
Chapter 12

NULL VALUES, PARTIAL
INFORMATION AND DATABASE
SEMANTICS

The reader is warned that the topics in this chapter are matters of personal
taste. Whether the definitions and approaches offered seem right depends on
individual intuition. This chapter presents some of the problems that arise
from the assumption that all information fits into the relational model. The
problems are not completely solved, but some partial solutions are offered as
guidance for future work. The following line, overheard at a discussion of
data semantics, gives the proper frame of mind: “It all makes sense if you
squint a little and don’t think too hard.”

Underlying the relational database model is a blithe assumption that the
information to be represented fits nicely into little boxes arranged in rec-
tangular tables. The assumption can fail for two reasons:

1. The structure of the information does not fit the mold.
2. The information fits the mold, but part of the information is missing.

As an example of the first, recall the problem in thepinfo(PART# SUBPART
PARTNAME) relation of Section 10.2. We needed an artificial value for
SUBPARTOF whenever a part was not a subpart. We chose 0 as the artifi-
cial value. There is some danger in that approach. The domain calculus ex-
pression

{x(PART#)y(PART#2)laz1 3z2 gz3 (pinfo(x zJ. z2) Apinfo(y z1 ~3))

might at first seem the correct query to find all pairs of parts that are sub-
parts of the same part. However, it also associates all pairs of parts that are
not subparts of any part. The problem is that we need a way to represent par-
tial information -we would like to have tuples that range over only a part of
the relation scheme.

371

372 Null Values, Partial Information and Database Semantics

As an aside, we note that there are some cases where “no value” could
properly be considered a value. Consider a relation books(TITLE FIRST-
NAME MIDDLENAME LASTNAME) for recording titles and authors of
books. If some author has no middle name, a special domain value could
properly be used to represent the middle name. If two full names agree in the
first name and the last name, and have no middle name, they are the same
name. In this example, it is appropriate to augment the domain for MIDDLE-
NAME with a “none” or “does not exist” element that is treated identically
to any other domain value. Note the difference from the SUBPARTOF ex-
ample. Contrast the statements “Two authors with no middle names can be
considered to have the same middle name” and “Two parts that are not sub-
parts can be considered to be subparts of a common part.”

Turning to the second reason given above, recall the relation usedolz(PART#
PTYPE NUSED), also from Section 10.2. Suppose we know that part 318 is
used on a 1011, but we do not know the number used. We would like to store
a tuple with the information that we do have; a tuple t with t(PART#) = 318
and t(PTYPE) = 1011. What value should we store for t(NUSED)? Unlike
the SUBPARTOF example, we know there is some domain value that could
correctly fill the slot. However, using any particular domain value would give
incorrect answers for queries, unless we happened to guess the correct value.
We need a means to represent unknown values.

We shall first look at the problem of unknown values. We introduce nulls
to represent the unknown values. We then show that functional dependencies
and marked nulls may be used to fill in unknown values at times. We con-
sider existence constraints as a means to control the use of nulls. Finally, we
introduce possibility functions as a tool for comparing extensions of rela-
tional algebra to handle nulls. We then turn to the partial information prob-
lem. This problem is related to the problem of treating a database as a single
semantic entity. We introduce window functions as a tool for viewing a
database as a unit.

12.1 NULLS

The term null has been applied widely in database literature to special do-
main values that arise for a variety of reasons. Here we use it narrowly to
mean “value exists but unknown.” We use the symbol I to denote a null.
Although we may use the null symbol several places in a relation, each occur-
rence represents a potentially different unknown value.

Example 12.1 Suppose the personnel department at our airline is rather
snoopy, and maintains a relation history(EMPLOYEE SALARY PREVEMP

NUllS 373

PREVJOB PREVSAL). The relation records the previous employer, job title,
and salary of an employee, as well as the current salary. However, personnel
may not be able to wheedle all this information from every employee, so the
relation may be incomplete, as shown in Table 12.1,

Table 12.1 Relation Table Comprising Employee history.

historv(EMPLOYEE SALARY PREVEMP PREVJOB PREVSAL) I

t1 Lambert 39,500 SWA pilot 36,000
t2 Larson 24,100 I I I
t3 Lathen 17,300 WIA clerk I
t4 Liu 18,260 WIA I 17,800

Since the problems of unknown values and partial information are so slip-
pery, and have not been completely solved, our treatment will tend toward
examples more than proofs. However, what we lack in rigor we shall make up
in notation.

Notation A tuple containing 0 or more nulls is partial. A tuple with no nulls
is total. Thus, every total tuple is a partial tuple (similarly to partial and total
functions). A tuple t whose scheme includes attribute A is definite on A, writ-
ten t(A)!, if t(A) is not null. This notation extends to sets of attributes:
t(X)1 means t(A)1 for every attribute A E X. We use t 1 to mean that t is
total. If t is a tuple over scheme R, we let DEF(t) = {A E R It(A)1 >. For
tuples t and u on the same scheme, t subsumes U, written t 5 U, if u(A)1 im-
plies u (A) = t(A) for every attribute A in X. If t 1 u and tl , we call t an ex-
tension of U, written t 1 L u .

Example 12.2 In Table 12.1, all the tuples are partial, while t 1 is also total.
For t2, t2(EMPLOYEE)l, t2(SALARY)& and DEF(t2) = EMPLOYEE
SALARY. The tuple t = (Larson 24,100 I manager I > subsumes tuple t2.
For the tuple u = (Larson 24,100 WIA manager 22,050), u 12 t.

More Notation A relation r is total, written rl, if all its tuples are total.
Relations containing 0 or more nulls are partial. For relation scheme R, we
let ReZt(R) be the set of all partial relations over R and let ReZ(R) be the set
of all total relations over R. Through Section 12.4, relation will mean partial
relation. For relations r and s over R, r subsumes s, written r 1 s, if for every
tuple t, E s there is a tuple t, E r such that t, 1 t,. If r 2 s and s 2 Y, we write
r = s. If r is total, then Y is an extension of s, written I 12 s.

If Y can be obtained from s by changing some nulls in s to values, then r
augments s, written r 2. s. Clearly, r 2. s implies r r s. If r is total, then r

374 Null Values, Partial Information and Database Semantics

completes s, or r is a completion of s, written r 1 L s. If r 2 s and s 2 r, then
r = s (see Exercise 12.4).‘Evidently, r augments s if there is a mapping (Y of
the tuples of s onto the tuples of r such that cw(t) 1 t for every tuple t E s.
Note that the term completion is given a different meaning in this chapter
than in Section 8.7.

Example 12.3 The relation history ’ in Table 12.2 is an extension of the
relation history in Table 12.1, but not a completion, because of the tuples
(Lathen 17,300 WIA clerk 16,400) and (Lathen 17,300 WIA clerk 16,850).
The relation history” in Table 12.3 is a completion of history. Note that in
general, neither Y 2 s nor r L s imply 1 r 1 1 1 s) .

Table 12.2 Extension of Relation history.

historv ‘(EMPLOYEE SALARY PREVEMP PREVJOB PREVSAL)

Lambert 39,500
Larson 24,000
Lathen 17,300
Lathen 17,300
Liu 18,260

SWA
WIA
WIA
WIA
WIA

pilot 36,000
manager 22,050
clerk 16,400
clerk 16,850
agent 17,800

Table 12.3 Completion of Relation history.

history”(EMPLOYEE SALARY PREVEMP PREVJOB PREVSAL)

Lambert 39,500 SWA pilot 36,000
Larson 24,000 WIA manager 22,050
Lathen 17,300 WIA clerk 16,400
Liu 18,260 WIA agent 17,800

We can view a partial relation as a set of axioms about the total relation
that the partial relation represents.

Example 12.4 We can view the relation history in Table 12.1 as a set of ax-
ioms (in domain calculus notation) about a total relation history:

1. history(Lambert 39,500 SWA pilot 36,000)
2. 3x1 3x2 3x3 history&arson 24,100 x1 x2 x3)
3. 3x4 history(Lathen 17,300 WIA clerk x4)
4. 3x5 histoly(Liu 18,260 WIA 17,800). x5

Nulls 375

If I is a partial relation, then any extension of r can be interpreted as a
finite model satisfying the axioms denoted by 1. Also, if r 1 s, then, as sets of
axioms about a total relation, r logically implies S.

For the moment, we shall be interested in those extensions that are com-
pletions. That is, every tuple in a partial relation is seen as representing a
single tuple of a total relation. However, two tuples in the partial relation
may represent the same tuple in the total relation. The principle is that we do
not assume any more information than we need to in order to satisfy the ax-
ioms denoted by the partial relation. There are some subtle problems here. If
relation r ’ is obtained from relation r by removing a tuple t from r, where t is
subsumed by another tuple in r, then r ’ 1 r and so r ’ = r. Thus r ’ and r
have the same set of extensions. While r ’ 2 r (why?), it is not necessarily
true that I 2 I’. In fact, it is never true that I 2 r’, since that would imply
r = r’, by Exercise 12.4. Thus there are completions of Y that are not com-
pletions of Y ’ ,

The relationship 2 does not correspond to logical implication of sets of ax-
ioms, because we use the form of the axioms to limit the possible models.
Logicians may be troubled by a system where models are restricted by the
syntax of the axioms; where seemingly equivalent sets of axioms have dif-
ferent models. Linguists will be less troubled, for they know “It’s not what
you say, it’s how you say it.” Researchers in artificial intelligence won’t see
what all the fuss is about. We shall see in Chapter 14 that even the assump-
tion that our models are finite has interesting effects upon the implication of
dependencies. One way around the problem of subsumed tuples is to con-
sider only relations with no such tuples, although we do not adopt that
assumption here.

Given that we allow partial relations in a database, the problem of evaluat-
ing queries immediately arises. We briefly describe the null substitution prin-
ciple for interpreting calculus formulas over partial relations. We examine
only the single-relation case: multiple-relation formulas can be treated
similarly. We define an interpretation function I^ that maps calculus formulas
to the set { true, unknown, fuZse >. Let f be a tuple calculus formula that men-
tions only a single relation, r(R). Assume further thatf has no free variables.
Let 1,(f) stand for the usual interpretation of formulaf, using total relation
s(R) in place of r. We define

f(j) = true if I,(f) = true for every completion 5 of Y,
1((f) = false if I,(f) = false for every completion s of r, and A
I(f) = unknown otherwise.

376 Null Values, Partial Information and Database Semantics

That is, &) is tame exactly when every possible substitution of values for
nulls in r makesf a true formula in the usual sense.

Example 12.5 Let history be the relation in Table 12.1, and let R denote its
scheme. Consider the formulaf, defined as

3x(R) c history (x(PREVEMP) = “WIA” A x(PREVJOB) = “clerk”).

&<f,> = true, since no matter how the null in tuple t3 of histoy is filled in,
t,(PREVEMP) = “WIA” A t,(PREVJOB) = “clerk” will be true. Next,
consider the formulaf2 defined as

3x(R) f histoq (x(EMPLOYEE) = “Liu” A vy(R) f history
(x(PREVSAL) r y(PREVSAL))).

fui) = false, because no matter how nulls are filled in, t4 is the only tuple
that could make x(EMPLOYEE) = “Liu” true and choosing tl for y makes
the formula as a whole false. Finally, consider the formula f3 defined as

3x(R) E histoy @(EMPLOYEE) = “Lambert” A Vy(f?) E history
(x(PREVSAL) 2 y(PREVSAL))).

&f$ = unknown, since f3 can become either true or false depending on how
r,(PREVSAL) and t,(PREVSAL) are filled in.

A problem with the null substitution principle is that it does not admit a
recursive definition of f. That is, we cannot define f((f) in terms of ps value
on the imm:diate subformulas of f. The nexJ example shows that if f =
g V h, then 1df) cannot be defined as f(g) v I(h).

Example 12.6 Let history be the relation in Table 12.1 and let R represent
its scheme. Let f be

3x(R) E history (x(PREVEMP) = “WIA” A x(PREVSAL) 5 16,ooO) v
3y(R) E histoy (y(PREVJOB) = “clerk” A y(PREVSAL) > 16,000).

f(<f> = true, but f(g) = f(h) = unknown, where g and h are the two dis-
juncts off.

While there is no recursive definition off, it is not necessary to try all possi-
ble substitutions of domain values for nulls in a formula f to compute &<f>.

Functional Dependencies and NuHs 377

We need only look at enough domain values to allow any atom to become
either true or false (if possible). For the formulaf in Example 12.6, 16,000
and 15,999 are the only values that need be considered for nulls in the PREV-
SAL column of history. Nevertheless, evaluating f(<f) is computationally
hard, since it is basically the problem of testing for a tautology.

12.2 F’UNCTIONAL DEPENDENCIES AND NULLS

We may have some restrictions on the total relation that a partial relation can
represent. In particular, it may be that the total relation must satisfy some
FDs.

Example 12.7 Consider the version of history shown in Table 12.4. We
assume that the total relation that history represents has EMPLOYEE as a
key. Hence, we would allow the completion history ’ shown in Table 12.5, but
not the completion history” shown in Table 12.6.

Table 12.4 Relation history with EMPLOYEE as a Key.

history(EMPLOYEE SALARY PREVEMP PREVJOB PREVSAL)

Lathen 17,300 WIA clerk
I 18,260 WIA I 17,&o

Table 12.5 Completion of Relation history (allowed).

history ‘(EMPLOYEE SALARY PREVEMP PREVJOB PREVSAL)

Lathen 17,300 WIA clerk 16,400
Liu 18,260 WIA agent 17,800

Table 12.6 Completion of Relation history (not allowed).

histoly”(EMPLOYEE SALARY PREVEMP PREVJOB PREVSAL)

Lathen 17,300 WIA clerk 16,400
Lathen 18,260 WIA agent 17,800

One thing we would like to test given a relation Y E Rell(R) and a set of
FDs F is whether any completion of r satisfies F.

Definition 12.1 Let Y E ReZt(R) and let F be a set of FDs over R. Relation r
is permissible with respect to F if some completion s of r satisfies F. A com-
pletion that satisfies F is a permissible completion under F.

378 Null Values, Partial Information and Database Semantics

Example 12.8 Let F be (EMPLOYEE -+ SALARY PREVEMP PREVJOB
PREVSAL). The version of history shown in Table 12.4 is permissible with
respect to F, while the version of Table 12.7 is not.

Table 12.7 Relation history (not permissible with respect to F).

histoy(EMPLOYEE SALARY PREVEMP PREVJOB PREVSAL)

Lathen 17,300 WIA clerk I
Lathen I SWA I 17,800

We seek a test for permissibility of partial relations. As it turns out, FDs
are not just constraints on possible completions. They can also be used to fill
in nulls. For a particular null, there may be only a single way to fill in that
null in order to satisfy a set of FDs.

Example 12.9 Consider the relation vacation(EMPLOYEE YEARS
ANNUALDAYS ACCDAYS) in Table 12.8 that gives the number of years
employees have been with the airline, how many days of vacation they ac-
cumulate annually, and the total days accumulated. We assume the set of
FDs F = {EMPLOYEE + YEARS ANNUALDAYS ACCDAYS, YEARS +
ANNUALDAYS) applies. In any completion of vacation that satisfies F,
tt(ACCDAYS) = 17, t,(YEARS) = 3, t,(ANNUALDAYS) = 21 and
t,(ANNUALDAYS) = 21. Thus we can fill in these nulls to get a more com-
plete relation, vacation ', as shown in Table 12.9. It may seem that all the
problems go away if vacation is decomposed using the FD YEARS +
ANNUALDAYS, but there are similar examples where all the FDs involved
have keys on the left. In later sections we shall see cases where we want to
combine several relations in order to fill in nulls.

Table 12.8 The Relation vacation.

vacation(EMPLOYEE YEARS ANNUALDAYS ACCDAYS)

t1 Udall 3 21 I
t2 Udall I I 17
t3 Unthank 3 I I

Table 12.9 Partial completion of the Relation vacation.

vacation ‘(EMPLOYEE YEARS ANNUALDAYS ACCDAYS)

t, = t2 Udall 3 21 17
t3 Unthank 3 21 I

Functiomd Dependencies and Nulls 379

Our strategy for testing permissibility will be to fill in as many nulls as
possible using information given by the FDs. How may we fill in nulls in a
relation r given a set of FDs F? The last example gives one obvious rule as to
how a null may be filled in. Let X * A be an FD in F. Let tl and t2 be two
tuples in r such that tl(X)l, t2(X)1, and tl(X) = Q(X). Suppose that
tl(A) = I, but that ta(A) = a. We can change tr(A) to a, since in any per-
missible completion of Y, t 1(A) must be a to satisfy X + A.

The rule just given is correct, but it does not go far enough.

Example 12.10 Consider the relation r(A B C 0) in Figure 12.1, and the set
ofFDsF=(A + C, C -+ D }. A moment’s inspection will show that tl(D) =
d in any permissible completion of Y, although the rule just given cannot be
used to fill in any nulls in r.

r(A B C D)

t1a b I I
t2a I I d

Figure 12.1

In the last example, tl(D) can be filled in using the FDs in F’, namely
A -+ D. There are examples where even P+ does not suffice (see Exercise
12.10). The problem is that we need to indicate that two nulls represent the
same value, even though that value is unknown. In the last example, we need
to indicate t,(C) = t,(C) in any permissible completion of Y. To that end, we
introduce marked nulls. We subscript the null symbol to get an infinite col-
lection of different nulls: { I 1, 1 2, i 3, . . . >. Marked nulls will be assumed
distinct unless they have the same subscript. Let t, and t2 be two tuples over
scheme R involving marked nulls. If A is an attribute in R, tl and t2 agree on
A if either

1. t,(A)1 and t2(A)1 and t,(A) = t2(A), or
2. t,(A) = li, t2(A) = l-j and i =j.

The tuples agree on a set of attributes X in R if they agree on every attribute
in X. For the rest of this section, all nulls in partial relations are assumed to
be marked. Any relation with unmarked nulls may be converted to one with
marked nulls by appending distinct subscripts to unmarked nulls. We con-
sider two relations in Rel?(R) to be the same if they are identical except for a
one-to-one renaming of marked nulls.

Example 12.11 The relation r in Figure 12.1 could appear as shown in
Figure 12.2 with marked nulls.

380 Null Vahes, Partial Information and Database Semantics

tl a b lI l2
t2 a l3 l4 d

Figure 12.2

We need two definitions before giving the rule for filling in marked nulls.

Definition 12.2 Let r E Relt(R), let X --+ A be an FD over R and let tl and
t2 be tuples in r that agree on X. If tl and t2 are both definite on A, but
t,(A) # t,(A), r has a havd violation of X -+ A. If tl and t2 disagree on A,
and at least one is null, then r has a soft violation of X --) A. Hard violations
cannot be removed by filling in nulls, while soft violations can.

The fill-irt rule for marked nulls mimics the F-rule of the chase computa-
tion. The rule fills in or equates marked nulls whenever they participate in a
soft violation. Let r E Relt(R) and let I; be a set of FDs over R. Let t, and t2
be tuples in r that participate in a soft violation of the FD X + A in F.

1. If tl (A)1 and t2(A) = I~, change every occurrence of I i in r to
t,(A).

2. If tz(A)L and tl(A) = pi, change every occurrence of ~~ in r to
M-4).

3. If t,(A) = I;, t2(A) = li, and i < j, change every occurrence of
Ij to li; if i > j, change every occurrence of li to I~.

These changes remove the soft violation, although they may introduce new
violations.

Example 12.12 Starting with relation r in Figure 12.2 and the FDs F =
{A * C, C --, D >, we apply the fill-in rule using A -+ C to change I 4 to I t.
We may then use the fill-in rule with C + D to change I 2 to d, The result is
shown in Figure 12.3.

r(A B C D)

tla b I,d
t2 a l3 I] d

Figure 12.3

The repeated application of the fill-in rule for a set of FDs F is similar to
the chase computation on a tableau. Values correspond to distinguished
variables and marked nulls correspond to nondistinguished variables. How-

Functional Dependencies and Nulls 381

ever, where a tableau has only one distinguished symbol per column, a rela-
tion can have many values in a column. The result of repeated application of
the fill-in rule need not be unique.

Example 12.13 Let r(A B C) be the relation in Figure 12.4. Let F = {A -+
B, C -+ B }. We see there are two ways to fill in I 2r one using A + B and the
other using C --* B.

r(A B C)

1 2 J-1
1 *2 3
134 3

Figure 12.4

While the relation in the example above could be filled in two ways using
the given set of FDs, either way gives a hard violation. We shall show, and it
should be apparent, that any relation with a hard violation has no permissi-
ble completions. To assure a unique result when applying the fill-in rule to a
relation, we assume when a relation has a hard violation, the fill-in rufe
changes it to some special value, which we call HV. We let nchase&r) stand
for the result of applying the fill-in rule with FDs from f to relation r until
no changes can be made. NchaseF(r) will either be a relation or the special
value HV.

We want to show that Y is permissible with respect to F exactly when
nchasep(r) is not HV. N&use,(r) can have multiple copies of a marked null.
We update the definitions of augment and completion to handle the multiple
copies. We still view a relation with marked nulls as a set of axioms (actually
a single axiom) about a total relation that the partial relation represents. The
difference is that tuples no longer generate separately quantified axioms.

Example 12.14 The relation r(A B C) in Figure 12.5 represents the axiom
(in domain calculus form):

3x* 3x2 (r(1 2 X1) A P-(x2 2 3) A r(x2 4 X,)).

Note this formula is not equivalent to

3x1 (41 2 x1)) A 3x2 b-(x2 2 3)) A 3x1 3x2 (?-(x2 4 Xl)).

‘. ;-e,. ..“’

382 Null Values, Partial Information and Database Semantics

1 2 11
12 2 3
12 4 11

Figure 12.5

We leave an updated definition of subsumes to Exercise 12.12. For r and s
in RelT(R), r augments s, written r 1 s, if r is obtained from s by filling in
some nulls in s with values or other nulls. The restriction is that whenever a
null I ; is changed, every copy of I i must be changed in the same way. Also,
we do not allow a marked null to appear in more than one column of a rela-
tion. If, in addition, r 1, we say r is a completion of s, written r 1 > s. These
definitions reduce to the ones for the unmarked null case when neither r nor s
contains a repeated marked null.

We now show two results. Assume HV has no permissible completions
under any set of FDs. First, nchasep(r) and r always have the same permissi-
ble completions under F. Second, if nchasef;(r) # HV, then Y has at least one
permissible completion.

We actually show that if r ’ is obtained from r by a single application of the
fill-in rule using an FD form F, then P and r ’ have the same permissible com-
pletions under F. If I ’ is actually HV, then r had a hard violation. The tuples
in r constituting the hard violation will still exhibit the hard violation when
filled in. Therefore, r has no permissible completions. If r ’ is a relation, then
r ’ came from r by replacing a marked null with another marked null or with
a value. In either case, r’ 2 r, so any permissible completion of r’ is a per-
missible completion of r.

Consider how r ’ was obtained from Y. There must be an FD X + A in I;
and tuples tl and t2 in r such that t 1 and t2 agree on X. Further, either tl (A) =
li and t2(A) = a, or t,(A) = a and tz(A) = li, or t,(A) = li and
tz(A) = I~, where i f j. In any completion s of r, tl(X) = t?(X). For s to
satisfy F, t I and tz must agree on A. In the first two cases, both must be a on
A, as is the case in r ‘. If s is a permissible completion of r, then s is a per-
missible completion of r ‘. Similarly, in the third case, pi and -lj must be
replaced by the same value if s is to satisfy F. Hence, again, if s is permissible
for r, it is a completion for Y ‘, and so a permissible completion for r ‘. We
conclude r and r ’ have the same permissible completions under F.

From this argument it follows that r and nchaseF(r) have the same per-
missible completions under F.

Consider the case where r* = nchaseF(r) is not HV. Form a completion s
of r* by replacing every marked null in r* with a value distinct from any value

Functional Dependencies and Nulls 383

in r* and distinct from the value used to replace any other null. We claim s
satisfies F (see Exercise 12.14).

Example 12.15 Let r(A B C D E) be the relation in Figure 12.6. Let F =
(A -+ B, B D -+ C}. NchaseF(r) is the relation Y* shown in Figure 12.7. Fill-
ing in nulls with distinct values gives the completion s shown in Figure 12.8,
which indeed satisfies F.

r(A B C D El

1 J-1 12 2 3
1 13 4 5 14

67 8 59
1 15 16 2 9

Figure 12.6

+(A B C DE)

1 11 12 2 3
1 I, 4 5 I4

67 8 59
1 “Ll 12 2 9

Figure 12.7

s(A B C D E)

1 10 11 2 3
1 10 4 5 12
6 7 8 5 9
1 10 11 2 9

Figure 12.8

To see why s must satisfy F, choose an arbitrary FD X -B A from F. Let tl
and t2 be tuples in s that agree on X. In r *, tl and t2 must agree on X, other-
wise filling in nulls would have made them disagree. Since Y* cannot have a
soft or hard violation, t,(A) = tg(A) in Y *. Hence t,(A) = tZ(A) in s. Thus s
satisfies X + A. Since X + A was arbitrary, s satisfies F and is therefore a
permissible completion of Y* and r.

N&use gives a method for testing whether a relation r is permissible with
respect to a set of FDs F, as well as filling in all nulls possible, assuming in-
finite domains (see Exercise 12.15). There is still some information about the

384 Null Values, Partial Information and Database Semantics

permissible completions of r that nchasep(r) does not capture: certain nulls
may not take on certain values. If some domains are finite, rather than in-
finite as we have assumed, it may be possible to determine values for more
nulls using FDS.

Example 12.16 Consider the relation restrooms in Table 12.10. Assume it
obeys the FD FLOOR SEX + ROOM# (only one restroom of each type per
floor). We can conclude that ts(SEX) # women. If the domain of sex is
{men, women }, then we can change ta(SEX) to melz, since it must be so in
any permissible completion of restrooms.

Table 12.10. The Relation restrooms.

restrooms(FLOOR ROOM# SEX)

t1 1 8B women
t2 2 8B women
t3 2 8D 11

There does not seem to be any labeling scheme to capture information
about which values a null may not assume and which nulls must be filled in
with different values in a permissible completion. There are other problems
to be examined in connection with nulls. Can marked nulls be used to fill in
values across relations in a database? Can other dependencies be used to fill
in values in partial relations? Should relations such as

be allowed? Note that I has more completions than

stA B)
1 II.

In Section 12.4 we shall examine some ways other than completions to denote
what a partial relation represents.

12.3 CONSTRAINTS ON NULLS

In practice, there will usually be restrictions on where nulls should appear in
a relation. Typically, nulls are forbidden in any components of the primary

Constraints on Nuiis 385

key of a relation. We give a means to express such restrictions. For this sec-
tion it does not matter if nulls are marked or not.

Definition 12.3 Let R be a relation scheme. An existence constraint (EC)
over R is a statement of the form X 1 Y (read “X requires Y”) for X and Y
subsets of R. A reIation r E Relt(R) satisfies X 2 Y if for every tuple t in r,
t(X) 1 implies t(Y) 1.

Example 12.17 Let r(A B C D) be the relation shown in Figure 12.9. Rela-
tion r satisfies the ECs D 7 A, C D 7 A and @ 7 B. The last EC requires
that all tuples be definite on B. The EC A 1 D is not satisfied (because of tz),
nor is B A 3 C.

r(A B C D)

t1 1 2 I 3
t2 1 4 I I
t3 I 2 5 I
t4 6 2 7 8

Figure 12.9

A relation satisfies an EC if each of its tuples individually satisfies the EC.
This situation is unlike FDs, where pairs of tuples must be considered.
Suprisingly, inference axioms for ECs take the exact form of inference ax-
ioms for FDs. For example, if X 1 Y, then X A 1 Y for any attribute A.
Also, if X 1 Y and Y 7 Z, we may conclude X 1 Z (see Exercise 12.16). If
we have only ECs to check as constraints, it is a simple matter to test whether
a given update will cause a relation to violate the ECs. Any deletion is accep-
table. Insertion and modification depend only on the tuple involved, When
IDS also are being enforced, and are used to fill in nulls, other tuples may be
affected by an insertion or modification. The tuple to be inserted may initial-
ly satisfy the ECs, but some nulls may be filled in using FDs and cause an EC
violation. It is also possible that a tuple already in the relation will be made to
violate the ECs.

Example 12.18 The relation r(A B C D) in Figure 12.10 satisfies the EC
A 1 B C, and is permissible with respect to the FD B -+ A. Adding the tuple
t3 = (5 1 4 I) will cause tl to violate A -I B C when t,(A) is filled in as 5 us-
ingB +A.

There remains much work to be done on which sets of FDs and ECs behave
nicely together (see Exercise 12.17).

386 Null Values, Partial Information and Database Semantics

r(A B C D)

t1 -L 1 I 6
tz2 3 4 I

Figure 12.10

12.4 RELATIONAL ALGEBRA AND PARTIAL RELATIONS

We now turn to extending relational algebra to relations with nulls. For this
section, we let Rell and Rel denote the sets of all partial and total relations
whose schemes are taken from some fixed universe U of attributes. Also, we
return to the use of unmarked nulls. We shall view a relation r in ReZt(R) as
denoting a set of total relations from Rel(R). This set of possibilities we call
POSS(r). In previous sections we have used POSSfr) = (s 1s is a completion
of r}. Here we shall consider other definitions for POSS. Relative to POSS,
we consider ways to extend relational operators from Rel to Relt . Suppose we
want to extend the join operator to partial relations. Ideally we would like an
extended operator w ’ such that

POSS(r W ’ s) = POSS(r) w POSS(s)

for r and s in Reft . By PI w PI, for sets of relations PI and Pz, we mean

(41 W 42141 E PI and q2 f Pz].

We shall first discuss what properties POSS should possess, and what con-
stitutes a reasonable extension of a relational operator relative to a given
possibility function. We then look at proposals for an extended join operator
and discuss their shortcomings. Finally, we consider for which definitions of
POSS there exist reasonable extensions of the relational operators.

12.4.1 Possibility Functions

Definition 12.4 A possibility function is a function POSS: Relt + 2Re1,
That is, POSS assigns every partial relation a set of total reIations. We re-
quire that if r E Relt(R), then POSS(r) C Rel(R).

As the definition stands, there is nothing to indicate that a possibility func-
tion is supposed to represent possible total relations for a partial relation.
The definition allows a possibility function that maps every partial relation to

Relational Algebra and Partial ReMions 387

the empty relation over the same scheme. While such a stonewalling possibil-
ity function might have use in political circles, we choose to impose addi-
tional restrictions on possibility functions.

Definition 12.5 Let q and r be relations over scheme R such that q 12 t. If
for every tuple t, E q there is a tuple t, E r such that t, 2 t,, we say q is a close
extension of r. If no proper subrelation of q is an extension of r, but q is an
extension of r, then q is a minimal extension of r. Any minimal extension is
also a close extension (see Exercise 12.18).

Example 12.19 Consider the relation r(A B C) in Figure 12.11. Relation q
in Figure 12.12 is a close extension of r, but not a minimal extension, because
tuples t2 and t3 could be etiminated. Relation q ’ in Figure 12.13 is a minimal
extension of r.

r(A B C)

1 2 I
123
1 i 3

Fii 12.11

q(A B 0
t,l 2 3
t24 2 3
tj1 5 3

Figure 12.12

q’(A B C)
1 2 6
7 2 3
1 8 3

Figure 12.13

Any possibility function POSS gives rise to a partial ordering on ReZT(R)
for any R. If T, s E ReZt(R), r is stronger than s, relative to POSS, written
r 2 Pass s, if POSS(r) c POSS(s). If r 2 Pass s and s 7 Pass r, we say r and
s are equally strong, written r E Pass s. We write 2 and = for =1 pass and
= pass when POSS is understood.

We can now describe further restrictions on possibility functions.

388 Null Values, Partial Information and Database Semantics

Definition 12.6 A possibility function POSS is reasonable if

1. every element of POSS(r) is an extension of r,
2. POSS(r) contains every minimal extension of r, and
3. for every r and s over the same scheme, s E POSS(r) if and only if

s J randsl.

Definition 12.7 POSS is closed if POSS(r) contains only close extensions of r.

Condition 1 arises from viewing r as axioms about a total relation. The
condition says that every relation in POSS(r) satisfies the axioms that r
denotes. Condition 2 says there are no “hidden axioms.” Any total relation
that satisfies the axioms r denotes, and has no superfluous tuples in that
regard, is in POSS(r). Condition 3 captures the idea that a total relation in-
terpreted as a set of axioms agrees with the relation as a model for a set of ax-
ioms. If POSS is closed, s 1 implies POSS(s) = {s }, so condition 3 is trivialiy
satisfied.

A closed possibility function corresponds to a “closed world assumption”
in heuristic inference systems. The closed world assumption states that what
is not provably true is assumed to be false. In our situation, where some of
our information is incomplete, it is not clear which statements should be con-
strued as true. This uncertainty allows several variations on the closed world
assumption.

Example 12.20 We have already seen one possibility function, POSSc(r) =
{ s(s 42 r 3. The subscript C stands for “completion.” We leave it to the
reader to show that POSSc is reasonable and closed. The possibility function
POSS&) = {sis L 2 r > is also reasonable, but it is not closed. (The 0 is for
“open.“) It is the only possibility function we shall consider that is not
closed. Notice r 7 Posse s holds exactly when P L s (see Exercise 12.25). The
possibility function POSSE(r) = {sls 11 r and s has an even number of
tuples) is not reasonable, since it violates conditions 2 and 3.

Henceforth, we consider only reasonable possibility functions.
If r E ReZ(R), s E Relt(R) and Y z s for some possibility function POSS,

then r E POSS(s) and r r s, by conditions 3 and 1 of the definition of
reasonable possibility function. These results also hold when r E Relt(R).

Lemma 12.1 Let POSS be a possibility function, 2 its associated strength
ordering, and r and s partial relations on scheme R. Then r z s implies I L s.

Relational Algebra and Partial ReMions 389

Proof Suppose T 2 s. Let t, be a tuple in s that is not subsumed by any
tuple in Y. It is possible to construct an extension q of r such that for any
tuple t, E q, t, 2 t,. Furthermore, we can assume q is minimal. (Otherwise,
remove tuples from q.) Since q is a minimal extension of r, q E POSS(r), but
q @ POSS(s), since q L s. Therefore, POSS(r) SE POSS(s) and so r 8 s. We
have shown the contrapositive of the lemma.

Corollary If r = s, then r = s.

We shall see cases where the converse of Lemma 12.1 fails: r r s does not
imply r 2 s. Let r # s mean r ~5 s and s ~5 rm (r and s are incomparable
under subsumption). We may conclude from the lemma that r # s implies
r f s.

12.4.2 Generalizing the Relational Operators

We shall use possibility functions to characterize when the generalization of
an algebraic operator from Rel to Reff is reasonable. There is one criterion,
however, that is independent of the choice of possibility function. We want
the generalized operator to agree with the regular operator on Ret.

Definition 12.8 Let y be an operator on Rel and let y ’ be an operator on
Relt ; y ’ is faithful to y if

1. when y and y ’ are unary operators, y(r) = y ‘(r) for every r E Rel for
which y(r) is defined, or

2. when y and y ’ are binary operators, r y s = r y ’ s for every r, s c Rel
for which Y y s is defined.

The next definition gives the ideal behavior of a generalized operator.

Definition 12.9 Let y be an operator on ReZ and let y ’ be an operator on
Relt . Operator y ’ is a precise generalization of y relative to possibility func-
tion POSS if

1. when y and y ’ are unary operators, POSS(y ‘(r)) = y(POSS(r))
for every r E Relt ; or

2. when y and y ’ are binary operators, POSS(r y ’ s) = POSS(r) y
POSS(s) for every r, s E Relt.

390 Null Values, Partial Information and Database Semantics

Here, for sets Pr and P2 of total relations,

YUV = {y(q)lq E PI) and
Pl Y p2 = (41 Y q2lq1 E Pl, q2 E p21.

Unfortunately, for some possibility functions, y(POSS(r)) or POSS(r) y
POSY?(s) may not be regular enough to describe as POSS(g) for any q. In
such cases we settle for a generalization of y that captures everything in
y(POSS(r)) or POSS(r) y POSS(s) and as little extra as possible.

Definition 12.10 Let y be an operator on Rel and let y ’ be an operator on
Relt. Let POSS be a possibility function. Operator y ’ is adequate for y
relative to POSS if

1. when y and y ’ are unary operators, POSS(y ‘(I-)) 2 y(POSS(r)) for
every r E Relt , or

2. when y and y ’ are binary operators, POSS(r y ’ s) Z! POSS(r) y
POSS(s) for every I, s E Relt.

Operator y ’ is restricted for y relative to POSS if

1. when y and y ’ are unary operators, for every I E Rel t , there is no q in
Relt such that

POSS(y ‘(r)) Q2 POSS(q) 2 y(POSS(r)), or
2. When y and y ’ are binary operators, for every r, s E ReE f , there is no

q in Relt such that
POSS(r y ’ s) $2 POSS(q) 2 POSS(r) y POSS(s).

Clearly, if y ’ is precise for y, then y ’ is adequate and restricted for y. We
shall content ourselves with an adequate and restricted generalization when
no precise generalization is available. We would also like the generalized
operators to have properties that the regular operator possesses, such as com-
mutativity or associativity. For example, if y is an associative binary operator,
we want a generalization y ’ to satisfy

(qy’r)y’s = qY’b”y’s)

for q, r, s E Rell. We now consider some generalizations of equijoin and
natural join that have been proposed previously.

Example 12.21 Codd defined a “maybe” equijoin for use with relations
containing nulls. We examine a simple form of it. Let r(R) and s(S) be rela-
tions in Relt, with A E R, C E S, and R fl S = @. We extend the equijoin
[A = C] as [A = C] ’ where

Relational Algebra and Partial Relations 391

r[A = Cl ’ s = { t(RS)lt(R) E r, t(S) E s and t(A) = t(C),
or at least one of t(A) and t(C) is null).

(This definition is actually a combination of Codd’s “definite” and “maybe”
equijoins.) If we let r(A B) and s(C D) be as shown in Figure 12.14, then
r[A = C] ’ s is given in Figure 12.15. Note that this generalization of equijoin
cannot be used to derive a generalization of natural join because the A and C
values of a tuple do not necessarily agree.

dA B) s(C D>
1 2 2 3
4 I l. 5

Figure 12.14

r[A = C] ‘s(A I3 c D)
1 2 2 3
4 I 2 3
12 1.5
4 I I 5

Figure 12.15

If we take the three relations

qU B) r(C D) s(E F)
1 2 I 3 4 5

and compute (q [A = C] ’ r) [C = E] ’ s, we get

q ‘(A B C D E F)

12134s

Note that for no (reasonable) possibility function POSS is the empty relation
in POSS(q ‘). However, if [A = C] ’ and [C = E] ’ are adequate for [A = C]
and [C = E] under POSS, then

POSS(q ‘) 2 POSS(q[A = C] ’ r) [C = E] POSS(s) 2
(POSS(q) [A = C] POSS(r)) [C = E] POSS(s),

which contains the empty relation. Take any close extensions 4, P, and s^ for
q, I, and s;

392 Null Values, Partial Information and Database Semantics

(4 [A = C] 3) [C = E] s^

is the empty relation. We see that this generalization of equijoin is not ade-
quate for any choice of POSS. The problem is that the null in relation r is
assumed to equal 1 in one case and 4 in another. We shalt see in the next sec-
tion a modification of Codd’s notions that does work out.

Example 12.22 LaCroix and Pirotte propose a generalized natural join
operator, denoted &I, that guarantees every tuple enters a join. Tuples that
do not join with other tuples are padded with nulls and added to the result.
For the relations r(A B) and s(B C) in Figure 12.16, r &I s is shown in Figure
12.17. LaCroix and Pirotte give several choices as to how to proceed when a
null appears in a join column. No matter what choice is taken, &I is not
associative. Consider the relations

q(A B) r-03 C) d-4 C)
1 2 2 3 1 4

Computing (q &I I) 64 s we get

q’(A B C)
1 2 3
114

while q &I (r &I S) gives

q “(A B C)

1 2 4
I 2 3

Now q’ s q”, so for any reasonable possibility function q ’ f q “, by
Lemma 12.1.

ru B) s(B a
1 2 2 3
1 4 5 6

Figure 12.16

Relational Algebra and Partial Relations 393

r&s(A B C)

1 2 3
1 4 I
I 5 6

Figum 12.17

Example 12.23 Zaniolo proposed a generalization of join, which we shall
denote wz, where tuples join if on each common attribute either they agree
or exactly one is null. If one tuple is null on an attribute, the joined tuple
takes its value from the other tuple. If a tuple does not join with any tuples, it
is padded with nulls and added to the result. For the relations r(A B) and
s(B C) in Figure 12.18, r wz s is shown in Figure 12.19.

d-4 B) 0 C>
1 2 2 3
4 s I 6

7 8

Figure 12.18

rw=s(A B C)

123
1 2 6
4 5 6
I 7 8

Figure 12.19

There is no reasonable possibility function for which wz is associative.
Consider

q(A B) 64 B) 44 B)
1 2 I 3 I 4
15 I 6 7 8

Computing (q Wz I-) Wz s gives

q’(A B C D)

1 2 3 4
1 2 6 4
7 5 I 8

:, Z.‘>j.,< :.,, ;.,. Y

394 Null Values, Partial Iuformation and Database Semantics

while q CU= (r wz s) gives

q”(A B C D)

7 5 3 8
7 5 6 8
I 2 I 4

Since q ’ # q “, we conclude from Lemma 12.1 that q ’ + q” for any reason-
able possibility function.

12.4.3 Specific Possibility Functions

In this section we examine several possibility functions to see if adequate and
restricted generalized operators exist for them. We shah limit our attention
to four operators: (natural) join, union, project, and select on equality.

We first consider POSSo, the “open” possibility function. Recall

POSS&) = {s(s 1 L r>,

and that for POSSo, Y 7 s exactly when r z s.
Consider a join operator for POSSo; call it CU*. It cannot be precise. For

partial relations r(R) and s(S), POSSo(r) w POSSo(s) is a subset of
SAT(*[R S]). For any relation q E RsZt(R S), POSSo(q) is not a subset of
SAT(*[R S]) (see Exercise 12.26). We can give an adequate and restricted
definition for w O. IA r(R) and s(S) be in Relt , with R n S = X. Let

rW*s=(t(RS))therearet,~randt,~switht,(X)t,
t,(X)1 , t(R) = t,, and t(S) = t, }.

We join tuples from r and s if they are definite on and agree on X.

Example 12.24 The generalized join of relations r(A B C) and s(B C D) in
Figure 12.20 is shown in Figure 12.21.

r(A B C) s(B C 0)

1 2 I 2 7 3
I 3 4 14 8
1 3 5 3 4 9

3 4 10
3 5 I

Figure 12.20

Relational Algebra and Partial Relations 395

rwOs(A B C D)

134 9
I 3 4 10
1351

Figore 12.21

As defined, ~HO is adequate. Let q = r w O s and let q be any relation in
POSSo(r) W POSS,(s). We must show 4 2 4, from which it immediately
follows that 4 1 L q, hence 4 6 POSSo(q), hence POSSo(q) 2 POSSo(r)
w POSS,(s). Let Q = ? w s^ for r^ E POSS,(v) and $ E POSSo(s). Let t, be
any tuple in q. There must exist tuples t, e r and t, E s such that t,(X)4 ,
2,(X)1, t,(R) = t, and t,(S) = t,. We conclude t,(X) = t,(X). Since r^ 2 Y,
there must be a tuple tp c i such that tp 1 t, and so t?(X) = t,(X). Likewise,
there is a tuple t,- E s^ such that t,- 2 t, and so tJX) = t,(X). Relation 4 must
contain a tuple tg such that t,&R) = tp and to(S) = ts. It follows tB r t,.
Since the choice of t, was arbitrary, 4 r q, as desired. We leave the proof
that DCIO is restricted as Exercise 12.27.

Union has a precise generalization for POSSo. Let I and s be in Relt(R),
and let

r U”s = (tit E rort Es).

Suppose q = Y U O s. We first show POSSo(q) 2 POSSo(r) U POSS&).
(Union here is an element-wise union.) Let 4 E POSSo(r) U POSSo(s).
There must be f E POSSo(r) and s^ E POSSo(s) such that 4 = r^ U 9. Let t,
be a tuple in q. Either t, E r or t, E s. If t, E r^, there is a tuple tq f 3, and
hence in 4, such that tq 2 t,. If t, E s, there is similarly a tuple tq in 4 with
ta 1 t, . We conclude Q > q , hence 4 12 q and so @ c POSSo(q).

Suppose now that 4 E POSSo(q). Since q 1 r (Why?), 4 1 L r and so 4 E
POSSo(r). Similarly, 4 E POSSo(s). Therefore $ E POSSo(r) U POSSo(s)
and so POSSo(q) t POSSo(r) U0 POSSo(s). We conclude U” is precise
for POSSo .

Project also has a precise generalization for POSSo. We leave the defini-
tion to the reader (see Exercise 12.28).

We turn to select with equality comparisons between two attributes or an
attribute and a value. Let r E Relt (R) and let A r~ R. We define

az,,(r) = {t(R)lt E r and t(A) = a}.

3% Null Values, Partial Information and Database Semantics

Example 12.25 Let r(A B C) be the relation in Figure 12.22; c$=,(r) is
shown in Figure 12.23

dA B 0

1 1 2
1 I 3
I 4 5
4 4 6

Fiim 12.22

&MA B 0
1 1 2
113

Figure 12.23

For comparing two attributes A, B E R we have

‘Jz,~(r) = it(R E r, t(A)!, t(B)1 and t(A) = t(~)}.

Example 12.26 The relation r in Figure 12.22, u:,,(r) is shown in Figure
12.24.

($&)(A 13 C)
1 1 2
4 4 6

Figure 12.24

These two definitions are not precise, but precise definitions are not possible.
For uZ=~, note that for any relation s E u~,a(POS.So(r)), every tuple t E s has
t(A) = a. For any relation q, PO&S&q) contains relations whose tuples are
not all a on A. The two definitions are adequate and restricted (see Exercise
12.29).

We now examine closed possibility functions. There does not seem to be
any closed possibility function that has adequate and restricted generaliza-
tions for all of join, union, project, and select. While we do not exhaust all
reasonable closed possibility functions, we do treat the three most natural
ones.

The most liberal definition for a closed possibility function is

POSSc&) = {s Is is a close extension of Y).

Relational Algebra and Partii Relations

For POSScE, I 2 s does not imply r 2 s. Consider relations

397

r(A B) and s(A B)

1 2 1 2
I 2

We have r 1 s, but

1 2
3 2

is a close extension of r but not of s. Hence, POSS&r) g POSS,-E(S) and so
r 2 s. POSScE has adequate and restricted generalizations of union and pro-
ject (see Exercise 12.31a). No adequate generalization exists for select. Con-
sider oA=l(POSScE(r)> for

12.

There is no relation q in Reft (A B) such that POSS&q) 2 cAA=,(POSScE(r)).
POSS&q) can contain either non-empty relations, or just the empty rela-
tion, while uA=1(POSS&r)) contains the empty relation and the
relation

?(A B)

1 2.

A similar argument shows there is no adequate generalization of join for
POSScE (see Exercise 12.31b).

Another closed possibility function is

POSS&r) = {s/s 1 >- r).

There is no adequate generalization of project for POSSc. Consider

r(A B)
I 1
12.

: <‘-;:. :.

398 Null Values, Partial Information and Database Semantics

The set TA (POSS&)) is all one- and two-tupie total relations on scheme A.
There is no reration C.J E Relt (A) such that POSSc(q) contains all such rela-
tions. The same problem arises for the possibility function POSSME where

POSSA&) = { 1 s s is a minimal extension of r >.

POSSME is the most conservative closed possibility function.
The chances seem bleak for a closed possibility function with adequate and

restricted definitions for join, union, select, and project. Biskup has a possi-
bility function using a modification of partial relations for which such
generalizations exist. His approach divides a relation into sure tuples and
maybe tuples. We shall call this variety of partial relation a partitioned re-
lation. A partitioned relation can be viewed as an ordered pair of partial
relations. If r is a partitioned relation, we iet SURE(r) be the set of sure tuples
forf and let MAYBE(r) be the set of maybe tuples for r, If r is a partitioned
relation with scheme R, and s is a partial relation on the same scheme, s ap-
proximates r, written s D r, if SURE(r) U MAYBE(r) 1 s 2 SURE(r).
The possibility function we shall use for partitioned relations is

POSSB(r) = {q 1q is a close extension of some s such that s D r}.

In writing partitioned relations, we include a dashed line to separate the sure
tuples above from the maybe tuples below.

Example 12.27 Figure 12.25 shows a partitioned relation r(A B C). The
partial relations s1 and s2 in Figure 12.26 both approximate r, hence the close
extensions q1 of s1 and q2 of s2 in Figure 12.27 are both in POSSBfr).

r(A B C)

1 I 2
13 2
-_-_-_-_--_-__-
1 3 I
I I 4

Figure 12.25

SI(A B Cl ~264 B Cl
1 I 2 1 I 2
I 3 2 I 3 2
I I 4

Figure 12.26

Relational Algebra and Partial Relations 399

ql(A 3 C) q2b4 3 C)
1 3 2 1 3 2
1 5 2
1 3 4
1 5 4

Figure 12.27

If r contains only maybe tuples, POSY&) will contain the empty relation
along with non-empty relations. Such a situation is not possible for partial
relations with any closed possibility function.

We now syntactically characterize strength under PO&S,.

Lemma 12.2 For partitioned relations r and s over scheme R and the
possibility function POSSB, Y 2 s if and only if

1. every sure tuple in s is subsumed by a sure tuple of T, and
2. every tuple in r subsumes some tuple in s.

Proof (if) We must show that if the two conditions hold, then POSSB(r) C
POSS&). Let i; be a relation in POSSs(r). In order to show i; E POSS&),
we must show that every sure tuple in s is subsumed by some tuple in r^ and
that every tuple in F subsumes some tuple in s. Let t, be any sure tuple in s.
By condition 1, there is a sure tuple t, E r such that t, 5 t,. By the choice of i,
? contains a tuple tf such that ti > t,. Therefore, ti 2 t,. Now take an ar-
bitrary tuple up in i. There must be a tuple u, in r such that ui L u,. By con-
dition 2, s contains a tuple u, such that u, 2 us, so up L u,. Since the choice
of r^ was arbitrary, POSS&) c POSS&) and so r Z s.

{only if) Assume r 2 s. Let q = SURE(r). Form a completion 4 of q by
filling in nulls in q with values that appear nowhere in s. By this construction
of 4, $ E POSSB(r). Since r 1 s, 4 is in POSS&), so for any sure tuple t, E s,
q contains a tuple tB such that tB 2 t,. Tuple tB came from a sure tuple t, in I
by using values that do not appear in t,. Hence, t, must subsume t,, and con-
dition 1 is met.

Suppose now q = SLIM(r) U MAYBE(r). Form a completion C$ of q by
filling in nulls using values that do not appear in s. As before, 4 E POSSB(r),
hence 4 is in POSS&). Take any tuple t, E r and let t, be the tuple in 6 ob-
tained by filling t, (which appears in q). Since 4 E POSSB(s), s contains a tu-
ple t, such that tg 2 t,. Since the filled-in values of tq could not match ts, we
must have t, 1 t,, which fulfills condition 2.

Example 12.28 Let r be the partitioned relation in Figure 12.25 and lets be
the partitioned relation shown in Figure 12.28. From Lemma 12.2 we see

400 Null Values, Partial Information and Database Semantics

that s 1 r, but r f! S. Indeed, the total relation q2 in Figure 12.27 is in
POSSB(r) but not in POSSB(s).

Lemma 12.2 lets us characterize redundant tuples: those whose removal
does not change the strength of a relation.

CoroIIary Let r be a partitioned relation over scheme R and let t be a tuple
in r. Let r ’ be the partitioned relation formed by removing t from r. Then
r E r ’ if and only if

1. t E SURE(r), t is subsumed by a sure tuple of r, and t subsumes a
sure or maybe tuple of r; or

2. t E MAYBE(r) and t subsumes a sure or maybe tuple of r.

Proof Left to the reader (see Exercise 12.37).

The second case of the corohary implies that any t E SURE(r) fl
MAYBE(r) can be removed from MAYBE(r). If r ’ is formed from r by
removing a maybe tuple, then r ’ =1 r. If r ’ is formed by removing a sure
tuple, we could have r ’ and r incomparable in strength.

Example 12.29 Consider the partitioned relations r(A B C) and r ‘(A B C)
in Figure 12.29. Neither r nor r ’ has any maybe tuples; r ’ is r with a sure
tuple removed. Total relation i in Figure 12.30 is in POSSB(r) but not in
POSSB(r’); r^’ is in POSSB(r ‘) but not in POSY,(r).

Relational AIgebra and Partii Relations 401

?(A B C) ?‘(A B C)

1 5 2 1 5 2
6 3 4

Figure 12.30

For discussing restricted generalizations, we need to characterize when one
partitioned relation is strictly stronger than another. Assume I and s are par-
titioned relations such that r 2 S. There must be a total relation s^ in
POSS,(s) that is not in POSS&). How could s fail to be in POSY&)? The
first possibility is that r contains a sure tuple t, that is not subsumed by any
tuple in s^. It follows that there is no tuple in s that subsumes t,. The second
possibility is that s^ has a tuple t3 that does not subsume any tuple in Y. It
follows that the tuple t, E s from which tj came does not subsume any tuple
in Y. To summarize:

Lemma 12.3 Let r and s be partitioned relations such that r 2 s. If r ? s,
then

1. Y contains a sure tuple that is not subsumed by any tuple in s, or
2. s contains a tuple that does not subsume any tuple in r.

The converse of Lemma 12.3 is left as Exercise 12.38.

We are ready to consider generalizations of relational operators under
POSSB. Projection has a natural generalization. If r is a partitioned relation
with scheme R and X E R. we define

where

SURE(S) = {t(X) It in SURE(r)) and
MAYBE(s) = { t(X)jt in MAYBE(r)}.

Example 12.30 Let r(A B C) be the partitioned relation in Figure 12.31.
Figure 12.32 shows s = nit (t). The maybe tuple (I 4) can be removed
from s by the corollary to Lemma 12.2.

The proof that xB is adequate and precise is left as Exercise 12.39. We next
generalize select with an equality to constant comparison. Let r be a parti-
tioned relation on scheme R and let A E R. Define

c&,(r) = s(R)

402 Null Values, Partial Information and Database Semantics

where

SURE(s) = (tit E SURE(r) and t(A) = a}
MAYBE(s) = (tit E MAYBE(r) and t(A) = a} U

{t ‘/there is a t E r such that t(R - A) =
t ‘(R - A), t(A) = I and t’(A) = a}.

Example 12.31 Let r be the partitioned relation in Figure 12.31. Figure
12.33 shows s = u~=,<r).

r(A B C)

1 I 4
I 5 6
.
2 .L 4
1 3 6

Figure 12.31

dB C)
I 4
5 6
._
I 4
3 6

Figure 12.32

s(A B C)
114
.
1 5 6
1 3 6

Figure 12.33

Lemma 12.4 The operator r$j=, is a precise generalization of aA=(, for
POSSB .

Proof LA s = aj=,(r) for an arbitrary partitioned relation r(R) with A 6 R.
First, we show POSS&) 1 uA,,(POSSB(r)). Let q be in uA=~(POSSB(I)).

Relational Algebra and Prutial Reldms 403

Let i be a relation in ROSS&) such that q = aA=,@). We must show q E
POSSB(s). Let t be in SURE(s). We must exhibit a tuple t4 of q such that
t, 2 ts. Since t, E SURE(s), t,(A) = a and t, E SURE(r). Hence, r^ has a tu-
ple t, > t, . We see that t$(A)=a, so ti E q and is the desired tuple t, above.
We next must show that for any tuple t, E q there is a tuple t, E s such that
t, =T t,. We know t, f r^, so there is a tuple t, E r such that t, L t,. Either
tXA) = a or t,(A) = I. In the former case, t, E s. In the latter case, tr’ E s,
where t,‘(A) = a and tr’(R - A) = t,(R - A). Since t, 1 t,, and t,(A) = a,
t, z ti We conclude q E POSS&), as desired.

Second, we show ROSS&) 5 u,,,(POSS,(r)). Let q f POSS&). We
must find 3 in POSSB(r) such that q = aA,,(Note that q = aA=@(If
q It POU&), it can only be because r contains a sure tuple t, that is not sub-
sumed by any tuple in q. Let r^ include q and a total tuple tr’for every sure tu-
ple t, in T not covered by q. Choose t,’ so that t,‘(A) 3~ a. We have r^ E
POSSE(r), q = aAzn(r), hence q E aA,,(POSS,(r)). We have shown
POSS,(s) = uAza(POSSs(r)), so u2=, is precise.

We leave it to the reader to generalize aAEB for POSSs.
Let r and s both be partitioned relations on scheme r. The generalized

union given by

rUBs=q(R)

where

SURE(q) = SURE(r) U SURE(s) and
MAYBE(q) = MAYBE(r) U MAYBE(s)

is precise (see Exercise 12.42).
Finally, we generalize join for POSS B. Let r(R) and s(S) be partitioned

relations where R f3 S = X. Say that t, E I and t, E s are compatible on X if
for every A E X, t,(A) = t,(A) or at least one of t,(A) and t,(A) is null.
Define

rt&s=q(RS)

where

SURE(q) = { t(RS)Jthere are t, E SURE(r), t, E (SURE(s)
such that &(X)1, t,(X)l, t(R) = t, and t(S) = t,} and

404 Null Values, Partial Jnfonnation and Database Semantics

MAYBE(q) = { t(RS)lthere are compatible tuples t, E T
and t, E s such that t(R-X) = t,(R -X),
t(S-X) = t,(R-X), and for each A E X,
if t,(A)l, then t(A) = t,(A), else t(A) = t,(A)).

The “MAYBE” part of the definitions says we join compatible tuples by
following the more definite tuple on each attribute in X. This definition
makes SURE(q) a subset of MAYBE(q), but we may drop the duplicate
tuples from MAYBE(q).

Example 12.32 Let r(A B) and s(B C) be the partitioned relations in Figure
12.34. Figure 12.35 shows q = r wB s.

r(A B) s(B Cl
I 1 1 2
3 I -----_--

--------- 5 2
4 1 I 6

Figure 12.34

This generalization of join is not precise. Referring to the last example,
any relation in POSS,(r) w POSSB(s) satisfies the JD *[AB, BC]. There
are total relations in POSS&q) that do not satisfy this JD.

Lemma 12.5 The operator wB is an adequate and restricted generalization
of W for POSS,.

Relational Algebra and Partial Relations 405

Proof For the proof, let r(R) and s(S) be partitioned relations, let X =
R fl S and let q = r wB s.

(w B adequate) Let r^ E PO&Y&) and s^ E POSS&). Let 4 = r^ w s^. We
must show 4 E POSSB(q). Let t, be any tuple in SURE(q). There must be
tuples t, E r and t, 6 s that join to form t,, and, furthermore, t,(X) 1, ts(X) 1
and t,(X) = t,(X). By the choice of r^, it contains a tuple ti such that ti 1 t,.
Likewise, s contains a tuple t,- with t,- 2 t,. Let tg = ti w tf. We have tB 1 tq.
Suppose now that uq is an arbitrary tuple from Q. This tuple must be
up w uQ for some ui E r^ and U$ E s^. In turn, I must contain a U, such that
Uf 2 UT, and s E u, such that ui 2 u,. Tuples U, and u, must becompatible
and q therefore contains a maybe tuple uq constructed from u, and u,. It
follows fairly directly that uq 1 u4. Thus, q isinPOS’S&q) and soPOSS~(q) 2
POSS&-) W POSSB(s>, as desired.

(WB restricted) Suppose q ’ is a partitioned relation such that q ’ 2 q and
POSSB(q) 1 POSS,(r) w POSSB(s). Lemma 12.3 provides two cases to
consider,

Case 1 SURE(q ‘) contains a tuple ti that is not subsumed by any tuple in
q. We make the following claim,

Claim Any completion 4 of SURE(q) is in POSS&) w POSS&).

The proof of the claim is left as Exercise 12.42. Form a completion 4 of
SURE(q) using values not in q ’ to fill in nulls in SURE(q). By its construc-
tion, no tuple in Q subsumes tuple ti in q ‘, so 4 +! POSS,(q ‘). By the claim,
we have a contradiction to POSSB(q ‘) 2 POSS&).

Case 2 Relation q contains a tuple t, that does not subsume any tuple in q ‘.
Consider the tuple t, 1 > t, that is obtained by filling in t4 with values not in
q ‘. No tuple in q ’ is subsumed by tq. By the construction of fq, r must con-
tain a tuple t, such that fq(R) I 1 t,, and s must contain t, where fq(S) 1~ t,.
Choose r^ E POSS,(r) that contains fq(R) and choose s^ E POSs&) that con-
tains f&S). We see r^ W s^ contains fq4’ so i w s^ L POSSB(q ‘), a contradic-
tion. We conclude q ’ as described cannot exist, so D@ is restricted.

In this section we have considered generalizing relational operators relative
to various possibility functions. Only by introducing partitioned relations
were we able to obtain a closed possibility function with adequate and
restricted generalizations of union, select, project, and join. There may yet

406 Null Values, Partial Information and Database Semantics

exist a closed possibility function for partial relations that admits such
generalizations. It is also plausible that incorporating marked nulls would
allow precise generalizations where only adequate and restricted ones are
achievable now.

12.5 PARTIAL INFORMATION AND DATABASE SEMANTICS

We now turn to handling “subtuples” over a relation scheme. At times it
would be useful to view a relation as a set of inhomogeneous tuples. Different
tuples could have different schemes.

Example 12.33 Consider the attributes ADVISOR, DEPT, and STU-
DENT. We might want to store a tuple (a d) over ADVISOR DEPT, mean-
ing a does advising for department d. We might also want a tuple (d s) over
DELI STUDENT, representing that d is the major department for s. We
also might want a tuple (a d s > over all three attributes, meaning a is the ad-
visor of s for department d. Possibly, we may want tuples over STUDENT
alone, simply to record all the students.

The problems in handling a relation with inhomogeneous tuples are
similar to those in treating a database as a single semantic entity. We might
view a database as a single relation with inhomogeneous tuples. In Chapter
9, we were interested in databases that represented instances over a universal
scheme, although we saw there that a database can have states that represent
no universal instance. There is no efficient algorithm known to test if a given
database state is the projection of a common instance. (In Chapter 13 we ex-
plore a class of database schemes for which such a test can be done effi-
ciently.) It may be too restrictive to insist a database represent a single rela-
tion. If we do not adopt that view, though, how can we treat a database as a
unit and how do we discuss enforcing constraints on the database as a whole?

12.5.1 Universal Relation Assumptions

The requirement that the relations in a database all be projections of some
common instance is called the universal instance ussumption (UIA). A
database is seen as representing a single relation over a universal scheme-
usually the join of all the relations in the database. The UIA is often a
reasonable assumption for design purposes, even if actual states of the
database will not always conform to it. It is particularly apt when the design

Partial Information and Database Semantics 407

starts with a single scheme. We can draw a broad analogy between the UIA
and the assumption that a programming language can be described by a con-
text-free grammar. While the basic syntax of the language may be described
by a set of productions, the semantic actions associated with those produc-
tions may actually make certain constructs context-sensitive. Nevertheless,
the context-free grammar is a useful tool for organizing a compiler for the
language.

Why prefer a database over a single relation? First, we may eliminate
redundancy going from the single relation to the database. Second, we may
find it useful to store states of the database that do not correspond to any
single relation.

Example 12.34 We could represent the history relation of Table 12.1 as a
database of two relations: info(EMPLOYEE SALARY) and pmtinfo(EM-
PLOYEE PREVEMP PREVJOB PREVSAL). We coutd then store a tuple
(Lombardi 13,200) in info without storing a tuple for Lombardi in pustinfo,
in the case that Lombardi had no previous job. The tuple (Lombardi 13,200)
in info would not have the same meaning as the tuple (Lombardi 13,200
I I I > in history, since the latter asserts Lombardi had a previous job, but
we do not know the details.

There are situations where the UIA does not make sense, even at the
design level. The design process does not necessarily start from a single rela-
tion scheme. The database can include facts on a wide range of subjects,
where it is not meaningful or natural to discuss a tuple that ranges over the
entire set of attributes. The design process can start with a set of relation
schemes, and proceed by combining and decomposing those schemes. We do
not want the UIA, but we do want some consistency assumption about the
meaning of attributes in different schemes. If in one scheme DATE means
the birthdate of an employee, and somewhere else it means the date of ap-
pointment, we have semantic problems with combining relations using
natural join. If we assume that two occurrences of the same attribute in dif-
ferent schemes always have different meanings we can miss important con-
nections.

The z&versa1 relation scheme assumption (URSA) on a database scheme
requires an attribute mean the same everywhere it appears, that it represents
a single role of a class of entities. DATE, as used above, represented different
roles for the class of dates. URSA is always satisfied when a database scheme
is obtained from a single relation scheme by decomposition. A consequence
of URSA is that tuples over a given set of attributes have a single meaning.
Hence, an URSA database should never contain two relations over the same

. -&C ‘i::,... --..

408 Null Values, Partial Information and Database Semantics

scheme, for both relations would contain the same set of tuples. In an URSA
database, the scheme is sufficient to identify a relation. A set of attributes
determines a unique semantic connection among them, if any connection at
all exists. To contrast the UIA and URSA, the UIA requires a “universal ex-
tension, ” while URSA only requires “universal intension.”

To satisfy URSA, it may be necessary to rename attributes.

Example 12.35 Suppose we start with a reIation advises(FACULTY STU-
DENT) to record advisors of students and a relation teaches(FACULTY
COURSE STUDENT) to record students’ instructors and courses. URSA is
violated because of the two connections between FACULTY and STUDENT.
To satisfy URSA, we can rename the two occurrences of FACULTY to AD-
VISOR and INSTRUCTOR, to reflect the different roles involved. Some in-
formation is lost here-that ADVISOR and INSTRUCTOR are different
roles for the same class of entities. This connection may be discernable from
the domains involved. It can be recaptured explicitly in a generalization
hierarchy, which relates the different roles of a class of entities.

12.52 Placeholders and Subscheme Relations

We return to the problem of inhomogeneous tuples in a single relation. In
Example 12.34 we saw that decomposing a relation into database let us
represent facts over a subscheme of the original relation. Decomposition is
not always the answer.

Example 12.36 Referring back to Example 12.33, we wanted to represent
tuples over the schemes ADVISOR DEFT, DEFT STUDENT and AD-
VISOR DEFT STUDENT. Using a database with two relations, rt(AD-
VISOR DEFT) and r2(DEPT STUDENT), is not sufficient. We have no way
to represent tuples over ADVISOR DEPT STUDENT. We cannot use the
join of r1 and ~2, since an advisor advising for a department and a student
majoring in the same department do not necessarily imply that advisor ad-
vises that student.

One approach is to introduce a new special symbol, called a placeholder,
to pad out a tuple over a subscheme to the entire relation scheme. We use a
dash as the placeholder symbol. We treat a padded tuple as a tuple over the
subscheme of attributes where the placeholder does not appear.

Example 12.37 Table 12.11 shows a relation r(ADVISOR DEE’T STU-
DENT) with subtuples represented using placeholders. The tuple t2 =

Partial Information and Database Semantics 409

(Thor-ton Math -> is interpreted as a regular tuple over the scheme AD-
VISOR DEPT. Tuple t2 states only that Thor-ton does advising for the Math
department. There is no assertion that Thorton actually advises some
students, which the tuple (Thorton Math-) makes.

Table 12.11 Relation r.

r(ADVISOR DEPT STUDENT)

t1 Thomas Math Walker
t2 Thorton Math -
t3 - Econ Wilson
f4 - wu

While nulls and placeholders can both appear in a relation, we restrict
ourselves to just placeholders for the moment. As with nulls, we may want to
control the use of placeholders in a relation. We may allow subtuples only
over certain schemes. In the last example, we might disallow subtuples over
just ADVISOR and STUDENT. We could use a formalism similar to ex-
istence constraints to restrict the legal schemes for subtuples, but it seems
more natural here to simply list the allowable schemes for subtuples. We call
an allowable scheme for a subtuple an object. Objects are basically those sets
of attributes over which tuples “make sense.” We constrain a relation r(R)
bygivingasetofobjectsO=(W1,WZ,...,Wn},whereW;cR,lIir
it. Relation Y sadsfies 0 if for any tuple t in r, the set of attributes where
placeholders appear for t is R - Wi for some object Wi E 0.

Example 12.38 Relation r in Table 12.11 satisfies the set of objects 0 =
(ADVISOR DEFYI STUDENT, ADVISOR DEI’T, DEPT STUDENT,
DEPT, STUDENT).

While placeholders are adequate for representing subtuples in a single
relation, we use another method when working with databases. Given a set of
objects 0, we represent subtuples in a database that has one relation for each
object W E 0. Naturally, the relation on W contains all the subtuples with
scheme W. That is, we use 0 as a database scheme. We are departing from
our usual practice. Up to now, we never had two relations r(R) and s(S) in a
database if R E S. Under the UIA, there is no point in such an arrangement,
since r = ?T&). With just URSA, however, the arrangement makes sense.

The use of separate relations for subtuples also avoids a consistency prob-
lem. If placeholders are used, a given subtuple could properly appear in

410 Null Values, Partial Information and Database Semanmtics

multiple relations. A tuple (b c > over B C could be padded to appear in a
relation r(A B C) or a relation s(B C D). To obey URSA, it seems that if a
BC-tuple appears in I, it should also appear in s. When inserting a subtuple
into a relation, we must test to see if that subtuple could properly be included
in another relation. Using a separate relation for each type of subtuple
removes the need for such cross-checking.

Example 12.39 Consider the set of objects 0 = (ADVISOR DEPT, DEPT
STUDENT, ADVISOR DEPT STUDENT, DEFT STUDENT MATRIC).
MATRIC is the date when a student reaches upper-division standing in a
department. We could store tuples over these objects in two relations, rI(AD-
VISOR DEPT STUDENT) and r2(DEPT STUDENT MATRIC), using place-
holders. It is necessary to check that a DEFT STUDENT-tuple inserted into
one relation is also inserted into the other. With one relation per object, no
checking is necessary.

12.5.3 Database Semantics and Widow Functions

In this and subsequent sections we consider treating a database as a semantic
unit. We allow that a database contain relations on schemes that are
subschemes of other relations. To be consistent with URSA, there are restric-
tions on such relations. Let r(R) and s(S) be relations in the same database,
where R c S. By URSA, a set of attributes uniquely determines a semantic
connection among themselves. Since R is a subset of S, whatever the connec-
tion among the attributes of R, it must be an aspect of the connection among
the attributes in S. Thus, if t is a tuple of s, t(R) should be a tuple in r.
Equivalently, r should contain ?T&). This constraint is the containment con-
dition on objects. While the containment condition seems to require storing
much redundant information, it is easy to think of implementations that
remove the redundancy.

Example 12.40 We consider a database where the containment condition is
not met, and see how URSA is violated. Consider a database of just two rela-
tions, r(DEFT STUDENT) and s(ADVISOR DEPT STUDENT.) Suppose a
tuple (d s > E r means student s is taking a course from department d, and a
tuple (a d s> E s means a advises s for department d. The containment con-
dition will be violated if we allow that a student can receive advising from a
department before taking any courses offered by the department. The con-
nection between DEFT and STUDENT given by r does not agree with the

Partial Information and Database Semantics 411

connection implied by s. At least one of DEFT or STUDENT must represent
different roles in r and s, so URSA is violated.

We make a brief detour to consider the containment condition in light of
updates. For a database, it is usual to restrict the set of users who can update
a particular relation. Suppose a database contains relations r(R) and s(S)
where R E S. At first it may seem permission to update s should imply per-
mission to update r. Actually, it is quite reasonable to give update permission
for s without permission for r-. Having update permission for r means one can
constrain updates to s, since a tuple t cannot be added to s unless t(R) E r.

Example 12.41 Consider a database d on the set of objects { DEF’T, DEFT
COURSE#, DEPT COURSE SEMESTER YEAR, STUDENT, DEPT
COURSE# SEMESTER YEAR STUDENT >. By the containment condition,
a tuple (Econ 101 Spring 1980) over DEPT COURSE# SEMESTER YEAR
could only be added to the database if there is already a tuple (Econ 101)
over DEFT COURSE#. That is, a course cannot be scheduled for a given
semester unless the course actually exists. Typically, the president of the
university has authority to authorize an insertion of a DEPT-tuple (creating a
new department). An academic vice-president or dean can authorize inser-
tions over DEPT COURSE/# (creating new courses). The admissions office
authorizes STUDENT-tuples (admitting new students). A department chair-
man can add tuples over DEPT COURSE# SEMESTER YEAR (deciding
course offerings). A student authorizes tuples over DEPT COURSE#
SEMESTER YEAR STUDENT (enrolling in a course).

We return to the ramifications of URSA in a database. There are connec-
tions among attributes that are not captured directly by any relation in a
database. Rather, the connections are realized by combining two or more
relations. Such derived connections should be consistent with the connection
embodied explicitly in relations.

Example 12.42 Consider a database d with relations r,(FACULTY CLASS),
giving the classes a faculty member teaches, and r2(CLASS ROOM), giving
the room where a class meets. It seems reasonable to connect FACULTY,
CLASS, and ROOM by joining r1 and r2. Suppose, however, there is also a
relation ra(FACULTY ROOM) giving offices for faculty members. There is a
disagreement between the explicit connection of FACULTY and ROOM in
r3 and the derived connection given by rl w r2. Considered individually, it is
not immediately apparent that z-~, r2, and r3 violate URSA. It is the derived
connection from r1 w r2 that causes problems.

412 Null Values, Partial Information and Database Semantics

Whatever implicit connections among attributes we derive from a database
should be consistent with each other and the explicit connections given in
relations. We extend the meaning of object to include the schemes of derived
relations on a database. The meanings associated with objects must be con-
sistent, whether the objects correspond to stored or derived relations in a
database.

To afford a uniform view of objects, stored and derived, we use a window
function, so called because it gives a consistent set of views of the database,
one for each object. A window function maps an object and a database to the
relation, stored or derived, that the database assigns to that object. We
denote the value of a window function on object IV and database d by [IV, d],
or simply [W] where d is understood. Thus, [IV, d] is always a relation with
scheme W, whose value depends on the state of d.

A window function allows no room for multiple meanings for objects, since
it returns a unique relation for any object. Unique meanings for objects is
certainly dictated by URSA, but meanings for different objects must be con-
sistent. Hence, we make a containment condition for windows: If W and Z
are objects for a database d, and W C Z, then [W, d] 2 rw([Z, d]).

A window function can easily be extended to map every set of attributes to
a relation over those attributes. Let X be a set of attributes and let 0 be a set
of objects for a database d. We let

1x9 4 = wyo 4 W, 0.
W3X

The meaning for a set of attributes that is not an object comes from the
meaning of objects containing that set. If the original window function
satisfies the containment condition, then the extended window function
satisfies the containment condition, and agrees with the original function on
any object (see Exercise 12.45). If a set of attributesx is not contained in any
object in 0, [X, d] will always be the empty relation. The database assigns no
meaning to the attributes in X taken as a group.

Some of the window functions we consider are defined directly for ar-
bitrary sets of attributes. They do not make use of objects besides those cor-
responding to stored relations. Such a definition gives rise implicitly to a set
of objects, however. From the containment condition, for any set of attri-
butes X,

[Xl 2 & TAm.

Partial Information and Database Semantics 413

For some sets X, the containment will always be equality. For other X, there
will be states of the database for which the containment is strict. Such an X is
an implicit object of the window.

We consider one simple window function, and a problem with it, which
will motivate another condition on window functions. Let U be the set of all
attributes appearing in the schemes of a database d. We define a window
function with U as the only object. Let [U, dll = wd. (The subscript will
distinguish this particular window function from others.) This window func-
tion treats the database as representing a single relation over scheme U. Ex-
tending this function to arbitrary sets of attributes we get

The problem with [-1 r is that for a relation r(R) in d, [RI, does not necessar-
ily equal T, although it is always contained in 1. The meaning the window
function gives I is not the one given in the database. While the interpretation
of a database given by [-I1 satisfies URSA, and the database itself may
satisfy URSA, considered together they violate URSA.

In an URSA database, no two stored relations may have the same scheme,
so we may use schemes alone to distinguish relations. If R is a relation
scheme, we use 7;(R) to denote the database relation with scheme R, whatever
its actual name. We impose afaithfulness condition on window functions: for
any relation scheme R of a database d, [R, d] = F(R). The window function
[-1 r violates the faithfulness condition. Unless constraints are imposed on the
database state, the faithfulness condition means relation schemes are always
implicit objects of window functions.

In subsequent sections we examine several window functions. The first is
defined using joins of relations, but not all the relations in the database at
once. The others are defined as projections from a single relation, albeit one
with nulls.

12.5.4 A Widow Function Based on Joins

We assume a set of objects 0, of which a subset, R, constitute the database
scheme for a database d. As before, we let F(R) denote the relation on R for
any R E R. We allow that one relation scheme be a subscheme of another,
but require that the relations involved satisfy the containment condition.
Because of the nature of the window function we shall define, we also require
that every object W in 0 be the union of objects (schemes) in R. We define a
window function

414 Null Values, Partial Information and Database Semantics

[W, d]~,o = RyR F(R), for W E 0.
RCW

The relation for an object is the join of all stored relations whose schemes are
contained in the object.

Example 12.43 Consider the set of objects 0 = { DEPT, DEFT COURSE#,
DEFT COURSE# INSTRUCTOR, DEPT COURSE# CREDITS, DEPT
COURSE# STUDENT, DEPT COURSE# STUDENT CREDITS, DEPT
COURSE# STUDENT INSTRUCTOR} and a database d over the subset
R = {DEFT, DEPT COURSE#, DEPT COURSE# INSTRUCTOR, DEFT
COURSE# CREDITS, DEFT COURSE# STUDENT}. The sets R and 0 are
pictured in Figure 12.36. Solid lines indicate schemes in R; dashed lines in-
dicate objects in 0 - R. Table 12.12 gives a state of d. Table 12.13 gives the
vaiues of [DEPT COURSE# INSTRUCTOR STUDENTlrro and [DEFT
COURSE# CREDITS STUDENT]n,o.

INSTRUCTOR

Figure 12.36

The window function [.] R,O satisfies the containment condition, even if the
database d does not (see Exercise 12.47). It is also possible to prune the join
needed for some objects (see Exercise 12.48). This window function is
faithful, provided the database satisfies the containment condition. In proof,
note that for schemes R and S in R, if R E S, then F(R) w F(S) = 7((s).
Thus, for any S f R

w F(R) = F(S).
RER
RcS

Partial Information and Database Semantics 415

Table 12.12 State of d.

F(DEPT) S;(DEPT CUURSE#)

Econ Econ 101
Math Econ 102
History Math 120
English History 306

History 308

F(DEPT

Econ
Econ
Math
History

COURSE# INSTRUCTOR)

101 Galler
102 Garvey
120 George
306 Gunther

F(DEPT COURSE# CREDITS)

Econ 101 4
Econ 102 3
Math 120 4
History 306 4
History 308 3

F(DEPT COURSE# STUDENT)

Econ 101
Econ 101
Econ 102
History 308
History 308

Adams
Allen
Andrews
Adams
Andrews

We extend [-]R,O to arbitrary sets of attributes as indicated in the last sec-
tion.

Example 12.44 Continuing Example 12.43, [STUDENT CREDITS]u,o
and [STUDENT INSTRUCTOR] x,o are shown in Table 12.14. The value of
[INSTRUCTOR CREDITS]u,-, will always be empty because no object in 0
contains both INSTRUCTOR and CREDITS.

We shall return to this join-based window function when we examine the
PIQUE query language in Chapter 15.

. -. I,. .,

416 Null Values, Partial Information and Database Semantics

Table 12.13 Values of Windows.

[DEFT COURSE# INSTRUCTOR STUDENTIR,o

Econ 101 Galler Adams
Econ 101 Galler Allen
Econ 102 Garvey Andrews

[DEPT COURSE# CREDITS STUDENT]R,o

Econ 101 4 Adams
Econ 101 4 Allen
Econ 102 3 Andrews
History 308 3 Adams
History 308 3 Andrews

Table 12.14 Values of Windows (continued)

[STUDENT CREDITSIR,o [STUDENT INSTRUCTOR]R,o
Adams 4 Adams Galler
Adams 3 Allen G aller
Allen 4 Andrews Garvey
Andrews 3
Andrews 3

12.5.5 Weak Instances

The underlying concept for the next definitions of window functions arose
from the problems of enforcing data dependencies globally on a database.

Example 12.45 Consider the database in Table 12.15, with relations on the
schemes DEFT COURSE# CREDITS SEMESTER and DEPT COURSES#
CREDITS STUDENT. Both relations satisfy the FD DEPT COURSE# -+
CREDITS, but they represent different functions from DEPT COURSE# to
CREDITS.

While a database state need not be the projection of a common instance,
every database state is in a sense contained in a universal instance.

Definition 12.11 Let d be a database over the scheme R = {RI, Rz, . . . ,
Rp}, whereU = RI Rz e.1 R,. A relation s over scheme U is a weak instance
for d if

Partial Information and Database Semantics 417

for every scheme Ri E R.

Table 12.15 Inconsistent Database.

F(DEFT COURSE# CREDITS SEMESTER)

Econ 106
Econ 108
Math 211
Math 211
Math 286

4 Spring
4 Fall
3 Fall
3 Spring
3 Fall

F(DEPT COURSE# CREDITS STUDENTS)

Econ 106 4 Balfour
Econ 106 4 Berents
Econ 108 3 Balfour
Math 286 4 Berents
Math 286 4 Brown

The view here is that a database stands for its set of weak instances. Using
weak instances to discuss a database does assume that a tupfe over the
universal scheme U makes sense, if not a universal instance over that
scheme. We can use weak instances to discuss applying data dependencies
globally to a database.

Definition 12.12 Let d be a database over the database scheme R = (I?,,

R2, . . ., R, }, where U = RI R2 - - . R,. Let C be a set of dependencies over
U. Database d globally satisfies C, if d has a weak instance that satisfies C in
the usual sense.

Example 12.46 If d is the database of Example 12.45, and I; = {DEPT
COURSE# + CREDITS), then d does not globally satisfy F. If we changed
Y(DEFT COURSE# CREDITS STUDENT) to be as shown in Table 12.16,
then d will globally satisfy F. A weak instance s of d satisfying F is shown in
Table 12.17.

418 Null Values, Partial Information and Database Semantics

Table 12.16 Modified Relation.

F(DEPT COURSE# CREDITS STUDENT)

Econ 106
Econ 106
Econ 108
Math 286
Math 286

4 Balfour
4 Berents
4 Balfour
3 Berents
3 Brown

Table 12.17 Weak Instance s.

s(DEPT COURSE# CREDITS SEMESTER STUDENT)

Econ 106
Econ 106
Econ 108
Math 211
Math 211
Math 286
Math 286

4 Spring
4 Spring
4 Fall
3 Fall
3 Spring
3 Fall
3 Fall

Balfour
Berents
Balfour
Butcher
Butcher
Berents
Brown

For a database d over U and a set C of dependencies on U, a relation s(U)
is a C-weak instance, (C-WI) for d if s is a weak instance for d satisfying C.
Evidently, d has a C-WI if and only if d globally satisfies C.

We can define window functions using representative instances. We look
for the common parts of all representative instances for a database. Let d be
a database over U, let C be a set of dependencies over U, and let X be an ar-
bitrary subset of U. We define

[X,d], = n TX(S).
s a C-WI

for d

That is, [X,d]c consists of the X-values that appear in some tuple of every
C-WI for d. This definition satisfies the containment condition. For sets X
and Y where X C Y, if t is a tuple that is in sy(s) for every C-WI s for d, then
t(X) is surely in n&) for every such s. The definition of [.lc does not im-
mediately give rise to an effective procedure for its evaluation. A database d
could have an infinite number of C-WIs. Fortunately, when C is FDs and
JDs, nchase can be used to compute [-lc.

Partial Information and Database Semantics 419

Definition 12.13 Let I be a relation in Relt(R) and let X E: R. The X-total
projection of r, denoted zlx(r), is { t(X)lt E r and t(X)l}. The X-total pro-
jection of r is the X portion of all tuples in r that are definite on X.

If r is a relation on scheme R and U is a set of attributes containing R,
PAD(r,U) is the relation s in Rell (U) obtained by padding out each tuple in
I to have scheme U. The padding is done with distinct marked nulls. (The
relations we shall be padding have no nulls of their own.) For a database d
over U, PAD(d) is U PAD(r,U). We pad out all the relations in d to a com-
mon scheme. rEd

Example 12.47 Let d be the database in Figure 12.37. PAD(d) is the rela-
tion s shown in Figure 12.38.

F(A B) F(B C) F(A C)

1 4 4 7 1 7
1 5 s 7 2 8
2 4 6 8 3 8
2 6 3 9

Figure 12.37

s(A B C)

1 4 I,
1 5 12
2 4 13

2 6 l4
J-5 4 7
16 5 7
~-7 6 8
1 I8 7
2 ~9 8
3 110 8
3 J-11 9

Figure 12.38

Nchase from Section 12.2 can be extended to include an analogue of the
J-rule in regular chase computation. There is no hard violation of JDs,
however, as there was for FDs. The extension is straightforward.

420 Null Values, Partial Information and Database Semantics

Theorem 12.1 Let d be a database over U and tet C be a set of FDs and JDs
over U. For any subset X of U,

[Xl, = ~lx(nchasec(PAD(d))).

Proof Left to the reader (see Exercise 12.56).

Different choices for C give different flavors of window functions. One
possibilityistosimplyletC={*[R1,R~,Rp]jwhereR={R1.R2,
R, } is the database scheme. For this choice of C, we use [s]+~ to denote the
window function, rather than [‘1~.

Example 12.48 Let d be the database of Figure 12.37, for which R = (AB,
BC, AC}. NchuseJ(s) is shown in Figure 12.39, where J = (*[RI} and s =
PAD(d). Figure 12.40 shows [A B C]*R.

nchasej(s)(A B C)

1 4 A-1
1 5 12
2 4 13

2 6 14

15 4 7
I6 5 7
17 6 8

1 18 7
2 ~-9 8

3 110 8
3 J-11 9
1 4 7
2 6 8

Figure 12.39

[A B Cl*,
I 4 7
2 6 8

Figuxe 12.40

The window function [-]*n is faithful as long as the database d satisfies the
containment condition (see Exercise 12.57). For an arbitrary database
scheme R, [-]*n is probably hard to compute, since given a set of attributes X

Pa&M Information and Database Semantics 421

and a tuple t over X, determining if t E [Xl*, is NP-complete. In Chapter 13
we shall see a class of database schemes for which [-]*u can be readily
evaluated.

There is a problem in using [.lc if C includes a set F of FDs. The database
d may not globally satisfy F, hence there are no C-WIs. If we plan to use F

to define a window function, we want to constrain d to globally satisfy F. En-
forcing F on the relations individually is not sufficient, as Examples 12.45
and 12.46 show. Computing nchaseF(PAD(d)) for every update to the
database is prohibitive. If the FDs of F are embodied in keys of the database
scheme, there is a more efficient way to ensure d has an F-WI.

Definition 12.14 Let d be a database over the scheme R = (RI, Rz, . . . ,
R, 1. Let K; be a set of keys for R;, 1 I i s p. Let F be a set of FDs that is
completely characterized by the keys of R. Database d satisfies the modified
foreign key constraint* (MFKC) relative to F if for every Ri E ,R, if t E F(Ri),
there is a tuple t ’ over RT such that for any Rj G Rz, t ‘(Rj) E T(Rj), and, in
particular t ‘(Ri) = t.

Example 12.49 Consider the database d over scheme R = {A_ B, B_ D, A_ C,
_C D 1 shown in Figure 12.41. The single key for each scheme is underlined.
The keys completely characterize the set of FDs F = {A + B, B -+ D, A 3 C,
C 4 D }. Database d does not satisfy the MFKC for F. Consider T(A B) and
the tuple t = (7 8). We see (A B) + = A B CD, but there is no tuple t ’ over
A B CD such that t ‘(A B) = t and t ‘(R) E i-(R) for every other scheme R E
A B C D. If we add (7 5) to ?;(A C), such a tuple exists, namely t ’ = (7 8 5
6). With the addition of (7 S), d does satisfy the MFKC relative to F.

T(A B) T(B C) T(A C) F(C D)

1 2 2 3 1 4 4 3
7 8 5 3 5 6

8 6 5 6

Figure 12.41

If every relation in a database d satisfies its keys, and d satisfies the MFKC
relative to a completely characterized set of dependencies F, then d globally
satisfies F. The reason is the structure nchaseF(PAD(d)) will have. Let t be a
tuple in PAD(d) such that DEF(t) = Ri. That is, t came from relation $Ri)

*The foreign key constraint requires that if Ri contains a key Kj for Rj and ti c T(Ri), there is a
tuple tj in Rj such that ti(Kj) = tj(Kj).

422 Null Values, Partial Iuformation and Database. Semantics

in d. If t* is the corresponding tuple for t in nchuseF(PAD(d)), DEF(t*) 2
R,f , by the MFKC. In fact, t*(Ri+) will be exactly the tuple t ’ for t required
by the MFKC. It follows t*(Rj) E i;(Rj) for any relation scheme Rj E Rt*.
DEF(t*) can be no larger than R i+, because we are chasing with the key
dependencies of d (or an equivalent set of FDs).

Suppose t* enters into a violation of F along with another tuple U* in
nchaseF(l’AD(d)). Assume U* came from a tuple u in PAD(d) where
DEF(u) = Rt. Since the keys of d completely characterize F, P and U* must
violate Kj --* Rj for some relation scheme Rj and key Kj E Kj. Both Rif and
Rjf contain Rj, since they are both definite on Kj. By the remarks in the last
paragraph, t*(Rj) E 7;(Rj) and u*(Rj). If t* and U* violate Kj + Rj, SO does
T(Rj). We have argued for the following result.

Theorem 12.2. Let d be a database scheme, and let F be a set of FDs com-
pletely characterized by the keys of d. If d satisfies the MFKC relative to F,
and each relation in d satisfies its keys, then d globally satisfies F.

Example 12.50 Figure 12.42 shows s = PAD(d) for the database d of
Figure 12.41, with the addition of (7 5) to T(A C). Figure 12.43 shows s =
nchaseF(PAD(d)), where F is the set of FDs from Example 12.48. The nulls
in s can be filled in to get an F-WI ford.

PAD(d)(A B C D) ’

1 2 L1 12
7 8 l3 l4
15 2 16 3
J-7 5 I8 3
19 8 110 6

1 J-11 4 1 12

7 113 5 A- 14

-L 1s 116 4 3
I17 11s 5 6

Figure 12.42

12.5.6 Independence

Enforcing the MFKC still involves checking multiple relations when making
updates to a single relation. We would like a way to guarantee global
satisfaction that only requires checking the relation being updated.

Partid Information and Database Semantics 423

s(A B C D)

1 2 4 3
7 8 5 6

15 2 l6 3

J-7 5 L8 3

19 8 110 6
l- 15 116 4 3
1 17 118 5 6

Figure 12.43

Definition 12.15 Let R be a database scheme and let F be a set of FDs that
applies to R. R is independent for F if every database d over R that obeys F
(each relation satisfies the applicable FDs) globally satisfies F.

Independence can be paraphrased as “iocal satisfaction guarantees global
satisfaction.” In the case where F is embodied by the keys of R, there is a
necessary and sufficient condition for independence. For the remainder of
this section we assume that we have a relation scheme R = (RI, Rz, . . . ,
R, }, where each Ri has a set of keys Ki. Let Fi = {K + RiIK E K;}, 1 5
i Ip.lkt

F = ie1 Fi and F-j = i$l Fi*

i#j

X+ will denote the closure of a set of attributes relative to F, while Xkj
denotes the closure relative to F-j.

Definition 12.16 Let R and F be as given above. Relation scheme Ri E R
satisfies the uniqueness condition relative to F if there is no Rj E R, i f j,
such that for some key K E Kj and some attribute B E Rj - K,

K B E (Ri)~j.

R satisfies the uniqueness condition relative to F if every Ri E R satisfies it.

The uniqueness condition captures the idea that for any set of attributes X,
there is exactly one way to compute X + . That is, for any two F-based DDAGs
HI and Hz for X + X+, if attribute B was added to HI using an FD in Fi,
then some FD in Fi was used to add B to Hz (see Exercise 12.57). If R

..- _;,r .:,, .’ ;,-

424 NuU Values, Partial Information and Database Semantics

satisfies the uniqueness condition relative to F, then R is in BCNF under 1;
(see Exercise 12.58). In particular, no dependency K * A in F may apply to
more than one scheme in R.

Example 12.51 Let R = (R,, R1, RJ, R4} for R, = A_ B, R2 = g D, R3 =
A_ C and RJ = _C D, where each scheme has the single key underlined. These
keys embody the set of dependencies F = {A + B, B * D, A -+ C, C -+ D },
with extraneous attributes removed. R does not satisfy the uniqueness condi-
tion relative to F. Consider R1 and Rd. F-4 = (A + B, B + D, A -+ C}.
Thus (Ri& = A B CD. C is a key of Rq, and D E R4 - B. B D C (R&, so
R1 violates the uniqueness assumption.

Example 12.52 Let R = {RI, RZ, R3) for R1 = A B C, Rz = B CD and
R3 = A DE, where each scheme has the single key underlined. F = {A B -+ C,
B C + D, A D 3 E}. R satisfies the uniqueness assumption relative to P.
For example, (R&k2 = R1, which contains B C but not D from Rz. Also,
(R1)k3 = A B C D, which contains A D but not E from R3.

Before presenting the main theorem of this section, we make two
observations.

Observation 1 Let d be a database over U and let F be a set of FDs over U.
Suppose we form d ’ by adding tuples to some or all of the relations in d. If d ’
has any F-WI s, then s is an F-WI for d.

Definition 12.17 Let s E ReZt(R). Let t and u be tuples in s. We say t
supersedes u in s if tl(A) = t2(A) whenever t2(A) is a value, or a marked null
that appears elsewhere in s.

Observation 2 Let s c ReZt(R) and let F be a set of FDs over R. Let t be a
tuple in s that supersedes another tuple u in s. If t* and U* are the tuples in
s* = nchuseF (s) corresponding to t and u in s, then t* supersedes U* in s*.

From Observation 2 we conclude that if we are computing nchaseF
(PAD(d)) to determine if d has an F-WI, we can delete a superseded tuple at
any time, without changing the determination.

Theorem 12.3 Let R = {RI, RZ, . . ., R, } be a database scheme over U and
let Ki, 1 I i I p, Fj, 1 5 i I p, and F be as defined previously. R is in-
dependent for F if and only if R satisfies the uniqueness condition relative
to F.

Partial hfomation and Database Semanthx 425

Proof (if) We assume R satisfies the uniqueness condition relative to F. We
show that any database d over R that satisfies the keys of R has an F-WI.
We exhibit a database d’ that has an F-WI and is an extension of d. By
Observation 1, we conclude d has an F-WI. We shall compute
nchme#‘AD(d ‘)) and show that we never encounter a hard violation. We
actually start off computing nchase#‘AD(d)). Along the way we add tuples
to d and hence to PAD(d). Adding tuples in the middle of the nchase com-
putation will not cause problems, for we can pretend the tuples were present
from the beginning and we simply did not touch them before a certain point.

We shall organize the computation of the n&use in such a way that if t* is
a tuple in PAD(d) at some intermediate step, DEF(t*) will be the union of
schemes from R. Further, t* will never have any nulls that appear elsewhere
in PAD(d).

Let s* E Relf (U) be the state of PAD(d) at some point in the n&use com-
putation. Suppose we are about to apply an FD K --+ A to tuples t* and u* in
s* that agree on K. Assume, inductively, that t*(K) 1. By the nature of P, K is
a key for some scheme Ri, and A E Rj - K. First, instead of just equating t*
and u* on A, we equate them on all of Ri - K at once (a slight extension of
the fill-in rule). Second, we want to avoid equating marked nulls between t*
and u*. If there is a tuple v E I such that v(K) = t*(K) = u*(K), we
have no problem. There must be a tuple v* in s* such that v*(K) = t*(K) =
u*(K) and v*(Ri)l. Instead of equating nulls between t* and u*, we change
t*(Ri - K) and u*(Ri - K) to match v*(Ri - K). (Equating t*, u* and v*
on Ri - K actually takes two steps in the nchase computation.)

Unfortunately, we have no guarantee that F(Ri) contains a tuple v with
v(K) = t*(K) = u*(K). At this point we must add such a tuple v to F(Ri). If
we let v(Ri - K) be values not already appearing in i;(Ri), no keys for Ri will

be violated. (Why?) We then pad v using new marked nulls to be a partial
tuple over U, call it v *. We add v* to s* and proceed to change t*(R; - K)
and u*(Ri - K) to match v*(Ri - K). Watch carefully, please. After the
changes to t*, t*(Ri) = v*(Ri), and V* is unmatched marked nulls on U - R,.

By Observation 2, we may remove v* from s*, since t* supersedes it. We
remove v* to ensure the n&use computation eventually halts.

The effect of this maneuvering is tantamount to promoting t*(B) to a value
whenever t*(B) and u*(B) are marked nulls, for B E Ri - K. We assume for
the rest of the proof that if s* is some state in the computation of
nchaseF(PAD(d)), and t* is a tuple in s *, then DEF(t*) is the union of
schemes in R. Furthermore, we assume t* contains no matched nulls.

As a consequence of these assumptions about computing nchmeF(fAD(d)),
we can guarantee certain other conditions. Let t be a tuple in PAD(d) such
that DEF(t) = Ri. Let t* be the corresponding tupte in some state s* of the

426 Nuii Values, Partial Information and Database Semantics

computation of nch~~e#‘AD(d)). For Rj E R, if Rj $& DEF(t*), then (Ri):j
2 DEF(t*). No dependency arising from keys in Rj has been used to fill-m
t*, or else DEF(t*) z Rj. It follows that if DEF(t*) contains a key K of Rj
and an attribute A E Rj - K, then DEF(t*) contains all of Rja Otherwise,
(Ri>?j contains KA, and the uniqueness condition is violated.

After all these machinations, we must still show that we never encounter a
hard violation when computing nchu~e~(PAD(d)). Initially, there is no hard
violation in PAD(d), since all the relations in d obey their keys and no two
relation schemes can embody a common dependency. Tuples added to
PAD(d) along the way are chosen so as not to violate keys. Suppose at some
state in the computation of nchase#‘AD(d)) we first encounter a hard viola-
tion. Let s* be the state, and let t* and U* violate the FD K I-) A. Recall that
t* and U* must both be definite on KA. Let t*(A) = a and u*(A) = a ‘.
Since the hard violation first appeared at state s*, one of t* or U* must have
just been changed. Assume t* was changed, and roll the computation back
one step, to before t* was changed. We consider three cases, which depend
upon which parts of t* are about to be filled in.

Case 1 An FD Y ---* A was used to fill in t*(A) as Q using a tuple v*. K f Y,
otherwise, there is already a hard violation of K --) A between U* and u*.
K and Y are not in the same Kj. If they were, then Rj 2 K YA. DEF(t*) con-
tains K and Y, but not A, hence not Rjs We noted that such a situation does
not occur, from the way we are computing the nchase. Let t be the tuple in
PAD(d) fromwhich t* came. L,etDEF(t) = Rj. Assume Y -+ A comesfromRj.
Before t*(A) is filled in, DEF(t*) P Rj, so (Ri>Lj I> KY. K --* A does not
come from Rj, SO (Ri>f 1 KYA, which means Ri violates the uniqueness
condition with respect to Rj*

Case 2 An FD Y + K’ was used to fill in t*(K ‘) from a tuple v*, where K
= K ’ W for some set W (possibly empty). K and Y are not from the same Kj,
since t* is definite on Y and W, but not K ‘, hence not on Rj. (If W = 8, A F
Y, or else U* and v* violate K 4 A. If A g Y, we have DEF(t*) containing
YA but not K’ = K, hence not Rj.) Assume t* came from t in PAD(d)
where DEF(t) = Ri. Assume K -+ A comes from Rid Before t* is filled in on
K ‘, DEF(t*) 2 Rj, SO (Ri>$ 2 YWA. Since Y + K’ is not from Rj,
(Ri)kj 3 YK ‘WA = YKA. Thus, Ri violates the uniqueness condition
relative to Rj *

Case 3 Y -+ K ‘A was used to fill in t*(K ‘A) from v*, where K = K ‘W for
some W. W # @, or else U* and v* violate K + A. K and Y are not from the
same Rj, since DEF(t*) contains YW but not K ‘, hence not Rjs Let t* come

Partial Information and Database Semantics 427

from t in PAD(d) where DEF(t) = R i. Assume K + A is from Rj. Before t*
is filled in on K’A, DEF(t*) 2 Rj, so <Ri>kj 2 YW. Y 4 K’A is not from
Rj, so (R j)?j 2 Y K ‘WA = YKA. Hence, Ri violates the uniqueness condi-
tion relative to Rj.

In every case, we get a contradiction to the uniqueness assumption. We
conclude the computation of nchu.se&‘AD(d ‘)) never encounters a hard
violation of F, where d ’ is d with some tuples added. Database d ‘, and hence
database d, has an F-WI. R is independent relative to F.

(only if) This part of the proof is simpler and is left to the reader (see
Exercise 12.59).

Returning to window functions, consider [-IF where 3’ is the set of FDs em-
bodied by the keys of the database scheme, R. Assume R satisfies the unique-
ness condition. There will be no problems computing [X,dlF if d locally
satisfies the keys of R, since an F-WI is guaranteed to exist. In that case,
[X,& can be computed efficiently with joins (see Exercise 12.60). Also, [*IF
is faithful, if every relation has a non-trivial key (see Exercise 12.61).

12.5.7 A Further Condition on Widow Functions

In this final section, we consider a further condition on window functions,
which some will, and some will not, construe as a consequence of URSA. The
faithfulness condition was imposed to insure agreement between stored rela-
tions and the window function. Still, the faithfulness condition does not
totally guarantee the integrity of the semantics of stored relations. A window
function can be faithful, yet induce connections on subsets of a relation
scheme that are not part of the meaning of the scheme.

Example 12.53 Consider the database scheme R = {PLANE/# CITY
HANGAR#, CITY HANGAm MECHANIC, PLANE# MECHANIC LAST-
SERV), where the only keys are those underlined. R is the same scheme as in
Example 12.52, up to renaming. Let I; be the embodied FDs for R. The in-
tended meaning of a tuple (p c h) over PLANE# CITY HANGAR# is that
plane p goes to hangar h for servicing when in city c. A tuple (c h m) over
CITY HANGAR# MECHANIC means that m is in charge of service for
hangar h in city c. A tuple (p m Z) over PLANE# MECHANIC LASTSERV
means mechanic m last serviced plane p on date 1. The window function [-IF.
is the same as the window function [-]n,o, where 0 = R U { PLANE# CITY
HANGAWI MECHANIC, PLANE# CITY HANGAR# MECHANIC LAST-
SERV}. R and 0 are diagrammed in Figure 12.52.

428 Null Values, Partial Information and Database Semantics

Consider a tuple (p m> from [PLANE# MECHANICIF. If we just consider
the meaning of PLANE# MECHANIC LASTSERV, we would conclude that
(p m) means there is some date I such that m serviced p on 2. However, it
could result from tuples (p c h) and (c h m) in F(PLANE# CITY HANGAR#)
and F(CITY HANGAR## MECHANIC). That is, if p were serviced in city c, it
would be by m. This second meaning does not follow from PLANE# ME-
CHANIC LASTSERV, which implies m already worked on p. The difference
is potentiality versus actuality. Somehow, [-IF does not preserve the integrity
of PLANE# MECHANIC LASTSERV.

- - A_
--B.---w----

‘\,,‘*“‘“‘“r, / /’

.
---- --- /(.

Figure 12.44

Definition 12.18 Let R be a database scheme and let [-1 be a window func-
tion for databases over R. The strong faithfulness condition on [-1 requires
that for any scheme R E R, any X c R, and any database d over R, [X, d]
depends only on the states of relations whose schemes are contained in R,
that is

{F((s)lS E R, S G R}.

Strong faithfulness is violated in Example 12.53, since [PLANE#
MECHANICIF does not depend solely on F(PLANE# MECHANIC LAST-
SERV). Recall from Example 12.52 that R does satisfy the uniqueness condi-

Partial Information and Database Semantics 429

tion, so the uniqueness condition does not assure a window function is strongly
faithful (see Exercise 12.70). For window functions of the type [.]~,o, we can
give a sufficient condition for strong faithfulness.

Theorem 12.4 Let R be a database scheme over U and let 0 be a set of ob-
jects containing R. Assume every object in 0 is the union of schemes in R.
The window function [.lR,o is strongly faithful if 0 is closed under nonempty
intersection. (That is, for W, Z E 0, if W n Z # @then W n Z E 0.)

Proof We first show that for any subset X of W and database d, [X,d]~,o
can be computed from [Y,dlR,o for a single Y E 0, provided 0 is closed under
intersection. Recall

[xl,, = yyo nX([YIR,O)*

Y2X

Let Y, and Yz both be in 0 and both contain X. Y, r\ Y2 = Y3 is nonempty,
hence in 0. By the containment condition on the window function, T~([Y~]R,O)
contains both Q([YJR,o) and nx([Y&o. Hence Yl and Y, can be dropped
from the union for computing [X],,o without changing the result. Pro-
ceeding in this manner, we may remove all but one object from the union,
call it Y. We then have

[&,O = dY]R,Oh

What we have demonstrated is that if X is contained in some object of 0,
there is a unique minimum object Y that contains X. That is, for any W in 0
that contains X, W 3 Y. Further, [Xl,, takes its value from [YJa,o. Thus,
if R is a scheme in R and X c R, there is a unique minimum Y in 0 with
X z Y c R (since R E 0). The window function on X depends on the win-
dow function on Y, which in turn depends on

{F((s)lS E R, S c Y],

a subset of

(F((s)lS E R, 5’ c R }a

Closure under intersection is not necessary for strong faithfulness.

430 Nuil Values, Partial Information and Database Semantics

Example 12.54 If R = (B, C, AB, BD, AC, CD > and 0 = R U (ABC,

BCD 1, then 1 -IR,o is strongly faithful but 0 is not closed under intersection.
ABC fI BCD = BC, which is not in 0.

There is a condition on window functions of the type [‘]n,o that is
equivalent to 0 being closed under intersection. The definition does not ap-
ply to window functions that are not defined directly from objects.

Definition 12.19 Let R be a database scheme and let 0 be a set of objects
containing R. The window function [.]R,o is faithfulfor objects if for any ob-
ject W E 0 and any X C W, [X],o depends only on {?i(-(R)IR E R, R E W].

Object-faithfulness prevents a little knowledge from being a dangerous
thing. If [‘]R,o is faithful for objects, knowing the meaning of F(R) for every
scheme R contained in an object W provides the meaning for [X]n,o for any
X C W. Such is not the case when [‘]n,o is not faithful for objects, as we saw
in the last example. (Object-faithfulness implies strong faithfulness.)

Theorem 12.5 Let R be a database scheme over U and let 0 be a set of ob-
jects containing R. Assume every object in 0 is the union of schemes in R.
The window function [+lR,o is faithful for objects if and only if 0 is closed
under nonempty intersection.

Proof The %” part follows from Theorem 12.4. The “only if” portion is
left as Exercise 12.65. The basic idea is that if X is the intersection of objects
2 and W, but not itself an object, then [X]R,O depends on both relations
from W and relations from Z.

There are generally several ways to modify a database scheme and a set of
objects to make objects closed under intersection.

Example 12.55 Figures 12.45 and 12.46 show two ways to modify R and 0
from Example 12.53 to get closure of 0 under intersection. Under the first
modification, PLANE#-MECHANIC pairs can exist independently. Under
the second modification, PLANE#-MECHANIC pairs mean only that the
mechanic could potentially work on the plane. A mechanic cannot have serv-
iced a plane unless he or she could potentially have worked on it.

There are reasons for preferring closure of objects under intersection other
than object faithfulness. There is a computational advantage, as shown in
the proof of Theorem 12.4. A semantic argument can also be made for
closure under intersection. Let W and Z be objects, with X = W n Z # @.

Partial Information and Database Semantics

Figure 12.45

1’ :
c
I I \ \ \

---mm-- ------

LASTSERV

431

Figure 12.45

432 Nuli Values, Partial Information and Database Semantics

We know X-values make sense without (W - X)-values (in Z) and X-values
make sense without (2 - X)-values (in W). It seems X-values should make
sense with neither (W - X)-values nor (Z - X)-values: X should be an ob-
ject in its own right.

Example 12.56 Referring to Example 12.53, consider CITY and HANGAR#.
We can connect a CITY-HANGAM pair without a PLANE# in $CITY
HANGAR# MECHANIC). We can connect a CITY-HANGAR# pair without
a MECHANIC in $PLANE# CITY HANGAR#). It would seem that a CITY-
HANGAN pair could exist without PLANE# or MECHANIC, but there is
no place to store a pair. There is no piace to assert that city c has a hangar h.
Both the modified schemes of Example 12.55 have CITY HANGAR# as a
relation scheme, and hence can store such pairs.

12.6 EXERCISES

12.1 True or False?
(a) For relations r and s, if Y r s and Y and s have the same number

of tuples, then r > s.
(b) For relations r and s, if r 1 s and for every tuple t, E r there is a

tuple t, E s such that t, r t,, then Y > s.
12.2 Find a completion of the relation r below with a minimum number of

tuples

r(A B C D)

12.3” For a relation I with n columns and k tupIes, what is the fewest tuples
that any completion of r may have?

12.4 Show thatr > sands > r implyr =s.
12.5 Give relations r and s such that r > s and there is a completion of s

that is not a completion of T.
12.6 Let r and s be relations over scheme R. Show that if every completion

of r is a completion of s, then r > s.
12.7 Let f be a tuple calculus formula with a single free variable, x, and

that mentions a single relation, r. Give a method for evaluating the

Exercises 433

12.8

12.9

12.10

12.11

12.12

12.13

12.14

12.15

12.16

12.17

12.18

expression {x(R) If(x)} h w en r is partial. Does your method allow
the value of the expression itself to be a partial relation? You might
want the value to include a “sure” and a “maybe” component.
Give a tuple calculus formula involving a partial relation r such that
I,cf) isfake for every completion s of T, but I,(f) = true for some ex-
tension 4 of r.
Show that in the definition of permissible in Section 12.2, if “exten-
sion” is used instead of “completion,” an equivalent definition
results.
Give a set of FDs F and a relation I such that a particular null must
take the same value in any permissible completion of r, but this value
cannot be inferred using the fill-in ruie for unmarked nulls. Hint:
Think about nondistinguished variables in a tableau.
Characterize when two partial relations with marked nulls have the
same set of compfetions.
Give a definition of subsumes for relations with marked nulls. We
want a syntactic condition that characterizes when one relation,
treated as a set of axioms, logically implies another.
Show that if in the definition of augments for relations with marked
nulls, only values may replace nulls, an equivalent definition of com-
pletion results.
Let r E Relt(R) and let F be a set of FDs over R. Show that arbitrary
completions of nchaseF(r) need not be permissible.
Let r E ReZt(R) and let F be a set of FDs over I?. Let Y* =
n&use&). Assume Y* # HV and suppose t is a tuple in Y* with t(A)
= I i, A E R. Show that Y* has permissible completions under F that
do not agree on t(A).
Give a correct and complete set of inference axioms for existence
constraints.
Let E be a set of ECs over relation scheme R. For a subset X of R, let
X* denote the maximal set of attributes Y such that X 1 Y is implied
by E. (X* is analogous to X+ for FDs.) Let F be a set of FDs over R.
When adding a tuple t to a relation T E ReZl(R), it may be that t in-
itially satisfies E, but filling in nulls using F after the addition causes
t to violate E. Alternatively, t may violate E initially, but filling in
nulls after the addition makes t satisfy E. Using X+ , X* and DEF(t),
characterize when
(a) t is guaranteed to satisfy E after insertion into r,
(b) t will possibly satisfy E after insertion, and
(c) t will surely violate E after insertion.
Show that if q is a minimal extension of I-, then q is a close extension
of r.

434

12.19

12.20

12.21

12.22

12.23

12.24

12.25

12.26

12.27

12.28
12.29
12.30

12.31

12.32

Null Values, Partial Information and Database Semantics

Is a minimal extension of a relation r necessarily a completion of r? Is
a completion necessarily a minimal extension?
Which of the following possibility functions are reasonable?
(a) POSS1(r) = {s Js 1 1 r and IsI = IT]).
(b) POSS2(r) = {sls 12 r and IsI I IrI},
(c) POSS,(r) =

(s Js 12 r and no proper subrelation of s completes r }.
(d) POST,(r) =

(s/s 12 r and no relation with fewer tuples than s extends r}.
Show that for any closed possibility function POSS, the collection of
sets {POSS(r)(r E Relt(R)} is not closed under intersection.
Show that the collection of sets {POSS&) r E Relt(R)} is closed
under intersection.
Prove that no precise generalization for join exists for any closed
possibility function.
Show that if y ’ is an adequate and restricted generalization of y for a
closed possibility function, then y ’ is faithful to y.
Show that for POSSo, r 2 s if and only if r 1 s, and that r 2 s if and
only if r 3 s.
Prove that for any relation r E Relt(R) and any nontrivial JD *[RI
over R, there is an extension of r that does not satisfy *[RI.
Show that w” is restricted for POSSo. Hint: If q = r w” s and
there is a q ’ such that POSSo(q) 1 POSSo(q ‘1 2 POSSo(r) w
POSSo(s), then q ’ 2 q and hence q ’ 2 q. Consider a tuple t in q ’
that is not subsumed by any tuple in q.
Give a precise generalization of project for POSSo.
Show that uAo,= and cz=-, are adequate and restricted for POSSo.
Prove that POSScE and POSSME are reasonable possibility
functions.
(a) Give adequate and restricted generalizations of union and project

for POSS,,.
(b) Show that there is no adequate and restricted generalization of

join for POS&-.
Do adequate and restricted generalizations for union, join, and select
exist for POS& and POSSME?

12.33* Give syntactic characterizations for r 2 s for the possibility functions
POSS,-+ POSSc and POSSME.

12.34 Are there adequate and restricted generalizations for intersection,
complement, and select with inequality comparisons for any of
POSSO, POSSCE, POSSc, and POSSME?

12.35 Show that if an operator y has an adequate and restricted generaliza-

12.36

12.37
12.38
12.39

12.40

12.41
12.42
12.43

Exe&m 435

tion y ’ for possibility function, and y ’ is not precise, then no precise
generalization of y exists.
Give rules for redundant tuple removal for POSSCE, POSSC and
POSS&fE.
Prove the corollary to Lemma 12.2.
Prove the converse of Lemma 12.3.
Show that the definition of n$ is adequate and restricted for POSSB.
Is it precise?
Give an adequate and restricted generalization uJzB of ~A’A=B for
POSSB * What can be deduced about ~J=~(a~=,(r>) versus
&&%B(m
Show that WE is precise for POSSB.
Prove the claim in the proof of Lemma 12.5.
Which of the generalized operators defined for POSSO and POSSs
are faithful? Which of the generalized binary operators are
associative and commutative?

12.44* Let 0 be a set of objects over a set of attributes U and suppose U is
one of the objects in 0. Show that there exists a set E of ECs such
that

{ DEF(t)It satisfies E} = 0

12.45 Show that the extension of a window function from objects to all sets
of attributes given in Section 12.5 preserves the containment condi-
tion and gives the same value as the original function on objects.

Definition 12.20 Given a set of objects 0 and a set of attributesx, W E 0 is
a minimal object for X if W ‘1 X and there is no object Z in 0 such that W 1
z 2 x.

12.46 Prove that the value of an extended window function on a set of attri-
butes X can be computed from the value of the original window func-
tion on the minimal objects for X.

12.47 Show that the window function defined in Section 12.54 satisfies the
containment condition, even if the underlying database does not.

Definition 12.21 Given a database scheme R and a set of attributes X, R c R
is a maximal scheme for X if X 3 R and there is no scheme S in R such that
XlSsR.

12.48 Using the window function from Section 12.54, and assuming the

436 Null Values, Partial Information and Database Semantics

underlying database satisfies the containment condition, show that
PG4~,c, is the join of every relation -r(R) where R is a maximal
scheme for object X E 0.

12.49 Does a database d necessarily have a representative instance s such
that for at least one relation r(R) in d, ri(s) = r?

12.50 Prove Theorem 12.1. You will need to make some assumptions to
handle the case where nchase&!AD(d)) = HV.

12.51 Show that the window function [-]+n is faithful on any database satis-
fying the containment condition.

12.52” What are the implicit objects for [*]*n for R = {RI, R,, . . . , R, }?
Define [W]*n for implicit object W in terms of joins.

12.53 Let d be a database with scheme R over U and let F be a set of FDs
over U. Let t be a tuple in PAD(d). Let t* be the corresponding tuple
in nchaseF(PAD(d)). Prove DEF(t)+ 2 DEF(t).

12.54 Show that the foreign key constraint is not sufficient to guarantee
that a locally satisfying database globally satisfies a set of FDs.

12.55 Show that [aIF is faithful for a database d that satisfies the MFKC
relative to F.

12.56* Consider [-IF on databases over scheme R = {R,, RZ, . . . , R,) that
satisfy the MFKC relative to F. Give the implicit objects for [‘IF, and
for each object W, give a definition of [IV], using joins.

12.57 Let R = (RI, RZ, Rp},Fl,F2, Fp, andPbe defined as in
Section 12.5.6. Let U = RIRz -. - R, and let X c U. Assuming R
satisfies the uniqueness condition, show that the construction of any
F-based DDAG for X + X+ is unique relative to Fl, Fz, . . . , Fp . For
any attribute A E X + - X, there is a unique j, depending on A and
X, such that a node for A can only be added to the DDAG by using
an FD from Fj.

12.58 Prove that the uniqueness condition implies BCNF.
12.59 Prove the “only if” portion of Theorem 12.3. If R violates the unique-

ness condition relative to F, exhibit a database d that locally satisfies
F but does not globally satisfy F. Hint: Such a database exists where
every relation has but a single tuple.

12.60” Let R be a database scheme and let P be the set of FDs embodied in
the keys of R. For a database d on R and a set of attributes X, show
that [X,dlF can be computed using union, projection, and extension
joins.

12.61” The uniqueness condition does not allow database schemes where
one relation scheme is the subscheme of another, unless the sub-
scheme has a single, trivial key. Suppose we modify the definition of
the uniqueness condition so that (Ri)~~ may contain a key and

12.62

12.63

12.64

12.65

Bibliography and Comments 437

another attribute from Rj if R; 2 Rj. Alter the definition of in-
dependence to be that local satisfaction and the containment condi-
tion imply global satisfaction. Show that Theorem 12.3 holds under
the altered definitions.
Let R be a database scheme whose keys embody the set of FDs Ir.
Show that [-]F is faithful if R satisfies the uniqueness condition.
Show that [aIF can be faithful even if R violates the uniqueness condi-
tion and every relation has a non-trivial key.
Show that for any database scheme R, the window function I .]ZR is
strongly faithful.
Let R be a database scheme whose keys embody a set F of FDs. Find
a necessary condition for [-IF to be strongly faithful.
Complete the proof of Theorem 12.4. Let X be a non-object that is
the intersection of objects W and Z. Show that [Xl,,, can be
modified by changing relations whose schemes are in Z but not in W.

12.7 BIBLIOGRAPHY AND COMMENTS

Missing and partial information are problems in any database model. The
ANSI/X3/SPARC report [1975] lists over a dozen types of nulls, although
some are artifacts of the workings of the database system. Codd [1975] sug-
gested the null substitution principle for evaluating expressions with partial
relations. Grant [1977] pointed out that no recursive interpretation function
can be defined for null substitution. Vassiliou [1979] considers algorithms
for evaluating expressions under null substitution.

Walker 11979, 1980b] first suggested using dependencies to fill in nulls,
although his method deals only with unmarked nulls. Marked nulls are from
Maier [1980a], Vassiliou [1980aj and Honeyman [198Ob, 198Oc]. Lien 119791
considers the interaction of nulls and MVDs. Grant [1979] and Lipski
[1979b, 19811 treat nulls that represent intervals or sets of values, rather than
all possible values. Existence constraints are from Maier [198Oa]. Goldstein
[1981a] generalizes ECs to constraints on all types of values. Rozenshtein
[1981] looks at efficient implementations of partial relations. Possibility
functions follow from Biskup [198Oa, 19811, who also introduces POSSs and
generalized operators for POSSB . Codd [19751, Lacroix and Pirotte [1976],
and Zaniolo [1977] present generalized join operators. Reiter [1978] dis-
cussed the closed world assumption as it applies to databases.

Honeyman, Ladner, and Yannakakis [1980] show that testing the UIA is
NP-complete in general. Other criticism of the UIA and URSA is given by
Kent [1979b], Bernstein and Goodman [1980b], and Atzeni and Parker

438 Null Values, Partial Information and Database Semantics

[1981]. Objects are briefly mentioned by Zaniolo 119773 and are treated in
detail by Sciore [198Ob]. Carlson and Kaplan [1976] and Osborn [1979b]
discuss automatically connecting relations in a database. Window functions
are from Maier [198Oa]. The window function [-]n,o was developed in a
series of papers by Korth and Ullman [1980], Maier and Ullman [1980],
Korth [19811, and Maier and Warren [1981b]. Representative instances were
developed by Honeyman [198Ob, 1980~1, Graham [1981a], and Mendelzon
[1981]. The window function [-I *n is from Yannakakis [1981]. The MFKC
was proposed by Sagiv [1981a]. Stein [1981] considers efficiently enforcing
the MFKC. The uniqueness condition and its equivalence to independence
are due to Sagiv [1981b]. The proof of Theorem 12.8 used here was arrived at
with the help of Ed Sciore.

Numerous semantic extensions to the relation model have been proposed,
such as those by Schmid and Swenson [1975], Codd [1979], Kent [1979a],
and Housel, Waddle, and Yao [1979]. Clifford and Warren [1981] consider
the semantics of time in relational databases. The usefulness of summary in-
formation in databases is studied by LeViet, Kambayashi, et al. [1979],
Walker [1980a], and Bernstein, Blaustein, and Clarke 119801.

URSA requires renaming related attributes. Bachman and Daya [1977],
Smith and Smith [1977a, 1977b3, Gewirtz [1979], and Sciore [1979, 198Oa]
all deal with renaming attributes or capturing information about related at-
tributes, particularly where one attribute represents a specialized role of
another attribute.

For more material on semantics of databases, the reader is referred to
Sundgren 1197.51, Chen [1976], Sowa [1976], the collections edited by Nijssen
[1976, 19771, Brodie [1978], and Hammer and McJLeod 11978, 19801.

Exercise 12.44 is from Goldstein [1980, 1981b]. Exercise 12.53 is
motivated by Yannakakis [1981]. Sagiv [198la, 1981b] gives answers to parts
of Exercises 12.56 and 12.60.

