Ga, shown in
Figure 13.25, CP3(R3) is undefined, since r3 + r3 DCC r2 does not occur in SP.

The semijoin program SP is complete for R relative to Gi if

1. CPi(Re) is defined for every RP e R, and
2. if R is a child of R, in Gi, then CP,(R) < CP,(R!).

That is, by step CPi(RS in SP, the relation for Rp, has been semijoined with
the relations for all its children, whose relations, in turn, have been semijoin-
ed with the relations for all their children, and so forth.

Example 13.30 Let R and SP be as in Example 13.29. SP is complete for R
relative to G2, but not relative to Gl, Ga, or Gq.

For each Gi, there is at least one complete semijoin program for R. For ex-
ample, do a postorder traversal of Gi and when a node is visited, a semijoin of
the relation for the parent of the node with the relation for the node is added

466 Acyclic Database Schemes

Figure 13.25

to the semijoin program. For each i, 1 I i I p, let SP(i) denote a minimal-
length, complete semijoin program for R relative to Gi.

Example 13.31 Let R and SP be as in Example 13.29. If we use a postorder
traversal of G2, we get a complete semijoin program for R, SP(2) =

Equivalence of Conditions 467

1. Q+QD<Yl

2. rj + r3 D< r4
3. r3 +- r3 D< i-5
4. r2 + r2 D< r3.

SP(2) is minimal-length.

Finally, some notation for the oriented trees G1, G2, . . . , GP. For & E R,
TREE, is the set of schemes in the subtree of Gi headed by Re. Note that
TREE;(Ri) = R. The extended scheme of Rg in Gi, EXi(Rf), is defined as

EXi(R,) = U (RjlRj E TREEi(R

That is, EXj(R,) is R! union all its descendents in Gi.

Proposition 13.5 Let R = {RI, R2, . . . , R,) be a connected database

scheme and Iet G be a join tree for R. Let d = jrl(R1), r2(RZ), . . . , rp(Rp)}
be a database on R. If SP is a complete semijoin program for R relative to Gj,
then SP(ri,d) = FR(ri,d).

Proof We prove a slightly stronger result. For R, E R, let dp be the sub-
database of d on the schemes in TREE,(R,). Let 4 = CPi(Re). We show that
SP,(r!,d) 5 FR(rl,df). That is, at the completion point for RP in SP, rp is
fully reduced relative to the relations for schemes in TREES. Further-
more, for every tuple tp E SP,(re,d), there is a tuple up E W dgsuch that up(Re)
= tp Note that the scheme for up is EXi(Re).

If RI is a leaf, the containment holds, for rp is fully reduced with respect to
itself with no semijoins being applied. That is

Also wd, = rp, so for any tuple tp in rp, W dp contains a tuple uef =tp) such
that Up(Rp) = tp

Suppose now that RP is an interior node in Gi, with q = CP;(Re) in SP. For
notational convenience, assume R 1, R2, . . . , R, are the children of Rl in Gi.
We inductively assume the result holds for all of RI, R2, . . . , R,. Since SP is
complete relative to Gi, CPi(Rj) < q for 1 I j 5 m. At some point in SP,, rj
was fully reduced relative to dj. Furthermore, at that point, for every tuple
tj f tj, there is a tuple uj E w dj with Uj(Rj) = tj. Can these properties be
changed by semijoins subsequent to CPi(Rj)? No. The only semijoins to worry
about are those involving relations in dj. Any semijoin that removes tuples

468 Acyclic Database Schemes

from rj will not change the properties. Any semijoins that remove tuples from
other relations in dj must involve only relations in dj, which cannot remove
tuples used in Wdjs (Why?)

Let tc be a tuple in SPq(rp,d). We must exhibit a tuple U(in wdp such that
uAR,) = tp Since 4 is the completion point for Rp, rp has been semijoined
with all of rl, r2, . . ., rm in SP,. Each rj, 1 5 j 5 m must contain a tuple tj
that joins with tp. (Again, semijoins subsequent to rp + rp D< rj cannot
change this fact.) In turn, for each tj, wdj contains a tuple uj with uj(Rj> = tj.
WecIaimwecanformupbytlWul ~24~~ ... MU,.

We must show that te, u 1, u2, . . . , U, are joinable. To show that tp joins
with U+ 1 5 j I m, we show that RI fl AXE E Rj. Note that EXi(Rj) is
the scheme of Uj. If A E EXi(Rj), then A E R for some R E TREE,(Rj). If A E R,
then there is an A-path from R to RP in Gi. This path necessarily passes
through Rj, SO A E Rj. A similar argument shows that for 1 I j, < j, I m,
Rf 1 EXi<Rjl) fJ EXi(Rj,), SO Ujl and Ujz only overlap in Rp. Since Ujl and Uj2
both agree with tp on R, they agree with each other. Since tp, tilt u2, . . . , U,
agree pairwise, they are joinable (see Exercise 13.3). If up is the result of join-
ing h, ulr u2, . . . , u,, obviously up(Rp) = tp. We conclude SP,(rp,d) 5
FRh,dph

TO conclude, we have, in particular, that SP(r;,d) = SP(ri,d;) E
FR(ri,d). Since it is always the case that SP(r;,d) 2 FR(r;,d), we have
SP(ri,d) = FR(r;,d),

Proof of Lemma 13.4 Let G be a join tree for R = {RI, R2, . . . , R, >. Let
P(1) be a minimal length, complete semijoin program for R relative to G1.
Let D’(l) be the semijoin program obtained from SP(1) by reversing the
order of the steps and changing each step ri + ri D< rj to rj + rj D< ri. We
leave it to the reader to show that the semijoin program SP equal to SP(1)
followed by D(l) is complete for R relative to any G,, 1 I &? 5 p (see Exercise
13.28). Note that SP has 2p - 2 steps; this number is necessary (see Exercise
13.29). By Proposition 13.5, SP(rf,d) = FR(r,,d), 1 I e I p, so SP is a full-
reducer for R.

Lemma 13.5 Let R be a connected database scheme. If R has a full reducer
SP, then PC implies TC for R.

Proof We show the contrapositive. Let d be a database on R that is PC but
not TC. Any semijoin program SP for R leaves d unchanged, so SP cannot be
a full reducer for R.

Equivalence of Conditions 469

For the next lemma, we need some additional concepts for hypergraphs.
Let H = (%, I) he a connected hypergraph. An edge F in E is a bottleneck
for H if & - {I;} can be partitioned into two non-empty sets El and E2 such
that for any El E El and E2 E E2, El fl E2 c F. Removal of the nodes in F
would disconnect H. Also, if El, E2, . . . , Ek is a path in H from El in G1 to
EK in E2, then for some i, 1 5 i < k, Ei fJ Ei+l S F. Therefore, for an edge
F not to be a bottleneck, every pair of edges in & - IF’> must be connected
by a path that avoids Fz no two consecutive edges in the path have an in-
tersection that lies entirely within F.

Figure 13.26

If F is a bottleneck to H relative to the sets El and E2, then the hypergraphs
defined by El U {F} and E2 U (8’) must be closed relative to H. Moreover,
if H is cyclic, at least one of &i U (F} and E2 U {F > is cyclic (see Exercise
13.30).

Lemma 13.6 Let R be a connected database scheme. If PC implies TC for
R, then R is acyclic.

Proof We show the contrapositive: If R is cyclic then there exists a PC
database d on R that is not TC. Let R = {R i, R2, . . . , R, f be a smallest
counterexample to the contrapositive. R is cyclic, but every PC database d on
R is TC. Let p be minimum among all such counterexamples, and let the
number of attributes in R be minimum relative to p. Graham reduction
leaves R unchanged. If Graham reduction changed R to R ‘, then R ’ is
smaller than R in attributes or schemes, and is not a counterexample. R’
thus has a PC database d ’ that is not TC. Database d ’ can be extended to a
database d on R that is not TC, by Exercise 13.31.

470 Acyclic Database Schemes

Considering R as a hypergraph, since Graham reduction does not apply,
no edge of R contains a solitary node, nor is that edge contained in another
edge. R cannot contain a bottleneck. Suppose Rj is a bottleneck, and, for
notational convenience, (RI, Rz, . . . , Rjwl > and (Ri+l, Ri+z, . . . , RP) are
two sets of edges that Rj separates. Both R1 = (RI, RZ, . . , , Ri > and R2 =
(Ri, &+I, . . . , R,) must define closed subhypergraphs of R, at least one of
which is cyclic. Say RI is cyclic. R1 is smaller than R in number of schemes,
so there is a database di on R, that is PC and not TC. Database dr can be ex-
tended into a PC database d on R by adding relations on Ri+l, Ri+*, . . . , R,
(see Exercise 13.32). Database d is not TC. (Why?) We have a contradiction
to the definition of R, so R must have no bottleneck.

We are now ready to construct a database on R that is PC but not TC. Let
AI, A29 . . . , A,, be the attributes in R ,, and let A,+ 1, An+2, . . . , A, be the
rest of the attributes in R. We construct a relation r(A1 AZ . . * A4) with it
tuples tl, t2, . . . , t,, defined as

Figure 13.27 shows relation r.

r(A1 AZ m. a Ai -*a A, A,+, An+2 .** As)

tl 1 0 . ..o . ..o 1 1 . . . 1
t2 0 1 . ..o . ..o 2 2 . . . 2

.

ti 0 0 . ..l . ..O i i . ..i

t,O 0 . ..O ..I1 IZ n . ..n

Figure 13.27

Let q = xRj(r) for 1 s i I p. We claim that 12 w r3 w . . . w rp = r.
Any two schemes in { R2, R3, . . . , R, } are connected by a path that avoids R 1,
since RI is not a bottleneck. Hence, any tuple t E r2 w r3 w - . . w rr must
have the same value on each ofA,+,, An+Z, . . . , A,. Suppose the value of t is i
on all of these attributes. We show that t = ti. Consider any scheme Rj, 2 I j
i p, that contains one or more attributes from among Al, AZ, . . . , A,. Since
RI 2 Rj,RjalsocontainsatieastoneattibutefromamongA,+i,An+2, . ..,Aq,
say At. If Uj is the tuple from rj that contributed to t, then uj(A) = i. It
must be that Uj = t&Rj). We conclude that t agrees with ti wherever t is de-

Equivalence of Conditions 471

fined. Since no attribute in R i is solitary, t must be defied on all ofAl AZ . a . A,.
We see that r 2 r2 w r3 w - e - w rp. The other containment is a direct
property of project-join mappings, so I = ~2 W r3 W - - - W rp.

Since rl, r2, . . . , rp are all projections of the same relation, they are TC and
hencePC.Lctsl=ri U{(OO... 0) }. That is, s1 is rl plus the tuple of all 0’s.
We claim that s,, 12, r3, . . . , rp are PC. For each Rj, 2 I j I p,

since S1 n Sj # Sj+ The projection, in both cases, contains the tuple of all o’s
plus every tuple with one 1 and O’s elsewhere. Thus, s1 is consistent with each
ofr29y3, -.*,rp, which are already known to be consistent among themselves.

The database d = { sl, 12, r3, . . . , rp } is a PC database on R. However, d
cannot be TC, since r2 w r3 W . - - w rp = r and s1 and r do not join com-
pletely. R cannot be a counterexample, and the lemma is proved.

Lemma 13.7 Let R be a connected database scheme. If R has a join tree
then R has the running intersection property.

Proof Let R = {RI, R2, . . . , R,) and let G be a join tree for R. Assume RI,
R2, . . ., R, are in preorder according to G1. It follows that if Rj is an
ancestor of RK in Gi, then j < k. Consider any Ri for 2 5 i I p. One of RI,
R2, -.., Ri-1 is the parent of Ri in G 1. Let it be Rje None of R 1, R2, . . . ,
Ri-1 is a descendent of Ri. Let A be any attribute in (RI R2 . * a Rim1) fl Ri.
There must be an A-path from Ri to one of RI, R2, . . ., Ri-1, and this
A-path necessarily passes through Rj. Hence Rj 2 (RI R2 es* Ri-1) n Ri
and so R has the running intersection property.

Lemma 13.8 Let R be a connected database scheme. If R has the running
intersection property then R has the increasing join property.

Proof LetRl,R2, R, be an ordering of the schemes in R such that for
2 5 i rp,(R,R2 . - - R,-l) fl Ri E Ri for some 1 I j < i. Let d = { rl(R1),
~(R2h . . ., rp(Rp)) be a PC database on R. Let JP be the join plan cor-
responding to the parenthesized join expression

472 Acyclic Database Schemes

We show inductively that

which means pi, ~2, . . . , ri are TC.
The basis is immediate. Since rl and r2 are consistent, rRI(rl w r2) = r1

and xK2(r1 w r2) = r2. Suppose the hypotheses are true for i - 1. Consider
ri. Let Rj be a scheme such that j < i

Rj 2 (RI R2 -. - RipI) fl Ri = S.

Since 7rITRj(rl W r2 W * * * w riel) = rj, it follows that rs(rl w r2 w * - * w

rimI) = xs(rj). Since ri is consistent with rj, ri joins completely with ns(rj) and
hence with rl w r-2 w . . . w ridI. Since rl, r2, . . . , ri-1 join completely, so
do rl, r-2, . . . , r;. It follows that

7rRi(r1 W r2 W - * * W ri) = ri

and, more generally, that

7rRj(rl W f-2 W - - - W ri) = rj, for 1 I j 5 i.

Since the joins

rl W r2 W -. - W ri for 2 5 i 5 p

are exactly the joins corresponding to the interior nodes of join plan JP, we
see that JP is a monotone join plan. Thus, R has the increasing join property.

Iemma 13.9 Let R be a connected database scheme. If R has the increasing
join property, then PC implies TC for databases for R.

Proof Let JP be a monotone join plan for R and let d be a PC database on
R. JP gives a method to join all the relations in d such that no tuples are lost
along the way. Therefore, d is TC.

Lemma 13.10 Let R be a connected database scheme. If R has a join tree,
then MVZl(R) I= *[RI.

Prwf I.&R= (R1,R2, R,) and let G be a join tree for R. Recall that
G1 is G viewed as an oriented tree with RI as the root. Choose any Ri, 2 5

Equivalence of Conditions 473

i I p, and let Rj be its parent in G 1. Let S; = EXI(R;). That is, Si is the
union of all the schemes in the subtree headed by Ri. Let Sj be the union of
all the rest of the schemes in R. We claim Sj n Sj = Ri n Rjs

Si n Sj 2 Ri n Rj is immediate because Si 2 Ri and Sj 2 Rje TO see the
other inclusion, the presence of any A in Si fl Sj implies an A-path through
Ri and Rj, SO that A E Ri 17 Rje We thus have the equality.

From the remarks after Lemma 13.1, we now know that *[R] t= *[Si, Sj].
In MVD notation, *[Si, Sj] is Ri f3 Rj tf Si]Sj. We use G1 as a plan for
chasing the tableau 2?u so as to yield the row of all distinguished variables.
We show, recursively, that for each Ri, 1 5 i 5 p, we can derive a row
that is a’s (distinguished variables) on exactly EX,(R,) in computing
chase~~(u~,(Tu). Since EX1(RI) = RI RI - - - R,, establishing this result
proves the lemma.

If Ri is a leaf in Gi, then EX1(Ri) = Rj and we have a row distinguished
exactly on Ri in 7’u initially. If Ri is an interior node in Gr, let Qi, Q2, . . . ,
QR be its children. Assume that TR has been chased under MVD(R) to a
tableau TI; that has a row wj distinguished on EXI(Qj) for 1 5 j I k. Let v
be the row that is distinguished on Ri. For each Qj, we have that Rj fl Qj
--H EXi(Qj) by the initial paragraphs of this proof. Applying Ri Cl Qj ++
EXi (Qj) to v and +vi for 1 5 j I k will transform v into the row distinguished
OII exactly Ri U EXl(QJ U EX,(QJ a-- U EXl(Qk). That is, v is dis-
tinguished EX,(R;). Note that the distinguished variables that R; (7 Qj -++
EXi(Qj) adds to v are not removed by Rj fl Q, - EXI (Q&, j f i?, since
4 2 EXl(Qj) n EXl(Qd.

We shall shortly be looking at tight decompositions of a scheme U relative
to a set of MVDs, where the set is &ND(R) for a database scheme R over U.
If (S1,S2) is a tight decomposition of U relative to MVD(R), there can be no
MVD *[S;,SJ in AND(R) such that Si Cl &is properly contained in S1 f7 S2.
Since MVD(R) E *[Si,&], *[S1,S2] must be in AND(R). Thus R can be
partitioned into RI and R2 such that UR1 = S1 and UR2 = S2. For the
proof of the next lemma, we need the following proposition.

Proposition 13.6 Let R be a reduced, connected, acyclic database scheme
over U. Suppose (S1,S2) is a tight decomposition of U relative to MVZI(R).
The set X = S, fl S2 is an articulation set for R.

Proof Let R be partitioned intoRI and R2 such that URi = S1 and UR2 = Sz.
The removal of the attributes in X surely disconnects R, so the only way X
can fail to be an articulation set is by not being the intersection of two edges
in R (treating R as a hypergraph).

474 Acyclic Database Schemes

Assume that RI has no edge containing X. We assume that every pair of
edges in RI is connected by a path in RI that avoids X. If not, pick an edge R
in RI. Move all the edges in RI that are not connected to R, by a path that
avoids X, to R2. By the minimality of St (7 Sz, the movement of these edges
preserves the property that (UR& n (URz) = X.

We show a contradiction by showing that Graham reduction can never
succeed on R. In particular, we show that the nodes in X never get removed.
Initially, any,4 f X is contained in an edge from RI and an edge from R2, so
it is not solitary. We show that Graham reduction preserves this property.

First we look at Ri. Let Y1, Y2, . . , , Y, be the maximal intersections of
edges in RI with X. That is, for each Yi, 1 CC i 5 m, RI contains an edge Ri
such that Ri Cl X = Yi and for no other edge Rj E Ri does Rj fi X properly
contain Ri n X. For each Yi, 1 I i 5 m, there is a Yj, i # j, with edges
Ri 2 Yi and Rj 2 Yj in RI such that Ri and Rj are connected by a path that
avoidsx. Let the path be Ri = S1, Sz, . . . , Sk = Rj. Node removal preserves
this path, since no node in the intersection of successive edges can be solitary,
and none of the nodes in Yi or Yj is solitary. If some edge St in Si, Sl, . . . , Sk
is removed because it is contained in another edge Q, Q must be in RI, since
S, contains a node not in X. If Q is nut in the path, replace S, by Q in the
path. All the properties of the path are preserved. If Q is already in the path,
remove the portion of the path from Se to Q. Q cannot contain both S1(=Rl)
and S,(=Rj) by the maximality of Yi and Yj. In this case also, all the prop-
erties of the path are preserved.

Thus, at every point in Graham reductions, Yi is contained by an edge
Ri C_ RI, and every node in X is contained in some Yi, 1 5 i I m.

Consider the maxima1 intersections Zi, Z,, . . . , Z, of edges in Rz with X.
IfforsomeZi,l <i<n,thereisaZj,i#j,withedgesRi2ZiandRjzZj
with Ri and Rj connected by a path in R2 that avoidsX, then there will always
be an edge in Rz containing Zi, by the argument above. If there is no such
path, consider any R; 2 Zi in Rz. If Rj had nodes outside of X, then { Rj} and
R - {R,} could have been used to form a decomposition of U that was
“tighter” than (Si,S2). Hence Ri s X, and SO Ri = Zi. Ri cannot be con-
tained in any other edge in R, since R is reduced. Further, every node in Ri is
contained in some edge of RI, so RI can never be reduced by node removal.

In either case, there is always an edge Ri in R2 containing Zi during
Graham reduction. Since every node in X is in some Yi, 1 5 i 5 m, and
some Zj, 1 I j I n, during Graham reduction, Graham reduction fails on
R, a contradiction. Both RI and R2 must contain edges containing X, so X is
an articulation set.

Lemma 13.11 Let R be a reduced, connected, acyclic database scheme. R is
a unique 4NF decomposition.

Equivalence of Conditions 475

Proof Let R = {RI, RZ, . . . , R, > and let U = RI R2 . - - R,. We show that
R is a unique decomposition for U under MVLl(R). We need only consider
the case where p 1 2. Since R must have articulation sets, there must be
MVDs in MVD(R) that can be used to decompose U. By the discussion
before Proposition 13.6, if (S1,Sz) is a tight decomposition of U relative to
MID(R), then R can be partitioned into RI and R2 with UR1 = S1 and
UR2 = Sz. By Proposition 13.6, each of RI and R2 includes an edge that
contains S1 Cl Sz. Thus, RI and R2 are closed relative to R.

Let Mi be the set of MVDs that MVD(R) induces on Si, 1 I i I 2. We
claim that Mi is equivalent to MVD(Ri). This claim is sufficient to prove the
lemma. Since RI and R2 are closed relative to R, they are both reduced, con-
nected, and acyclic. Every R E R is in either S, or &. If we inductively assume
that RI is a unique decomposition for S1 relative to MVD(R,), and R2 is a
unique decomposition for $2 relative to MVD(R2), then the claim allows us to
conclude that R is a unique decomposition of U relative to MVD(R).

Consider S1 and RI. The claim follows from comparing chasing tableaux

on Sr under MVD(R,) and chasing tableaux on U under MVD(R). For a
tableau T over Si, let T extended to U, denoted TU, be obtained by padding
each row in T with new nondistinguished variables on U - S1. If w is a row in
T, let w” be the corresponding row in T”.

Suppose we are testing whether some MVD on S, is implied by *[RI]. Let
T be the tableau for the MVD. Whatever changes made to T using *[RI] can
be mimicked on T” using *[RI in such a way that T” restricted to S, equals
T. Suppose RI = {RI, R2, . . . , Rq) and R2 = {R,+l, R,+z, . . ., Rp}. Sup-
pose the J-rule for *[RI] is used on rows wl, w2, . . . , wq in T to yield row v.
For convenience, assume R, is an edge in RI containing S1 fl Sz. We can ap-
ply *[RI to rows WY, WY, . . . , WY, WY, . . . , w$’ to yield a row vu such that
vU(Sr) = v. Therefore, if we ever arrive at the row of all distinguished
variables in T, there is a row in T” that is distinguished on Si. Hence, any
MVD on Si implied by *[RI] is an embedded MVD on U implied by *[RI.
That is, the MVD is in M,, SO MVD(RI) c M,.

To show the other containment, we use the following property of the chase.
If the chase of a tableau is being computed under a single JD, then any row
derived during the chase can be derived directly from the original rows in the
tableau (see Exercise 13.33). Suppose we use the chase on a tableau T over U
to show that *CR] implies an MVD embedded in Si. The chase must have
produced a row w that was distinguished on all of Sr. That row can be pro-
duced in one step from the original rows in T, by the property of the chase
given above. It follows that if T’ is T restricted to Sl, then the row of all
distinguished variables can be produced in T’ by one application of the
J-rule for *[RI]. We conclude Ml c MVD(R1), so Ml = MVD(R1). By sym-
metry, Mz = MVD(Rz), so the claim is established and the lemma is proved.

476 Acyclic Database Schemes

For the final lemma of this chapter, we need two more propositions and
some definitions.

Proposition 13.7 Let M be a set of MVDs over U. Let R E S E U. If M im-
plies a nontrivial MVD X * Y embedded in R, then M implies some non-
trivial MVD X --t-, Z embedded in S.

Proof Left to the reader as Exercise 13.34.

The next lemma states that if R is a unique decomposition, then R is
acyclic. We shall represent tight 4NF decompositions by trees.

Definition 13.24 Let M be a set of MVDs over U. A decomposition tree for
U over M is a rooted binary tree with the following properties:

1. The nodes in G are labeled with subsets of U.
2. The root of G is labeled with U.
3. If a node labeled R has children labeled R, and RZ, then (R1,R2) is

a tight 4NF decomposition of R relative to M.
4. If R labels a leaf of G, R is in 4NF relative to M.

Clearly, if G is a decomposition tree for U under M, then the labels of the
leaves of G form a tight 4NF decomposition for U under M. If v is an interior
node in G, we let INT(v) be the intersection of the schemes of the children
of v.

Example 13.31 Let U = A B C D E and let M = {A ++ B, D --H E}.
Figure 13.28 shows a decomposition tree G for U under M. In G, INT(vr) =
A and INT(VJ = D.

/\
v2 A6 v3 ACDE

/\
v4 ACD v5 DE

Figure 13.28

Equivalence of Conditions 477

By Proposition 13.7, if v is an ancestor of w in a decomposition tree G, we
cannot have INT(v) 2 INT(w), or else the decomposition at v was not tight.
Further, the labels of nodes must be nonincreasing along every root-leaf
path. That is, if v is an ancestor of w, the label of v contains the label of w. If
x and y are nodes in G with labels R and S, but neither node is the ancestor
of the other, then R 2 S. Let z be an ancestor of both x and y. INT(z) must
contain R fl S. If R 2 S, then R n S = S. However, S 2 INT(z), and so the
decomposition at Z was trivial. It follows that no two leaves in G can be
labeled with the same scheme.

Lemma 13.12 Let R be a connected database scheme. If R is a unique
decomposition, then R is acyclic.

Proof We show that no cyclic database scheme can be a unique decomposi-
tion. First consider the case where R consists of a single block. Suppose R is
a unique decomposition for U under a set M of MVDs. Let G be a decom-
position tree for U under M. Consider an interior node v of G at one level up
from the leaves. Let R be the label of the left child of v and S be the label of
the right child, with INT(v) = Y fl Z = X. Both Y and Z are schemes from
R, since they label leaves of G. By Proposition 13.7, there must be some non-
trivial MVD X ’ ++ W on U implied by M with X’ z X. Assume that no
nontrivial MVD on U implied by M has a left side contained in X’.

Construct another decomposition tree G ’ for U under M by usingX ’ --H W
to decompose U at the first step. The other decompositions in G’ are ar-
bitrary. Since R is a unique decomposition relative to M, the labels on leaves
of G ’ are the same as G, namely, all the schemes in R. Let R1 be all the
labels of leaves in the left subtree of the root. Let R2 be the corresponding set
for the right subtree. RI and R2 are disjoint by the remarks before this lem-
ma. The removal of X ’ separates RI from R2. Since Y and Z are in R, and
Y fl Z = X 2 X’, R has an articulation set. (Note that no edge may be con-
tained in X.)

The remainder of the proof is left to the reader as Exercise 13.35. The
strategy is to show that if R is cyclic and is a unique decomposition, but has
an articulation set, then a smaller counterexample to the lemma could be
found by breaking R at the articulation set.

13.3.4 Conclusions

We have seen several syntactic and operational characterizations for acyclic
schemes. The exercises present more characterizations. One interesting class

478 Acyclic Database Schemes

of questions about cyclic schemes is how they may be transformed or altered
to produce acyclic schemes. Some possibilities are merging schemes, adding
attributes to relation schemes, deleting attributes from relation schemes,
breaking the database scheme into acyclic components, and adding new rela-
tion schemes. Unfortunately, most of these modifications are NP-complete if
the minimum modification is sought. Another area for further work is how to
exploit local acyclicity in a database scheme that is globally cyclic. Also,
much work is going on in determining how data dependencies ameliorate the
effects of cyclicity.

13.4 EXERCISES

13.1 Consider the database scheme R, = {ABC, BCE, CDE}. Give a
database d(R,) = {rl(ABC), r2(BCD), r3(CDE)} and two full-
reducers SPi and SP2 such that SPi is beneficial to apply to d before
computing rl w r2 w r3, but S2 is not. Assume that all domain
values have a transmission cost of 1, the cost of ri D< rj is the cost of
transmitting rj’s projection on T~S scheme, and the join is to be com-
puted at the site of rl.

13.2 Can the assignment r + r K s change r if the schemes of r and s do
not intersect?

13.3 Show that a database d where every relation has a single tuple can
always be fully reduced with semijoins. (Alternatively, PC implies TC
ford.)

13.4 Let R = {R,, R,, . . ., R, } be a database scheme. Suppose *[RI I=
*]S1,S2]. Show that there is a pair of relation schemes Si’, S; such
that for some function

f: (1, 2, .*.,P> -+ (1, 2)

we have

and *[Si’,SJ I= *[S1, S,].
13.5” If R hasp schemes, how big can MVD(R) be?
13.6 For the database schemes R, and R, in Example 13.4, verify that

MKD(R,) = *[R,] while MVD(R,) I$ *[R,].
13.7* Show that if Mm(R) I= *[RI, then there is a set of MVDs M

equivalent to MVD(R) with no more elements than schemes in R.

13.8

13.9

13.10

13.11

13.12
13.13

13.14

Exercises 479

Let R be a database scheme over U. What is the time complexity of
the obvious algorithm to test if a relation r(U) satisfies *[RI? (The
obvious algorithm is computing nz&).) How fast can satisfaction of
*[RI be tested if Mm(R) E *[RI? (Use Exercise 13.7.)
Give a “non-tight” decomposition of A B C D E I under the MVDs
{BC - E, CD - I}.
Show that if R is a unique decomposition of U, then Mm(R) uni-
quely decomposes U.
Consider the database scheme R, = {ABC, BCD, CE, DE) from the
examples.
(a) Show that R, is not a unique decomposition.
(b) Show two tight 4NF database schemes for A B C D E under

MVD(R,).
Prove that if a database d is TC it must also be PC.
Show that for any n 2 3 there is a database d of it relations such that
any n - 1 relations join completely but d is not TC.
Verify that any way of computing rl w r2 w ra w r4 using pair-wise
joins for the database in Figure 13.6 gives at least one intermediate
result that is not the complete join of its child relations.

13.15* Let R be a database scheme such that for any join plan P for R there
exists a database d(R) such that P(d) is not monotone. Show that
there is a database 2 that is such that P(a) is not monotone for any
join plan for R.
Let P be the join plan of Figure 13.9 and let d be the database in
Figure 13.6. Verify that P(d) is not monotone.
Show that the database R, = (ABC, BCE, CE, DE} has no
monotone join plan.
Can a database scheme have a join plan P where P(d) is never
monotone (excluding a database of empty relations)?
Enumerate all the reduced hypergraphs on five nodes (up to
isomorphism) .
Let H be a non-reduced cyclic hypergraph and let H ’ be its reduction.
Show that H& could be a block while Hm is not, for some 3n. Can H
have no blocks at all?

13.16

13.17

13.18

13.19

13.20

13.21

13.22
13.23

Determine whether each of the following database schemes are cyclic
or acyclic.
(a) {ABC, CDE, AIE, ACE)
(b) {ABC, BCD, ACD, ABD}
(c) (AB, BD, CD, CE, DE}
Prove that a hypergraph is acyclic if and only if it is closed-acyclic.
Find join trees for the acyclic schemes in Exercise 13.21.

--

480

13.24

13.25

Acyclic Database Schemes

Show that the acyclic schemes in Exercise 13.21 have the running in-
tersection property.
Show that the hypergraph for a database scheme R consists of a
single connected component if and only if every join graph for R is
connected.

13.26
13.27

13.28

13.29”

13.30

13.31

13.32

Find a join tree for each acyclic database scheme in Exercise 13.21.
Show that if H = (3t,E) is an acyclic hypergraph, then so is Hm for
any % C 3t.
L.&R= {RI&, R, > be a connected database scheme with join
tree G. Let SF(l) be a complete semijoin program for R relative to G1.
Show that SP = SP(1); SP(1) is a complete semijoin program for
any Gp, 1 I I 5 p, where s(l) is SP(l) reversed and with each
step ri + ri D< rj changed to rj + rj D< ri.
Let R be a database scheme. Show that if R has a full reducer SP,
then SP must have at least 2. IRI - 2 steps.
Let H = (Z, E) be a cyclic hypergraph. Let I; E & be a bottleneck for
H relative to the partition &r , & of E - {F). Show that at least one of
the hypergraphs defined by Et U {F} and E2 U (F} is cyclic,
Let R be a connected database scheme and let R ’ be R after applying
Graham reduction. Show that if R’ has a PC database that is not
TC, so does R.
Let R = {R,, R2, . . . , R, > be a connected database scheme. Suppose
Ri is a bottleneck for R relative to (RI, RI, . , ., Ri-I} and (Ri+l,
Ri_tZ, - * * 7 R, }. Let d ’ be a PC database on {RI, R2, . . . , Ri}. Show
that d’ can be extended to a PC database on R by adding relations
on &+I9 &+2, - - -, R,.

13.33 Consider taking the chase of a tableau T under a single JD *[RI, R2,

13.34
13.35
13.36*

. . ., Rp]. Let w be a row at any point in the chase. Show that for any
Rip 1 5 i 5 p, there is an original row v in the chase such that w(R<)
= v(R,).
Prove Proposition 13.7.
Complete the proof of Lemma 13.12.
Show that condition 10 of Theorem 13.2 implies one of the conditions
l-9.

Definition 13.25 Let H = (X, E) be a hypergraph and let P = El, E2, . . . , E,
be a path in H. Define

E = Ei n Ej+l, 1 5 i I m.

Exercises 481

P is chordfess if there is no edge E in G that contains Fi U Fj U Fk for some
1 I i < j < k < m. That is, no edge in E contains three intersections of ad-
jacent edges in the path. P is a cycle if El = E,.

13.37 Let H be a hypergraph. Prove: H is acyclic if and only if H contains
no chordless cycles of 3 or more edges (counting the first and last
edge only once).

13.38 Give an example of an acyclic hypergraph with a cycle.
13.39” Let d be a database on scheme R = {RI, R2, . . . , R, }. Show that if a

full reducer exists for d, it must have at least 2p - 2 semijoins.

Definition 13.26 Let d be a database on scheme R. A semijoin program SP is a
maximal reducer for d if for any state of d, after applying SP to d, no semijoin
will further reduce d (although d need not be fully reduced after applying SP).

13.40* Show that if a database d on scheme R has no full reducer, then it
has no maximal reducer.

13.41 Say a join plan JP is sequential if every right child in JP is a leaf.
Show that a database scheme R has a monotone join plan if and only
if it has a monotone, sequential join plan.

Definition 13.27 Let H = (%., E) be a hypergraph. Thegraph for H, GH, is an
ordinary, undirected graph on the nodes in %. that contains an edge (A, B)
exactly when A and B are contained in a single edge of E.

Definition 13.28 Let G be an undirected graph. A clique of G is a subset of
nodes of G such that every pair of nodes in the subset forms an edge in the
graph. G is chordal if every cycle of 4 or more nodes has a chord: an edge in
G connecting non-adjacent nodes in the cycle.

Definition 13.29 Let H be a hypergraph. H is conformal if every set of
nodes nt that is a clique of GH is contained in a hyperedge of H. H is chordal
if it is conformal and GH is chordal.

13.42 Prove that a hypergraph H is acyclic if and only if it is chordal.

Recall that for a set of MVDs M and a set of attributes X, DEP(X) is the
dependency basis of X.

482 Acyclic Database. Schemes

Definition 13.30 Let M be a set of MVDs. Let X be a key of M if X is the
left side of an MVD in M. Two keys X and Yin M are conflict-free if we can
write DEP(X) and DEP(Y) as

DEP(X) = { V,,V,, . .., VR,X,,X2, . ..,Xm,Z, Y, Y, a-- Y,,}

and

DEP(Y) = {Vl,V2, V,, Yl,Y2, Yn,Z2X,X2 -*X,}

such that

1. zr x = 22 Y,
2. DEP(X) fI DEP(Y) = { VI, V,, . . . , V, }, and
3. DEP(X f-7 Y) 2 { VI, V,, . . . , V, }.

M is conflict-free if every pair of keys in M is conflict-free.

13.43 Prove that a database scheme R is acyclic if and only if *[RI is
equivalent to a conflict-free set of MVDs.

13.44” Let R be a database scheme. Recall that [.]*u is the window function
defined by total projections of *[RI-weak instances. Give an algo-
rithm to compute [Xl,, that is polynomial in the size of the database.

13.45 Let R be a cyclic database scheme.
(a) Show that R can always be transformed to an acyclic scheme by

the addition of a single relation scheme. (Don’t think too hard.)
(b) Give an aIgorithm that is polynomial in the size of R that deter-

mines the size of the smallest relation scheme that will make R
acyclic.

13.5 BIBLIOGRAPHY AND COMMENTS

The first manifestations of acyclic database schemes came from work on
semijoins and on comparing pairwise consistency versus total consistency.
The first definition of semijoin was given by Hall, Hitchcock, and Todd
[1975], who called the operation “generalized intersection.” There is men-
tion of “semijoin” about the same time, but the operation referred to has
nothing to do with what we are calling semijoin. Semijoins are used exten-
sively in the distributed query processing algorithms for SDD-1, a distributed
database system developed by Rothnie, Bernstein, et al. [19SlJ. Bernstein
and Chiu [1981] were the first to connect join trees with full reducers,

Bibliography and Comments 483

although they handled only the case of semijoins on a single attribute. Bern-
stein and Goodman [1979a, 1979~1 extended the theory to multiattribute
semijoins. Theorem 13.1 is due to them. Several algorithms for finding
minimum spanning trees may be found in Aho, Hopcroft, and Ullman [1974].

The interest in pairwise consistency and total consistency came from the
problem of determining when a database is a projection of a common in-
stance. Honeyman, Ladner, and Yannakakis [1980] showed the problem was
NP-complete in general. Graham [1979] defined a large class of database
schemes for which PC implies TC, but his class was a proper subset of the
acyclic schemes. He gave the reduction algorithm, which was formulated in-
dependently by Yu and Ozsoyoglu [1979, 19801, although their algorithm is
phrased in terms of join graphs. Honeyman [1980b] noted the connection
between PC implying TC and the existence of full reducers, although his
proof of equivalence is flawed.

Namibar [1979] was among the first researchers to formulate database
scheme problems in terms of hypergraphs. The definition of acyclic database
scheme, as well as the characterizations and equivalences not already at-
tributed, comes from a series of papers by Fagin, Mendelzon, and Ullman
[1980], Beeri, Fagin, Maier, Mendelzon, et al. [1981], and Beeri, Fagin,
Maier, and Yannakakis [1981].

Bernstein and Goodman [1979b, 198Oa] extend the theory of semijoins to
involve inequality comparisons. Chiu and Ho [1980], and Chiu, Bernstein,
and Ho [1980] give algorithms for finding the fastest full reducer for a given
database state, provided a full reducer exists. Goodman and Shmueli [198Oa,
198Ob, 1981a, 1981b] examine a number of questions involving full-reducers
and join trees, including reducers that use operations other than semijoins,
the inapplicability of chase-type computation for determining if full reducers
exist, generalizing cycles and cliques from graphs to hypergraphs and the
complexity of modifying cyclic schemes to be acyclic. Chase [1981] also ex-
amines methods for eliminating acyclicity. Lien [1980] and Sciore [1981] look
at sets of conflict-free MVDs, which can be used to characterize acyclic
database schemes. Both argue that sets of MVDs that arise naturally from
real world situations are conflict-free.

Yannakakis [1981] shows that acyclic schemes admit more efficient
algorithms for some problems than cyclic schemes do. Katsuno [198la]
studies the interaction of acyclicity with FDs and MVDs. Maier and Ullman
[1981] show that, in a certain sense, acyclic schemes are those where connec-
tions among sets of attributes are unique. Atzeni and Parker 119811 question
the applicability of acyclic database schemes.

Exercises 13.7, 13.22, 13.41, 13.42, and 13.43 are from Beeri, Fagin,
Maier, and Yannakakis [1981]. Exercise 13.13 is from Goodman and

484 Acyclic Database Schemes

Shmueli [1980a]. Exercise 13.28 is suggested by Bernstein and Chiu 119811.
Exercise 13.36 is answered by Fagin, Mendelzon, and Ullman [1980]. The
“only if” direction of Exercise 13.37 is from Maier and Ullman [1981]. The
“if” direction was noted by Kent Laver. Exercise 13.40 follows from Bern-
stein and Goodman [1979c]. The answer to ExerciseJ3.44 can be found in
Yannakakis [1981]. Exercise 13.45b comes from Goodman and
Shmueli [1981b].

