
Chapter 11 

QUERY MODIFICATION 

The query processor is a central component in any database system. The job 
of the query processor is to take a query expressed in the system’s query lan- 
guage, analyze it, and perform the file accesses and computations necessary 
to evaluate the query. Alternatively, it may generate code to perform those 
accesses and computations, rather than evaluating the query itself. There is 
generally a package of file management routines available to the query pro- 
cessor for performing the actual file accesses, As part of its analysis, the 
query processor might modify the query, usually for reasons of computational 
efficiency . 

If the query language is based on tuple or domain calculus, the first 
modification that generally takes place is the translation of the query into 
relational algebra (although the algebraic expression may be present only im- 
plicitly in some internal representation of the query). The tuple and domain 
calculi are basically non-procedural query systems: they express what the 
value of a query should be, but do not express how to compute the value. We 
do have methods to evaluate safe tuple and domain calculus expressions 
directly, but if the formulas involved contain quantifiers, those methods are 
computationally prohibitive. Algebraic expressions, on the other hand, can 
be evaluated directly if procedures exist for each of the operators involved. 
Thus, translation of a query to an algebraic expression is a means to specify 
how the value of the query should be computed. Note that the translations 
used in the theorems of Chapter IO arc not the ones used in query processors, 
Query languages based on tuple or domain calculus usually represent only 
some restricted subset of the possible tuple or domain calculus expressions. 
The restricted form of the expressions usually allows more direct translation 
schemes that produce fairly succinct algebraic expressions. 

The next modification the query processor is likely to make is substitution 
for virtual relations. Relational systems often support two types of relations: 
base relations, which are physically stored, and virtual relations, which are 
defined in terms of the base relations. Virtual relations, singly or collectively, 
are sometimes called views. The virtual relations are not stored, but the users 
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288 Query Modification 

of the system may use them to formulate queries, along with the base rela- 
tions. During query processing, occurrences of virtual relations within expres- 
sions must be replaced by expressions for those relations in terms of the base 
relations. The result is an equivalent expression involving only base relations. 

Example 11.1 In our little airline, pilots are periodically tested by ex- 
aminers and rated. The information on these tests is kept in three relations, 

rp(P# PN BD) 
re(E# EN) 
rt(P# E# DT RG), 

where P#, PN, BD, E#, EN, DT, and RG stand for pilot number, pilot name, 
based, examiner number, examiner name, date, and rating. We might have 
a virtual relation low, which gives information on pilots with low ratings, de- 
fied as 

h-t’ = rp w rP#DT RG(uRGs6.5 (f-t)). 

An expression such as 

CPN = Jacob#ow) 

would be modified to 

GPN = Jacobsh w aP# DT R&‘(‘JRG&j.&t)) 

before evaluation. 

Some relational systems, such as INGRES, enforce integrity constraints 
and security through query modification. 

Example 11.2 For the database of Example 11.1, suppose we wanted to 
grant only limited access to the rp relation to someone. Say we only allowed 
him to access tuples for pilots based at JFK or Atlanta. In INGRES, it is 
possible to stipulate that each time this person uses rp, the selection 

aBD=JFK v BD=Atlanta 

is applied to it. 
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Modifications are also made because not every algebraic operator may be 
supported, or some may be supported only in limited form. Some systems 
support only joins involving a single attribute in each relation. Joins involving 
multiple attributes in each relation must be converted to a singie-attribute 
join followed by a series of selections. Some systems support only selections 
involving the conjunction and negation of comparisons. Selections with dis- 
junctions are converted to the union of selections of the restricted tJtpe for 
evaluation. 

A large class of modifications are lumped together under the heading of 
query optimization. The purpose of such modifications is to find an expres- 
sion that is equivalent to a given expression, but whose evaluation will be 
more time- 0; space-efficient. “Improvement” might be a better term than 
“optimization,” for it is seldom possible to efficiently find an equivalent ex- 
pression that minimizes the time or space required for evaluation. 

Some optimizations are merely simplifications to remove redundant opera- 
tions, or to combine two operations into one. 

Example 11.3 Using the relations in Example 11.1, if we start with the ex- 
pression 

substitution gives us 

?TPNb-P w rP w nP# DT RGbRGs6.drt))), 

which simplifies to 

TPNkP w rP# DT RG(~RG<6.5(f-t))), 

since rp W rp = rp. 
The expression 

?TP#(?TP# DT DG(d) 

can have its projections combined to get 

w4rt). 

Other optimizations are made to take advantage of the form of the opera- 
tions that are supported by the query processor. 



290 Query Modifkation 

Example 11.4 Suppose there is a “restrict” operation available that per- 
forms a selection followed by a projection. The expression 

uDT=7 Jun(~P# E# DT(rt)h 

for relation rt of Example 11.1, requires two invocations of restrict, since the 
seiection follows the projection. However, the equivalent expression 

?TP# E# DTt”DT=7 J&t)) 

requires only one invocation, since the projection follows the sefection. 

The goal of all optimization is efficiency of execution. Even if the original 
query is seemingly written to execute efficiently, translation to another query 
system, virtual relation substitution and other modifications can yield a result 
that is not so efficient. Joins are a critical operation for efficiency, since the 
time required for a join is often proportional to the product of the sizes of the 
operands. Query modifications that reduce the size of join operands will im- 
prove time-efficiency. 

Example 11.5 Consider the expression 

(fPN=Jacobs(~.p w rP# DT R&RGs6.5(rt)) 

from Example 11.1, which was obtained by virtual relation substitution. Pre- 
sumably, cpN=JX&&~) has Only a single tuple, hence is much smaller than 
rp. To reduce the time needed for the join, the equivalent expression, 

aPN=Jacobs(~P) w rP# DT RG(~RGs6.drt)) 

should be used. 

Sometimes constraints on a database can be helpful in optimizing queries. 

Example 11.6 Suppose that for the relations rp and rt in Example 11.1 every 
pilot number that appears in rp must also appear in rt. The expression 

can be replaced by simply ?Tp&J)). Without the constraint, the two expres- 
sions are not equivalent. 
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Picking the order of evaluation for an expression also falls under the 
heading of optimization. The query processor must decide which intermedi- 
ate results to compute first and how to associate and commute operations. If 
an expression has a repeated subexpression, it may save time to save the 
value of that subexpression rather than computing it twice. The order that 
joins are taken in a string of joins is also important. 

Example 11.7 Consider the expression 

for the relations of Example 11.1. It may prove profitable to first compute 

r = rt w uEN=kwh(re) 

and then compute 

~F#bDT=7 Junk)) - ~F#(uDT=&J Junk’)>. 

Example 11.8 Consider the join 

rp C-4 re W rt 

for the relations of Example 11.1. If this join is evaluated as 

(rp w re) w rt, 

an intermediate result larger than the final result may be obtained, since 
rp w re is a Cartesian product. A better way to evaluate it is 

rp W (re W rt), 

so that no joins are Cartesian products. 

Finally, query optimization includes choosing the method of evaluation. 
The query processor may have several options as to how to perform a given 
operation. The option selected may depend on how a relation is stored, and 
what auxiliary structures exist. A selection c?n be computed by scanning the 
entire relation a tuple at a time. However, if an index exists for the attribute 
on which the selection is performed, the selection can be computed through 
index look-up. Projection may be implemented with and without duplicate 
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removal. If one projection is nested within another, duplicate removal need 
only be done at the outermost, if that choice is more efficient. Pointers from 
tuples in one relation to tuples in another are sometimes maintained to help 
compute joins. 

Although the order of tuples in a relation is immaterial in the formal 
model, in query evaluation, order is important. Almost every query language 
allows the user to specify that a result be sorted by one or more attributes. 
Ordering an intermediate result can make a subsequent operation easier. 
Union, intersection, and difference can be computed on a single pass 
through each operand if both operands are sorted in the same order. The 
ordering of operands also makes a difference as to the best method to com- 
pute a join. 

Example 11.9 Suppose we want to compute the join r w s where the 
scheme of T is AB and the scheme of s is BC. Assume that each relation is 
stored on disk, with 20 tuples per disk block, and that input from the disk 
comes only in entire blocks. Assume that r requires 30 disk blocks and that s 
requires 40 blocks, and that there is room in memory for 5 disk blocks at a 
time. We shall count complexity by the number of disk accesses made. 

If neither r nor s is sorted on B, we cannot do much better than the follow- 
ing method. Read the blocks of s into memory, 4 at a time. For each four 
blocks of S, we read in the blocks of r, one at a time. joining all possible 
tuples from the block of r with those in the four blocks of s. Each block of s is 
accessed once, and each block r is accessed 10 times, for a total of 340 ac- 
cesses. This method of computing the join can be viewed as one loop nested 
within another. The outside loop steps through blocks of t, and the inside 
loop steps through blocks of S. 

If r and s are both sorted on B, a more efficient method is available. As- 
sume tuples with a given B-value do not span more than two blocks of r or s. 
We compute Y w s by considering each B-value in turn, and joining all the 
tuples from T and s with that B-value. At most, two blocks of r and two blocks 
of s need be in memory at a time. If we consider B-values in sort order, each 
block of r and s is accessed once, for a total of 70 accesses. This method of 
computing the join can be viewed as merging r and s by simultaneously mak- 
ing a single pass through each. 

The query modifications we shall cover will not depend a lot on implemen- 
tation details, for to do so we would have to defve into file management 
techniques and trade-offs between secondary storage access and computation 
time. We shall try to use general principles that are valid in most implemen- 
tations, such as reducing the number of joins or the size of intermediate 
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results improves efficiency. However, the reader should be familiar with fife 
structures and indexing techniques used for secondary storage, to have an in- 
tuition for the general principles. 

11.1 LEVELS OF IKFORMATION IN QUERY MODIFICATION 

This section is a short aside to indicate how the range of modifications 
available depends on the amount of information available on a particular 
database and the system that supports it. Even if a lot of information is 
available, it may not be worthwhile to take the time to consult it for every 
query. For a query that must be evaluated only once, it is counter-productive 
to spend more time to obtain an optimized version than it takes to evaluate 
the original query. For a query that is expected to be evaluated many times, a 
large amount of time spent on optimization can be made up over the life of 
the query. 

At the lowest level of information, nothing is known about the relations in 
a database but their names. 

Example 11.10 The expressions 

can be modified to the equivalent expressions 

knowing nothing about the schemes of I and s except what is implicit in the 
expressions. Note, however, if we are given 

originally, we cannot be sure that 

is a well-formed expression, so we do not allow that modification. 
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With information about schemes of relations, a wider class of modifica- 
tions is available. 

Example 11.11 Given relations r(A B) and s(B C), the expression 

is equivalent to 

The equivalence does not hold if the schemes of the two relations are 
reversed. 

Constraints on relations allow more modifications. 

Example 11.12 If relation r satisfies the FD B + C, then 

can be replaced with 

The usefulness or necessity of certain modifications depends upon the 
operations supported by a specific database system and what retrieval 
methods are available for secondary storage. Multiple-relation joins might be 
implemented as a single operation. If selection is supported only where the 
condition is the conjunction of comparisons, selections with conditions involv- 
ing disjunction then must be converted to a union of selections. It is possible 
in some systems to apply a selection and projection during the retrieval of a 
relation from secondary storage. 

Some modifications depend upon the particular implementation of a 
database on a given system. The presence or absence of an index can dictate 
how to evaluate a selection or join. At the highest level of information, the 
state of the database comes into play. In the join 4 w T w s, the relative 
sixes of q, r, and s can dictate which pair of relations to join fist. Even if 
q w r is a Cartesian product, it is probably best to evaluate it first if 
Id - Irl c IsI. Th e method used to evaluate an expression might depend 
on which intermediate results are likely to fit in main memory. The decision 
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whether to store the value of a common subexpression or recompute it can 
also hinge on the size of the relations involved. 

11.2 SIMPLlFXATIONS AND COMMON SUBEXPRESSIONS IN 
ALGEBRAIC EXPRESSIONS 

The following equivalences can be used to eliminate useless operations from 
an expression: 

where @ is the empty relation with the appropriate scheme. O&e the empty 
relation can appear in expressions, other simplifications present themselves: 

where C is an arbitrary condition for selection or theta-join, and N is an ar- 
bitrary renaming. 

Exampie 11.13 The expression 

(r - r) W (r U r) 

simplifies to 

and thence to 8. 

The equivalences above also apply for an arbitrary expression E in place of 
r, such as (r w s) U (r w S) = r w s. In order to apply such simplifica- 
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tions, we must locate common subexpressions within an expression. Idealiy, 
we would like to locate equivalent subexpressions, such as r MI s and s w r. 
We shall describe a method that detects common subexpressions as well as 
some equivalent subexpressions that come from associativity and commuta- 
tivity. As we have noted, detecting such subexpressions is useful for deciding 
how to evaluate an expression, as well as for applying simplifications. 

We shall represent algebraic expressions by expression trees. An expres- 
sion tree is a directed tree with interior nodes labeled by operators and leaves 
labeled by relations and constants. The outgoing edges from an interior node 
point to the operands for its operator. 

Example 11.14 An expression tree for 

is shown in Figure 11.1. 

Figwe 11.1 

The idea is to convert an expression tree into a DAG by first merging iden- 
tical leaves, and then merging interior nodes labeled with the same operator 
and having the same operands. For interior nodes with two operands, the 
order of the operands only matters for difference and theta-join. 

Example 11.15 Starting with the expression tree in Figure 11.1, we can 
merge leaves to obtain the DAG in Figure 11.2. Two join nodes can then be 
merged to get the DAG in Figure 11.3. 
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Figure 11.2 

Figure 11.3 

If associative operations in an expression are not completely parenthesized, 
there is a choice as to how to form the expression tree. The choice might 
preclude finding equivalent subexpressions. 

Example 11.16 The subtree for q w r w s in the expression tree of Figure 
11.1 might have been formed as shown in Figure 11.4. In that case, no com- 
mon subexpression would be detected. 

w 

& 

w S 

q r 

Figure 11.4 



298 Query Modification 

To avoid missing subexpressions because of the wrong choice of expression 
tree, we allow any number of out edges from an interior node representing an 
associative and commutative operation. If two interior nodes with the same 
label have sets of operands that overlap by two or more, the overlap can be 
brought out as a subexpression. 

Example 11.17 The expression tree for 

(q w f-2 w rg) u b.2 Da r-3 w r4) 

is shown in Figure 11.5. A merged version is shown in Figure 11.6. 

Figure 11.5 

Figure 11.6 

Even allowing more than two operands for interior nodes does not guaran- 
tee that every common subexpression will be found. Certain choices for merg- 
ing will preclude others. If the expression of Example 11.17 is actually part of 
a larger expression that also includes rl w rz, the merging done in Figure 
11.6 means rl w r2 will not be identified as a common subexpression. For 
small expressions, it might be possible to try all mergings in order to detect 
all subexpressions. 
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As common subexpressions are detected, we can check to see if any simpli- 
fications can be made. 

Example 11.18 The expression tree for 

can have its nodes merged to obtain the DAG in Figure 11.7, which can then 
be simplified to the DAG in Figure 11.8. 

w 

I:!-,-i 
q “X 

Figure 11.7 

Figure 11.8 

There are also simplifications based upon containment, some of which are 
covered in Exercise 11.1. While containment of relations might be unusual in 
a database, containment can readily arise at the expression level. 

Example 11.19 A DAG obtained from the expression 

((f - (r u s)) w 4) u a;l&) 
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is given in Figure 11.9. If we can recognize that r C I U s, then we can make 
the sequence of simplifications shown in Figure 11.10. 

Figure 11.9 

OA= 

8 S 

Unary operators can be combined to simplify expressions, using the fol- 
lowing equivalences: 

for the appropriate choice of N3. Of course, such simplifications may mask 
common snbexpressions. It is possible to apply these equivalences to split an 
operator and then get a common subexpression. 

Example 11.20 In the expression 

(r w uA=,(q b-a s)) - (r bd UA=,I A f&q w s)), 
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it might prove fruitful to split u A a !, @=b(q b-a s) into ffB=b(uA=o(q w s)) = 
to exploit the subexpression aA,,(q w s). 

11.3 OPTIMIZING ALGEBRAIC EXPRESSIONS 

For the optimizations presented in this chapter, the general principle is that 
the time and space required to perform a binary operation grows with the 
number of tuples in each operand and the size of the scheme of each 
operand. The strategy we employ here is to push selections and projections 
down the expression tree. Pushing selections down reduces the number of 
tuples in the operands of binary operations. Pushing projections down also 
reduces the number of tuples and it decreases the size of schemes. Also, as a 
general principle, we want to perform selections before projections, because 
selection requires at most a single pass through a relation, while projection 
can require sorting to remove duplicates. 

Our goal is to start with an expression tree, push selections and projections 
as far down the tree as possible, and combine projections and selections such 
that in any path down the tree, between any two nodes for binary operations 
there is at most one projection and one selection node. The intuition here 
comes from the way an expression tree (or DAG) might be evaluated. For any 
interior node whose operands are all relations, we evaluate the operation at 
the node, store the result in a temporary relation, and replace the interior 
node by a leaf labeled with that relation. The process is repeated until only a 
single leaf is left in the tree, 

Example 11.21 Consider the expression tree in Figure 11.11. We compute 
s1 = rl w r2 and modify the tree as shown in Figure 11.12. We next com- 
pute s2 = I and modify the tree as shown in Figure 11.13. The evalua- 
tion is completed by computing s3 = s2 w r3. 

U h “X '3 w 
ci*t, '1 '2 

Figure 11.11 
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Sl 

Figure 11.12 

U 80 52 '3 

Figure 11.13 

The reason for wanting a single projection and selection between nodes for 
binary operations is that the unary operations can easily be performed at the 
same time as the preceding or following binary operation. When retrieving 
tuples from a relation for binary operations, it is a simple matter to drop at- 
tributes or screen out tuples to perform projection or selection. The same can 
be done when storing tuples that are the result of the binary operation. In ad- 
dition, the file manager might be able to remove duplicates during storage. 

Example 11.22 In Example 11.21, the projection can be combined with the 
subsequent join, and the temporary relation ~2 need not be stored. 

Below we give the equivalences that can be used to push selection down an 
expression tree. We assume that theta-join r[C]s is transformed to u&r w s 1, 
where the natural join is necessarily a Cartesian product. The equivalences 
are 

%( T%(r)) = T&(r)) 
u&,(r)) = q&J&)) 
%(r U s) = u&r) U a&) 
4~ n S) = ucw n uc(s) 
uc(r - s) = a&) - UC(S), 
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where condition C’ is condition C with appropriate renamings. Joins present 
a problem, since C might contain comparisons that involve attributes in both 
relations. Given relations r(R) and s(S), suppose C can be written as CI A C2 
A C3, where Cz applies only to attributes in R and C3 applies only to at- 
tributes in S. We then have the equivalence 

Example 11.23 Let q, r, and s be relations with schemes AB, BC, and CD. 
Then the expression 

can be modified to 

uD<A(q w UBsC A C=4 (r) w UC=4W. 

Note that 

is also an equivalent expression, but we always choose to push selection down 
as many branches of the expression tree as possible. 

All of the equivalences above for selection, of course, work when relations r 
and s are replaced by arbitrary algebraic expressions El and E2. The follow- 
ing equivalences are used to push projection down the expression tree: 

~x@j&)) = 6N(.lrXG)) 
~x(Qc(r)) = ?rx(ac(7rdr)) 
nx(r u s) = nx(r> u nx(s), 

where X’ is the appropriate renaming of X, and Y is the smallest set of at- 
tributes such that XY contains all the attributes mentioned in C. Note that 
projection cannot be pushed past an intersection or difference. Join, once 

5.: ‘. .,:;,... ;: :. ‘, 
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again, is a little tricky. Let R and S be the relation schemes of r and s. Let 
R’ = R fl XSandS’ = S fI XR. We can then use the equivalence 

We must retain all the attributes in X plus all the attributes in R fl S. As 
before, the equivalences hold with expressions substituted for relations. 

Algebraic optimization proceeds by using the equivalences above to push 
selections and projections down the expression tree as far as possible. Where 
there is a conflict between pushing a selection or pushing a projection, the 
selection goes lower than the projection, for ‘reasons already discussed. A 
project-select-project sequence is simplified to a project-select sequence. Any 
projections onto the entire scheme of an operand are removed. 

Example 11.24 Consider the following expression using the relations of Ex- 
ample 11.1, which gives all the pilots that have been given a low rating by 
Randolph and who are based in the same place as some other pilot who has 
been given a low rating since 1 June. 

rPNf”PNZPN’bEN=Randolph A RGs6.&-p w re w rt) 

w TPN’ BD&‘N+PN’(gDTrl June A RG16.5b w yt)))))- 

The expression tree for this expression is shown in Figure 11.14. The topmost 
selection cannot be pushed through the join, but the other two selections can 
be pushed downward through joins, as shown in Figure 11.15. Figure 11.16 
shows the topmost projection pushed down through a selection and join. 
Figure 11.17 shows projections pushed further down the tree, and the next- 
to-topmost projection removed. If we do not worry about removing dupli- 
cates in the two projections that lie below all binary operations, and perform 
the three-way join as two binary joins, then the tree in Figure 11.17 can be 
evaluated in four stages. If duplicates are eliminated for those projections, 
then the tree can be evaluated in six stages: 

rl + aP# E# RG(aRGr6.5(~t)) 

y2 + uEN=Rando,ph(+e) w rl 

r3 + TPN BDb w r2) 

f-4 +- cP#(oDTz 1 June A RG~6.&~)) 

r5 +-- ~PN+PN’(~PNBDb w f4)) 

16 + ~PN(~PN+PN’b+3 w %))- 



Optimizing Algebraic Expressions 305 

o PN#PN’ 

w 

A rp rt 

Figure 11.14 

Figure 11.15 

.-._A. &a-.,-. . i 
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Figure 11.16 

Fieure 11.17 
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The interaction between finding common subexpressions and algebraic 
optimization is complex. Certainly, performing algebraic optimizations can 
mask common subexpressions. In Example 11.24, the common subexpres- 
sion rp w rt is present in the original tree but not in the optimized tree. 
However, it is not obvious that computing rp w rt and using the result in 
two subtrees saves any time over the optimized version. There is also a prob- 
lem in pushing selections and projections down a DAG, since one node can 
represent the operand of multiple operations. It would seem best to optimize 
first and then look for common subexpressions. The optimized expression 
may even contain common subexpressions that were not present in the 
original expression. 

Example 11.25 Let q, r and s be relations on schemes AB, BC, and CD. 
The expression 

has no common subexpressions. The optimized version of the expression, 

has the common subexpression q w r. 

We state again that “optimization ” is somewhat of a misnomer for what 
we are doing. Pushing selections and projections down a tree is a heuristic; 
there is no guarantee that the modified expression will actually save any time 
or space for a particular state of the database. 

11.4 QUERY DECOMPOSITION 

This section deals with a method for evaluating queries that is used by the 
QUEL query processor in the INGRES relational database system. The goal 
is to reduce each query to a program involving only assignment, selection, 
projection, and for-loops. The INGRES algorithm also uses recursive calls, 
but we shall use assignments in their place for simplicity. 

The decomposition method works on a class of queries described by tuple 
calculus expressions of the form 

{x(A, A2 . * * 4z)l~Yl(~l) E r1 gyyz(Rz) E l-2 - - - 3y,(R,) E r, 
cfcGYl~Y2, “-*Ym) ~dy1,yz, -1 .,y,)>). 
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The formulaf is a conjunction of atoms. For each i, 1 I i I rz, it contains 
the atoms x(Ai) = yj(B) for some yj and some attribute B. The formula g 
contains no quantifiers, nor atoms of the form r(z). Such a tuple calculus ex- 
pression can be easily translated to an equivatent algebraic expression. Let Si 
stand for ANi( where Ni renames each attribute B in Ri to “yi.B”. The 
equivalent algebraic expression has the form 

For each atom x(Ai) = y#?) in f, N includes Ai + yp B and X contains B. C 
is the selection condition obtained from g by converting each atom y;(A) 6 
yj(B) to the comparison yl.A 19 ykB. Note that by the way attributes are 
named in the Si’S, all the joins are Cartesian products. 

Example 11.26 Consider the expression 

(MN RG))gyy1(P# PN BD) E i-p 3y2(P# E# DT RG) E rt 
(M’N = yl(PN) A x(RG) = y2(RG)) A 
fyl(BD) = “JFR” A yr(P#) = y,(P#) A y2(RG) > 9))}, 

using the relations rp and rt from Example 11.1. An equivalent algebraic ex- 
pression is 

where rp ’ and rt ’ are rp and rt with appropriate renamings. 

We shall present a graphical representation of algebraic expressions of the 
form 

but first we need to massage C into a certain form. 

Definition 11.1 A selection condition C is in conjunctive norrnai form 
(CNF) if it has the form C1 A C2 A - * * A C, where no Ci contains A and nega- 
tion applies only to individual comparisons. 
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An arbitrary selection condition C can easily be put in CNF. First, apply 
the following two identities (De Morgan’s Laws) to move negations inward 
until they apply to individual comparisons: 

1. l(C, AC,) = -Jci v -c2 
2. -(clvcg= lC,A lC*. 

Next, apply the following equalities to distribute V over A: 

3. (C, A C,) v c3 = (C, v C,) A (C, v C,) 
4. (C, v (C, A C,) = (C, v C,) A (Cl v C,). 

Example 11.27 Starting with the selection condition 

we move the first negation inward to get 

Moving negation inward once more, we get 

which has negation applying only to individual comparisons. We can then 
distribute to get 

(lA, = A2 v (A, = A3 VA, = a)) 
h(~Az<av(Al=A3vA3=u)), 

which is in CNF. 

Let E be the algebraic expression 

where C = Ci A C2 A ~0 * A CA is in CNF and the joins are all Cartesian prod- 
ucts. We represent E by a labeled hypergraph HE, called the connection 
graph for E. In a hypergraph, edges may contain one or more nodes, rather 
than just two as in regular graphs. HE has a node for each of si, ~2, . . . , s,. 
HE contains an edge ej for each conjunct Ci. Edge ei contains node Sj if y+ 
appears in Cj for some attribute B. Edge ei is labeled by Ci. 
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Example 11.28 Let E be the algebraic expression 

u&t W s2 w s3 w s4 w sg) 

where C is the selection condition 

yl.A = y2.A A yl.B = y2.B AY~.D = d A 
(y2.G = y3.G vy2.F < y4.F) r\y4.A < ys.A. 

The connection graph HE for E is shown in Figure 11.18. Edges are depicted 
with dashed lines. Note that two edges can have the same nodes, but the 
edges will have different labels. 

,--VI .A=v2 .A 2-- 

Vl .B=y2 

,I---------- - 
f-,$--- - - ---- 

7<, 1 i- , 0 s>; ‘7v2 -G=v3 

;;------$ / ---::.Y I ,/---, 
/ ’ / 

.B / I/ S5 ,I 
/ /I 0 / 

.G 

v4 

V y2 .F<y4 .F 

.A<v5 .A 

Ly3 .D=d 

Figure 11.18 

In all subsequent examples, edges will have at most two nodes, for simplic- 
ity. We shall draw the connection graphs as regular graphs. An edge contain- 
ing only one node is represented as a loop from the node to itself. 

Query decomposition starts with a one-statement program of the form 

where the schemes of the si’s are disjoint. The end result is a multiple-state- 
ment program that contains assignment, selection, projection, and for-loops, 
but no joins. The joins are performed via for-loops instead. Two transforma- 
tions on programs, called instantiation and iteration, are used to achieve that 
goal. The transformations correspond to edge removal and node removaf in 
connection graphs, and the goal is to transform the connection graph for 
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&1 w 82 w . . * w s,) to a graph with no edges. We examine each 
transformation in detail. 

11.4.1 Instantiation 

Instantiation is analogous to pushing selections down an expression tree. We 
start with the statement 

where C = C1 A C2 A - - - A Ck is a CNF selection condition. Let E denote the 
expression. 

Instantiation starts with the choice of some subset of the relations (sl, ~2, 
. - -t s, } to instantiate. Suppose we choose ( sI, s2, . . . , sP >. Let eI, e2, . . . , 
e, be the edges in H, that consist only of nodes in { sl, s2, . . . , sP >. Recall 
that edge q is labeled with conjunct Ci. The transformed program for this in- 
stantiation has two statements: 

Y is the set of attributes in relations sl, ~2, . . . , sP that are mentioned in 
c q+t9 c7+2, * - .I C, or contained in X. Relation r ’ is a temporary relation to 
hold the intermediate result. 

The corresponding change in the connection graph substitutes r ’ for sr, ~2, 
. . ., Sk in the edges eq+l, eq+2, . . . , ek. The result is a graph with two com- 
ponents, one with nodes sl, ~2, . . . , sP and edges el, e2, . . . , eq, and the other 
with nodes r ‘, sp+l, sp+2, . . . , s, and modified edges eqfI, eq+2, . . . , ek& 

Example 11.29 Consider the statement 

where 

C isyl.A = y2.A r\y2.A = y3.A fiyz.B I y3.B 
Ay3.D 5 y+D /\y4.F = 6. 
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The connection graph for the selection is shown in Figure 11.19. Instan- 
tiating on (q,s3} gives the statements 

T’ + 7r yZ.Ay3.By&JC’(~2 w s3)); 

r * ~yl.Ay3.By4.G hJc+ b-4 Sl w s‘#)), 

where 

C’ isy2.A =y3.A A y2.B I y3.B and 
C”isy,.A = y2.A AY~.D I y,.D AY~..F = 6. 

The modified connection graph is shown in Figure 11.20. 

Y, .A=yAy4 -F=6 
Figure 11.19 

Y2 .Kyg .B 

a----= 

~2 ,A=y3 .A 

Figure 11.20 

A useful special case is where a single relation, say sl, is chosen for instan- 
tiation. In that case the two statements in the transformed program are 
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Example 11.30 Suppose we start with the program in Example 11.29 and 
instantiate { s4} instead. The resulting program is 

r’ + ~y’y4.0yq.G(uyyq.F=6(S4)); 

r e ryl.Ay3.By4. &ucdr’ W sl W s2 W sg)), 

where C’ is C without the comparison y4.F = 6. The modified connection 
graph is in Figure 11.21. 

Figure 11.21 

11.42 Iteration 

This transformation is also called tuple substitution. It starts with a single 
statement 

r + 7rxac(sl W s2 W -*- W s,) 

as before. One of the relations, say sl, is then chosen for iteration. The 
transformed program is 

r +a> 

for each tuple t in s1 do 

begin 
r’ + 7rp~~(~j(s2 WI s3 W -f* M S,>; 

add r ’ to r with appropriate padding 
end. 

Here C(t) means C with every occurrence of an attributeyl .A replaced by the 
value t(yl.A). Y contains those attributes in X that are not in the scheme 
of sl+ The appropriate padding for r ’ is t(X- Y). That is, r ’ is extended by 
the portion of t that is included in X. 
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The corresponding change in the connection graph is to remove the node sl. 
Any edges that were incident upon s1 become loops. 

Example 11.31 Consider the statement 

r @ Tyl.Ay2.~y3. d&l w $2 w Sj)), 

C isyI.A = y2.A AY*.D 5 ys.D /\y3J’ = 6. 

This statement is the same as one of the statements in Example 11.29 with 
some renaming. The connection graph for this statement is shown in Figure 
11.22. Iterating on s2 gives the transformed program 

r +-a 
for each tuple t in s2 do 

b&u 
r’ + ry,.Ay3.G bc&, w s3)k 
add r ’ w (t(y2.B)) to r 
end. 

C(t) isy,.A = t(yz.A) A t(y2.D) 5 y3.D A~~.F = 6. 

The modified connection graph is shown in Figure 11.23. 

y3 .t= =6 

Figure 11.22 

8 

y1 .A=t (~2 .A) 

Sl 

Figure 11.23 
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11.4.3 The Query Decomposition Algorithm 

The query decomposition algorithm is simply stated as: start with a single- 
statement program, and repeatedly apply the instantiation and iteration 
transformations until all assignment statements have the form 

The second form can be transformed further by more applications of itera- 
tion. However, since no selection in involved, we use that form as shorthand 
for the k-l for-loops necessary to compute the Cartesian product. Also, 
depending on the attributes in the projection, a for-loop might not be 
necessary for every join (see Exercise 11.6). In terms of the connection graph, 
the goal of the algorithm is essentially to isolate every node. That is, no edge 
connects two different nodes. Actually, once all the nodes are isolated, some 
applications of instantiation might still be necessary. 

Example 11.32 In the connection graph (Figure 11.23) for the transformed 
program of Example 11.31, all nodes are isolated. The second assignment 
statement has a selection applied to a join. However, since the selection con- 
dition has no comparisons between attributes of s1 and ~3, iteration is not 
necessary, only instantiation. A fully transformed version of the program is 

-3 
for each tuple t in s2 do 

begin 
rl’+ 7r y,.A(“CI(‘)(S1)); 

ri + 7r y3.Gh2(t)(S3)): 

r’ + r; w r;; 
add r’ W (t(y2.B)) to r 
end. 

C,(t) isyl.A = t(y2.A) and C,(t) is t(y2.D) s y3.D f\y3.P = 6. 

Example 11.33 For this example we shall use relations sW, sX, sr, and s,, 
and assume attributes from s, are prefaced with “w.“, attributes from s, 
with “x.“, and so forth. Assume that we start with the single statement 
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r + r,.A z. G(%,AC~AC~AC~AC+C~ (s, cd s, ba sy w s,)) 

where 

Cl is w. B I 7 C4 isx.D = y.D 
C2 is w.A = x.A C5 isy.F = z.F 
C3 is w.A I y.A C6 isx.F I z.F. 

The connection graph for this statement is shown in Figure 11.24. 
We start by iterating s, to get 

for each tuple t in s, do 

hi& 
2. r1 + ~,.A~~C,“C2*c~*C~*c~~~~~c~~~~~~~ w sx w 0 

addrl W (t(z.G)) tar 
end. 

where 

C,(t) isy.P = t(z.F) and C,(t) is x.F I t(z.F). 

The connection graph for this program is shown in Figure 11.25. 
We now instantiate s, , s,, and s,,, in turn, in statement 2 to get 

2.1. r2 + ~,.A(@,)): 
2.2. f-3 +- ~x.A x.D(~C&)(S,)); 

2.3. 14 + ~y.Ay.D(~Cs(t)by)~; 
2.4. f-1 + r,,,A (~C2AC3Ac4(r2 W r3 W r4)). 

The connection graph is now as shown in Figure 11.26. 
We next iterate r3 in statement 2.4 to get 

2.4.1. rl + a 
for each tuple u in r3 do 

begin 
2.4.2. r5 * %.A( ~c,(u)Ac,Ac,dr2 c-=d r4)k 

add rg to tl 
end. 
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where 

C,(U) is w.A = u(x.A) and C,(u) is u(x.D) = y.D. 

The connection graph is now as shown in Figure 11.27. Finally, we instan- 
tiate r4, then iterate the resulting relation, r(,, in statement 2.4.2 to get 

2.4.2.1. t-6 + ?Ty.A((JC4(r)(r4)); 

2.4.2.2. l-5 + Ql; 
for each tuple v in 1-6 do 

begin 
2.4.2.3. ?-7 + ~r,.A(aC,(u)E\C3(v)(r2)); 

add r7 to r-5 
end. 

where 

C,(v) is w.A 5 v(y.A). 

The final connection graph is shown in Figure 11.28. 

Figure 11.24 

Figure 11.25 

., ‘, 



318 Query Modification 

Figure 11.26 

CD % qj (tl 

CD =Y csj (t) 

Figure 11.27 

(g4’“’ (g) C,(t) 
Figure 11.28 

The query decomposition algorithm as described leaves a lot of leeway, 
since it does not say which instantiations or iterations to perform, nor in what 
order to perform them. Some final programs will be better than others. We 
present a heuristic method for applying the transformations in the decom- 
position algorithm to minimize the time complexity of the resulting program. 
We note here that the QUEL query processor does not use multiple-relation 
instantiation (see Exercise 11.8). While multiple-relation instantiation is not 
necessary to get a program in the desired form, it is useful for applying 
heuristics during decomposition. 

The first principle is to minimize the number of repetitions for each for- 
loop. Hence, we want to instantiate a relation before iterating it whenever 
possible, to reduce the number of tuples that must be considered in the for- 
loop. The second principle is to minimize the number of times the iteration 



Query Decomposition 319 

transformation must be applied. In general, the number of iterations re- 
quired will be one fewer than the number of relations involved. Sometimes, 
however, not all the iterations need be performed for a statement of the form 
Y + 7Q(s, w s2 w * *- w sR) (see Exercise 11.8). The third principle is to 
minimize the depth of the nesting of for-loops, since nesting has a 
multiplicative effect upon time complexity (see Exercise 11.10). 

The second and third principles are served by always trying to choose a 
relation to iterate whose node, if removed, disconnects some portions of the 
connection graph. 

Example 11.34 If we are working on a statement with the connection graph 
shown in Figure 11.29, picking s 1 to iterate means at least one more applica- 
tion of iteration. If s2 is iterated first, no more applications of iteration are 
necessary. 

Figure 11.29 

In the following method, we make crude estimates on the sizes of relations. 
A simple edge in the connection graph is a one- or two-node edge whose 
selection condition is the disjunction of equality comparisons. Let r be a new 
relation generated by instantiating a single relation s: 

If any of the selection conditions in C comes from a simple edge, we label r 
“small,” since presumably the equalities hold for only a few tuples in s. 

The heuristic is described in terms of the connection graph by the follow- 
ing options. During the query decomposition algorithm, always choose the 
lowest numbered option possible. 

1. Instantiate a relation that is contained in some one-node edge. If a 
simple edge is involved in the instantiation, label the newly generated 
relation “small.” 

2. Iterate a “small” relation. Prefer one in simple edges. 
3. Iterate a relation whose removal disconnects some portion of the 

graph. Prefer one in simple edges. 
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4. Instantiate a set of relations whose removal disconnects some portion 
of the graph. Give preference to sets 

a. with few relations, 
b. that are connected in the graph, and 
c. that are in simple edges. 

5. Iterate a relation. Prefer one in simple edges. 

The idea behind option 4 is that the new relation generated by the instantia- 
tion is a candidate for option 3 during the next transformation. 

Example 11.35 We repeat the query decomposition algorithm on the initial 
statement of Example 11.33, this time using the heuristic. In the connection 
graphs, we denote “small” relations by heavy circles. The graph for the ini- 
tial statement is shown in Figure 11.24. Note that the edges for C2, Cq, and 
Cs are simple. Option 1 applies to relation sw, so we instantiate s, to get 

1. f+l + %L&Jc,(s,)); 
2* r + Tw.A z.G(%,AC,AC,AC~AC~ (q c-4 s, w $7 b-4 s,)). 

The edge labeled Ci is not simple, so rl is not “small.” The modified connec- 
tion graph is shown in Figure 11.30. None of options 1-3 now apply, so we ap- 
ply option 4, We instantiate {s,, sY } in statement 2 to get 

2.1. r2 + GAx.Fy.Ay.F(W&. w sJ); 

2*2- ?’ + ?rx.A z.GhZ2/\C3/Xs/S6 G-1 Da p2 Da 5,)). 

The new connection graph is shown in Figure 11.31. 
We now use option 3 and iterate y2 in statement 2.2 to get 

2.2.1. r +- Qs; 
for each tuple t in r2 do 

begin 
2.2.2. r3 + ?Tw.A z.G(“Cz(t)r\C3(t)*CS(t)/\Cb(t) (rl Da s,)); 

add y3 to I 
end. 

where 

C,(t) is WA = t(x.A) C,(t) is t(y.F) = 2.I: 
C,(t) is w.A I t(y.A) C,(t) is t(x.F) 5 z.F. 

The new connection graph is shown in Figure 11.32. 
Using option 1, we can instantiate rl and s, in statement 2.2.2 to get 

2.2.2.1. r4 + ?r,.A(aC,(t)hC,(i)(ri)); 
2.2.2.2. r-5 + .rr,.G(uC5(t)/\Cb(t)(SZ); 
2.2.2.3. r3 + r4 W rs, 
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The new connection graph is given in Figure 11.33. Since the edges for C,(t) 
and C,(t) are simple, r4 and r5 are “small” relations. However, that fact does 
not affect the rest of the decomposition. Finally, we iterate s, in statement 
2.1 to get 

2.1.1. l-2 + Q); 
for each tuple u in s, do 

begin 
2.1.2. r6 + ~y.Ay.F(“C4(u)~Sy))~ 

add r6 W {u(x.A) u(x.F)) to ~2 
end. 

where C,(U) is u(x.D) = y.D. The final connection graph is shown in 
Figure 11.34. 

Note that the order of instantiation and iteration would be completely dif- 
ferent under the heuristic if C1 were w.B = 7. After instantiating s,, rl 
would be “small,” and hence would be iterated at the next step (see Exer- 
cise 11.7 d). 

Comparing the decomposition obtained in this example to the decomposi- 
tion in Example 11.33, we see that there we had 3 explicit iterations, a!’ 
nested, while here we have two explicit iterations, not nested. 

Figure 11.30 

Figure 11.31 
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Figure 11.32 

Figure 11.33 

0 ‘4 0 ‘5 

(5-J-J c4 b) 

Figure 11.34 

Our heuristic could be improved by several methods. One is to have dif- 
ferent degrees of “small,” depending upon the selection conditions involved. 
Another is to take into account the current sizes of relations in the database 
when making choices for instantiation and iteration. If the relative sizes of 
the relations change significantly, however, the decomposition may have to 
be redone. 
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11.5 TABLEAU QUERY OI’TIMIZATION 

The number of rows in a tableau query is a measure of the number of joins 
required in an equivalent algebraic expression. Given a tableau query, our 
goal will be to find an equivalent tableau query with the minimum number of 
rows. While in general such a search is NP-complete, the search is efficient 
for a subset of tableau queries: the simple tableau queries. 

We shah also explore how to use data dependencies to reduce the number 
of rows in a tableau query. The method is a variant of the chase computation. 

Many results in this section are similar to results in Chapter 8. We shall 
not spend much time on proofs that are similar to ones there. Our develop- 
ment will focus on untagged tableau queries. We shah discuss the modifica- 
tions for tagged queries at the end of the section. 

11.5.1 Tableau Query Equivalence 

Definition 11.2 Let Q, and Q2 be compatible tableau queries with schemeR. 
Ql contains Q2, written Q, 1 Q2, if for every relation r(R), Q,(r) 2 
Q*(r). Q1 and Q2 are equivalent, written Q, E Q2, if for every relation r(R), 
Ql(r) = Q*(r). Evidently, Q1 E Q, if and only if Q1 2 Qz and Q2 7 Q1. 

In the following definition, a mapping of tableau symbols to tableau sym- 
bols extends to a mapping of rows to rows in the obvious way. 

Definition 11.3 Let Q1 be a tableau query on scheme Al A2 - + . A,, with 
summary w. and rows wl, w2, . . . , wp. Let Q2 be a tableau query with sum- 
mary vg. Let ai be the distinguished variable for the Ai-column in both 
tableaux. A mapping 3 from the symbols of Q, to the symbols of Qz is a con- 
tainment mapping from Ql to Qz if 

1. q(c) = c for every constant c in Q,, 
2. rc/(wo) = vo, and 
3. $(wi) is a row of Q2 for 1 5 i 5 p. 

Conditions 2 and 3 require that Q1 and Q2 are compatible. Condition 2 also 
requires that $(ai) be ai or the constant in the Ai-column of ve. We let 
ddQ,> = ( $4wi>I 1 I i I p >. 

Theorem 11.1 Let Qi and Q2 be compatible tableau queries with scheme R. 
Let w. be the summary of Q, and v. the summary of Q2. Q, 2 Q2 if and only 
if there is a containment mapping 9 from Q, to Qz. 
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Proof (if) Let r be a relation with scheme R. If p is a valuation of Qz such 
that p(Qz) C_ r, then p 0 $ is a valuation of QI where p 0 $(Q,> C r and 
p 0 $(wO) = p(vO). Hence every tuple of Qz(r) is in QI(r). 

(only if) We treat Q2 as both a relation and as a tableau query. When treat- 
ing it as a relation, we ignore the summary. Since Q1 2 Q2, Ql(Q& 1 
Q2(Q2). Let pz be the identity valuation for Q2. Clearly pr(Q2) E Q2, so 
pI(vo) = v. E Q2(Q2). Therefore, v. must be in QI(Q2>. Let 1c, be the valua- 
tion of Q1 such that $(Q,) c Q 2 and $(wo) = vo. Clearly, $ is a containment 
mapping from Q, to Q2. 

Corollary Compatible tableau queries QI and Q2 are equivalent if and only 
if there is a containment mapping from Q, to Q2 and another from Q2 to QI. 

Note that if Q, and Q2 are equivalent, they necessarily have identical sum- 
maries, so the containment mappings in the corollary always map distin- 
guished variables to distinguished variables. 

Q,(AI A2 A3 A41 

al a3 

~1 bl b2 b3 

b4 bl a3 4 

QdA1 A2 A3 A4) 

ai a3 

al bl b2 b3 
h bl a3 4 
a1 bl b5 66 
b7 61 bs 4 

QsMi AZ A3 A4) 

a1 a3 

al 6 b2 b3 
6 b1 a3 4 

Figure 11.35 
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Example 11.36 Consider tableau queries Qi, Q2, and Qs in Figure 11.35. 
Using the identity containment mapping from Qr to Q2, we see Qi 2 Q,. 
The containment mapping $i from Q2 to Qr in Figure 11.36 shows that Q2 7 
Q,, hence Q, = Q2. The containment mapping $2 from Qi to Qs in Figure 
11.37 shows Q, 1 Qs. However Q3 2 Q,, since there is no containment 
mapping from Q3 to Qi. The second row of Q3 contains a 6, and hence can- 
not be mapped to any row of Qr . 

rLlb1) = a1 $1(h) = b, 

ih(a3) = a3 $1@2) = bz 

G,(4) = 4 rC/1@3) = b3 

ih(bd = b4 

h&J = b2 

h(b6) = b3 

$,(W = b4 

$1@8) = a3 

Figure 11.36 

*2(q) = a1 h(bd = bl 

$2(a3) = cl3 &(bd = b2 

h(4) = 4 r1/2@3) = b3 

&lb& = 6 

Figure 11.37 

Corollary If tableau queries Qi and Q2 are identical up to a one-to-one 
renaming of nondistinguished variables, then Q1 = Q2. 

The converse of this corollary is not true, as we can see from tableau 
queries Qr and Q2 of Example 11.36. 

The following definitions extend the definitions for subsumes (Section 8.3) 
and supersedes (Exercise 8.17). 

Definition 11.4 Let w1 and w2 be rows over scheme R. Row w1 subsumes 
row w2 if for every attribute A E R such that wl(A) is a distinguished variable 
or constant, w,(A) = wj(A). 

Definition 11.5 Let T, and T2 be sets of rows on scheme R. T1 covers T2 if 
for every row v in T2 there exists a row w of T, that subsumes v. Tableau 
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query Ql covers tableau query Q2 if the rows of Ql cover the rows of Q2. We 
write Q1 = Q, if Q 1 covers Q2 and Q2 covers Ql. 

Definition 11.6 Let Q be a tableau query with scheme R and let w1 and w2 
be rows of Q. Row WI supersedes row w2 if wl(A) = w2(A) for every attribute 
A in match(wz). 

Example 11.37 Let Q be the tableau query of Figure 11.38. Row w2 sub- 
sumes row w4, but does not supersede it. Row w3 supersedes row ~4. Q covers 
tableau query Q, in Figure 11.35. 

Q(AI A2 A3 A4) 

~0 al a2 a3 

al bl bz 

Zi 6 IZ: a3 4 

b3 bz 
w”:: b5 :; “b; b2 

Figure 11.38 

Lemma 11.1 Let Q, be a tableau query. Let Q2 be Q1 with one or more 
superseded rows removed. Q1 = Q2. 

Proof Left to the reader (see Exercise 11.13). 

Example 11.38 In tableau query Q2 of Figure 11.35, the first row super- 
sedes the third and the second supersedes the fourth. Q1 is Q2 with the third 
and fourth rows removed. We saw in Example 11.35 that Q1 = Q,. 

Definition 11.7 A tableau query Q is minimum if no tableau query equiva- 
lent to Q has fewer rows than Q. 

Note that a minimum equivatent tableau query for a tableau query Q is the 
same as an equivalent minimum tableau query for Q. 

Definition 11.8 Let Q, and Q2 be compatible tableau queries. Q2 is a sub- 
tableau of Q, if Q2 is Q, with 0 or more rows removed. 
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Theorem 11.2 For any tableau query Q,, there is a subtableau Q2 of Qr 
that is a minimum equivalent tableau for Qt. 

Proof Let Q, be a minimum equivalent tableau for Q,. Let $1~ be a con- 
tainment mapping from Q, to Q3 and let $31 be a containment mapping from 
Q3 to Q1. Let Q2 be the subtableau of Q1 containing the rows in rl/s1($r3(Q,)). 
The composition +31 0 J/r3 is a containment mapping from Qt to Qz; $13 0 $31 
is a containment mapping from Q2 to Qt. Hence Q, = Q2. Since $,s( Q,) is a 
subset of the rows of Q3, $31($13(Q1)) has no more rows than Q3, hence Q2 is 
also minimum. 

The next result is a partial converse to the second corollary of Theorem 11.1. 

Theomm 11.3 Let Q1 and Q2 be compatible minimum tableau queries. 
r = 

:, h 
Qz if and only if there is a one-to-one containment mapping from Qt to 

w ose inverse is a containment mapping from Q2 to Qr. That is, Qt and 
Q2 are identical up to a one-to-one renaming of nondistinguished variables. 

Proof Left to the reader (see Exercise 11.14). 

In general, testing equivalence of tableau queries is hard. It is an NP- 
complete problem given tableau queries Q1 and Q2 to decide whether Q, = 
Q,. The problem is NP-complete even if Q1 and Q2 come from restricted 
algebraic expressions and Q2 is a subtableau of Q,. 

11.5.2 Simple Tableau Queries 

In this section we introduce the simple tableau queries and show that they 
can be minimized efficiently. We shall also show that equivalence of mini- 
mum simple queries can be decided efficiently, which means equivalence can 
be decided efficiently for arbitrary simple queries. 

Dermition 11.9 A tableau query Q is simple if in any column where a non- 
distinguished variable is matched, no other symbol is repeated. 

Example 11.39 Consider tableau queries Q, and Q2 in Figure 11.39. Qr is 
not simple, because b4 is matched in the A2-column and u2 repeats, and b3 is 
matched in the Ad-column and 4 repeats. Q2 is the same as Q, except for the 
last row, but Q2 is simple. 
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Qlt-4, A2 A3 A4) 

*I a2 a3 

01 a2 bl 4 
b2 a2 a3 b3 
al b4 a3 b3 
*I h b5 4 

Qz(AI A2 A3 A41 

al a2 a3 

it: :: 
bl 4 

b3 
al b4 1: b3 
al ~2 bs b3 

Figure 11.39 

Our task is to show that simple tableau queries can be minimized efficiently 
and equivalence of minimum simple queries is easy to test, thus deriving an 
efficient algorithm for equivalence of simple queries. 

Let Q, be a simple tableau query that is not minimum. By Theorem 11.2 
there is an equivalent subtableau Q2 of Q, that is equivalent to Q,. Let w be a 
row of Q, that does not appear in Q,. There is a containment mapping $ 
from Ql to QZ and a row v in Q2 such that q(w) = $(v) = v (see Lemma 11.2 
below). 

Given a simple tableau query Q,, in order to minimize it, we try to find 
rows w, v, and a containment mapping # from Q, to Q, such that $fw) = 
$(v) = v. To aid in the search, we compute the companion set of w relative to 
v, COMP,(w), that contains all the rows I,L must map to v if $ maps w to v. If 
{v} covers COMP,(w), then $ can be chosen to map every row in COMP,(w) 
to Y and every other row to itself. The subtableau Q2 of Q, containing the 
rows in $(Q,) is equivalent to Q, but has fewer rows. If Q2 is not minimum, 
we can repeat the process with a new w, v and $. 

We now fill in the details and prove the correctness of the method above. 

Lemma 11.2 Let Ql be a tableau query, and let Q, be a proper subtableau 
of Q,. If $ is a containment mapping from Q1 to Q2 and w is a row in Q1 not 
in Q2, then there is a containment mapping $0 from Q, to Q2 and a row v of 
Q2 such that &(w) = &(v) = v. 
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Proof We first note that composition of containment mappings is a contain- 
ment mapping. Let @ be the containment mapping obtained by composing Ic/ 
with itself i times. Consider the sequence of rows g’(w), ti2(w), g3(w), . . . . 
Since each row is contained in Q,, the sequence must contain a duplicate. 
Select i andj such that i 5 j and p(w) = \l”(w), Let J/o = @j+) and let v = 
&(w). We show that &(v) = v. 
First, 

We can rewrite IJ~~(.+)(W) as 

+i( j-i-1)( $K-i)( e( w))), 

which simplifies to 

since 

lp”(lp(W)) = #j(w) = Ip(w). 

Finally, 

$A.i-i-l)(J/‘(w)) = +i-9(w),= +o(w) z v, 

Definition 11.10 Let Q be a simple tableau query with scheme R, and let w 
and v be rows of Q. The companion set of w relative to v, denoted COMP,(w), 
is the smallest set T containing v subject to the following closure condition: 

If w1 is a row in T, w2 is a row of Q, and A is an attribute in R such 
that wl(A) is a nondistinguished variable and w 1(A) = wZ(A) 
# v(A), then w2 is in T. 

Example 11.40 Let Q be the tableau in Figure 11.40. Let us compute 
COMP,,(wJ. We start with row ~4. For row ws we have w5(A4) = w4(A4) = 
blI # ++(A4), sows is included. Also, wS(AS) = w6(A5) = b16 # sv3(A5), so 
w4 is included. Hence, COMP,,(w4) = {war wsr w6}. Row w2 is not includ- 
ed, even though w2(Az) = w6(A2) = bl, since w3(A2) = bl. 
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QUl A2 A3 A4 4) 
wo a1 Q3 

WI al bl b2 4 b3 
wz al bl b4 bs b6 
w b7 bl a3 h 7 
~4 b9 blo (13 bll bn 

WS bn b14 bls bll b16 

w6 b17 bl b18 bl9 bl6 

Figure 11.40 

Lemma 11.3 Let Q be a simple tableau query and let w and v be rows of Q. 
If $ is a containment mapping from Q to Q such that $(w) = v, then $(u) = v 
for every row u in COMP,(w). 

Proof Left to the reader (see Exercise 11.23). 

Theorem 11.4 Let Q be a simple tableau query with scheme R and let w and v 
be distinct rows of Q. There is a containment mapping IJ from Q to Q such 
that 4(u) = v for all u in COMP,(w) if and only if {Y } covers COMP,(w). 

Proof (if) Let + be the identity on all symbols except nondistinguished 
variables appearing in the rows of COMP,(w). For each attribute A E R and 
each row u in COMP,(w), let $(u(A)) = +(v(A)). (Since v and w are 
distinct, COMP,(w) does not contain v. Why?) 

We claim I,L is well-defined. Let b be a nondistinguished variable in the 
A-column. If b appears both in a row u1 in COMP,(w) and a row u2 not in 
COMP,(w), then u,(A) = u#l) = v(A) or else u2 would be in COMP,,(w). 
Hence $(b) = b, which implies $ is the identity on rows not in COMP,,(w). 
Also, if some row u in COMP,(w) has a distinguished variable or a constant 
in the A-column, so does v, since v subsumes U. Hence + is the identity on 
distinguished symbols and constants. 

It is not hard to verify that #(u) = u if u 4 COMP,(w) and 4(u) = v if u E 
COMP,(w). Hence 4 is the desired containment mapping, 

(only if) Since # is a containment mapping, it maps constants to 
themselves. It must also be the identity on distinguished variables, since if Q 
contains a distinguished variable in the A-column, there is no constant in the 
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A-column of the summary. For any row u E COMP,,(w), since $(u) = v, 
every place u has a distinguished variable or constant, v has the same symbol. 
Thus v subsumes u and so ( v } covers COMP,(w). 

Example 11.41 As we saw in Example 11.40, for the tableau query Q in 
Figure 11.40, COMP,,,,(w4) = ( w4, wg, wg }. We see that { ‘~3) covers { w4, 

wg, wg}. Hence, there is a containment mapping 1c, from Q to Q such that 
$(Wl) = WI, 4vwz) = w2, and ti(w3) = rc/(wq) = $(wg) = $(w~j) = w3. 

coMp,&(w$ = { w3, ~4, wg ). However (wg} does not cover {w3, w4, ws ). 
No Containment mapping maps w3 to 596, since wJ(A5) = 7 and w6(A5) = b16. 

We combine our results into the algorithm MINEQ in Figure 11.41. Given 
a simple tableau query Q, we search for distinct rows w and v such that (v} 
covers COMP,(w). By Lemmas 11.2, 11.3, and Theorem 11.4, if Q is not 
minimum, v and w will exist. The rows of COMP,(w) can be removed from Q 
to get a smaller equivalent tableau. If no such w and v exist, Q must be 
minimum. 

Input: A simple tableau query Q. 
Output: A minimum equivalent subtableau of Q. 
MINEQCQ) 

ha 
let T be the rows of Q; 
while changes to T occur do 

for each row v in T do 
for each row w # v in T do 

if v covers COMP,(w) in T 
then T :=T - COMP,,(w); 

let Q’ be T with the summary of Q; 
return (Q ‘) 
end. 

Figure 11.41 

Example 11.42 Let Qt be the tableau query in Figure 11.42. COMP,,,,(wJ = 
hh and hl covers { w2}, so we remove row ~2. COMp,,(w3) = (ws}, 
and { w1 } covers ( w3}, so we also remove w3. We are left with rows wr, ~4, 
ws, w6, w7. c0kfP,s(w6) = { w6, w7} and is covered by ( ws}, so we remove 
w6 and w7. No more rows can be removed. The minimum equivalent sub- 
tableau Qi is shown in Figure 11.43. 
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Ql(Ai A2 A3 -44 AS) 

wo a1 7 a5 

WI al bl 5 b2 63 
~2 ai bl b4 bs b6 

~3 al 67 ba b9 blo 

w4 bll bl h 7 b14 
ws bts b16 b17 7 a5 
W6 bm b19 bo 7 b21 

W b22 bu b b24 a5 

Figum 11.42 

QiMl A2 A3 A4 4) 

wo a1 7 a5 

WI ~1 h 5 bz b3 
~4 bll bl h2 7 b14 

WS bls b16 b17 7 45 

Figure 11.43 

Let us determine the time complexity of MINEQ. Assume Q has k rows 
and n columns. COMP,(w) can be found in O(k2n) time (see Exercise 
11.24). Testing whether v covers COMP,(w) can be done in O&z) time. 
Each for-loop iterates at most R times, so the body of the while-loop takes 
O(k4n) time. Each time a change occurs to T, at least one row is removed, so 
the while-loop iterates for at most k times. Hence the total time-complexity of 
h4INEQ is O(ksn). 

Actually, the time-complexity is no more than O(k4n). The while-loop 
need only execute once, for if a row is not removed on the first iteration, it will 
not be removed on any subsequent iteration, as the following lemma shows. 

Definition 11.11 Let Q be a simple tableau query with scheme R and let v 
andwberowsofQ.LetK = w1,w2, ,.., w, be a sequence of distinct rows 
for Q. K is a construction sequence for COMP,(w) if 

1. COMP,(w) = {w,, ~2, . . . , w, >, and 
2. For eachj, 1 < j I m, there is an i < j and an attribute A in R such 

that W,(A) and Wj(A) are the same nondistinguished variable and 
wj(A) f v(A). 

Clearly, every companion set has a construction sequence. The first row in 
the sequence may be any row of the companion set. 
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Lemma 11.4 Let Q be a simple tableau query with scheme R. Assume Q 
contains distinct rows v. and w. such that COMP,,(wo) is covered by { VO}. 
Let Q’ be the subtableau obtained from Q by removing the rows in 
COMP,,(w,). (That is, Q’ is Q after one step of MINEQ.) Let v and w be 
rows of Q ’ and let COMP,(w) and COMP,,‘(w) be the companion sets of w 
relative to v in Q and Q ‘, respectively. If {v } covers COMP:(w), then {Y > 
covers COMP,(w). 

Proof We focus on the identities of v. and wo. Note that if w ’ is a row in 
COMP,(w), then COMP,(w) = COMPJw ‘) (see Exercise 11.26). 

COMP,, must contain some row u in COMP,(w), or else COMP,,(w) = 
COMP,,‘(w) and we are finished. If v = vo, then COMPv,(wo) = COMP,,(u) = 
COMP,,(u) = COMP,,(w), so w would not be a row of Q ‘. Thus, the rows 
removed going from Q to Q ’ are COMP,,(u) where v0 # v, 

We claim v. is in COMP,,(w). Why? First, note that COMP,,(u) 2 
COMP,(w), or else w would not be a row of Q ‘. Let ulr ~2, . . . , U, be a con- 
struction sequence for COMP,,(w) such that u1 = U. Let j be the smallest in- 
teger such that Uj is not in COMP,,(u). There must be an i < j and an at- 
tribute A in R such that u,(A) and uj(A) are the same nondistinguished 
variable and ui(A) # v(A). We must have u,(A) = uj(A) = Q(A), or else uj 
would be in COMP,,(u). We know u,(A) and Q(A) are the same non- 
distinguished symbol. Since q(A) is in COMP,(w) and vo(A) = u,(A) # 
v(A), vo is also in COMP,(w), as we claimed. 

We next show that v. is in COMP:(w). Let w,, w2, . . . , wP be a prefix of a 
generating sequence for COMP,(w) such that w = w1 and v. = wP. If all of 
wl, w2, . . . , wp are in Q’, we have proved that ve is in COMP,,‘(w), so letj, 
z < j 5 p, be the least integer such that wj is not a row of Q ‘, There must be 
an i < j and an attribute B in R such that wi(B) and Wj(B) are the same non- 
distinguished symbol, which is not v(B). We know wi was not in COMP,,(u) 
but that wj was. We conclude We = w&B) = vo(B). All of ~1, ~2, . . . , wi 

are in COMPJw) and vo(B) = w;(B) f v(B), so v0 is also in COMPJw), as 
desired. 

To conclude, any row u. in COMP;(w) must be in COMP,,(u). Since v. is 
in COMPJw) and (v} covers COMP,,‘(w), v subsumes u0 and so {v > covers 
COMPJw ). 

We can use MINEQ to construct an efficient test for equivalence. Let Qi 
and Q2 be simple tableau queries with scheme R that we wish to test for equiv- 
alence. We first compute Q{ = MINEQ(QI) and Qi = MINEQ(Q& and 
then test Q,’ and Q; for equivalence. Q,’ and Qi are both minimum. If Qi 
and Q,j are equivalent, by Theorem 11.3 there is a one-to-one containment 
mapping $ from Q; to Q; that is the identity on distinguished variables and 
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whose inverse is a containment mapping from Qr’ to Q$ If Q; has a repeated 
nondistinguished variable bi in the A-column, for some attribute A in R, 
then $(bl) = b2 must be a repeated nondistinguished variable in the 
A-column of Q$ If we formed QT and QT by replacing bl and bz by a new 
constant c in Qr’ and Q,l, then Q;’ and Qg will also be equivalent. 

To test Q; and Qt; for equivalence, we proceed as follows. For each at- 
tribute A such that Qi’ has a repeated nondistinguished variable bl in the 
A-column, we check if Q; has a repeated nondistinguished variable, say b2, 
in its A-column. If so, we replace b1 and bz by some new constant c. If not, 
Q; and Qi are not equivalent. We attempt such a substitution for every 
repeated nondistinguished variable in Q,‘. Call the resulting tableau queries 
Qi’ and QT. 

Qi and Qi are equivalent if and only if Q;l and Qi’ are. If Q;l has any 
repeated, nondistinguished variables, then it is not equivalent to Q;‘. Other- 
wise, we can test Qi’ = QT by checking that the summaries are the same and 
that Qi’ = QT. (Recall that Q;’ = Q$’ means each tableau query covers the 
other. ) 

Example 11.43 Let Q, be the tableau query in Figure 11.42 and let Q2 be 
the tableau query in Figure 11.44. Q,’ = MINEQ(QZ,) is shown in Figure 
11.43. Q; = MINEQ(QJ is shown in Figure 11.45. Q[ has repeated non- 
distinguished variable b, in the AZ-column, and Qi has bz repeated in the 
same column. We replace bl and b2 by the constant 1 to get tableau queries 
Q; and QT in Figure 11.46. Q;’ and Q;’ are equivalent, for we can map rows 
WI, w4, and ws to rows v5, vl, and v4 by renaming only nondistinguished 
variables. Hence Q, = Q2. 

For tableau query Qs in Figure 11.46, Q, = MINEQ(Qs). Q, f Qs, since 
Q, has a repeated nondistinguished variable in the Ad-column, where Qi has 
none. 

Qz(Al A2 A3 A4 As) 
vo a1 7 a5 

VI bl b2 b3 7 b4 
v2 b5 b2 b6 7 b7 
~3 ba b9 b6 7 blo 
v4 bll bl2 bl3 7 a5 
vs ~1 b2 5 bl4 bls 

Figure 11.44 



Tableau Query Optimization 335 

Q&41 A2 A3 A4 As) 
vo a1 7 45 

VI bl bz 4 7 b4 
V4 bll bl2 b13 7 a5 
vs al b2 5 b14 bls 

Figure 11.45 

QWi -42 A3 -44 As) 

wo al 7 a5 

w1 al 1 5 b2 b3 
w4 bll 1 b12 7 bl4 
WS bls bl6 bl7 7 a5 

Q~‘(AI A2 A3 A4 AS) 
v0 al 7 a5 

~1 bl 1 b3 7 b4 
v4 bll hz 613 7 a5 
vs al 1 5 bl4 bls 

Figure 11.46 

QdAl -42 A3 A4 4) 
al 7 a5 

61 bz b3 b4 bs 
b6 b7 bg b4 ag 
41 bz 5 b9 blo 

Figure 11.47 

11.5.3 Equivalence with Constraints 

As we might expect, in the presence of FDs and IDS otherwise inequivalent 
tableau queries can be equivalent. 

Example 11.44 Tableau query QI in Figure 11.48 comes from Example 
10.38 in the last chapter. Q2 in Figure 11.49 is another tableau query on the 
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same scheme. Qr 1 Q2, since there is a containment mapping that takes the 
first two rows of Qi to the first row of Q2 and the last row of Q1 to the last row 
of Q2. However, Q2 g Qr. Both Q1 and Q2 are simple, and both are left un- 
changed by MINEQ hence both are minimum. Since Qi has more rows than 
Q21 Ql f Q2. 

Suppose we are only interested in relations that satisfy the FD OP -+ ME. 
No option is available for more than one meal. (No more pizza for breakfast.) 
Let r be a relation in SAT(OP -+ ME). Any valuation p for Q, such that 
p(Qi) E r must have p(b4) = P(&). Hence p(Q2) C r and so Pi(r) G Q2(r). 
Qr and Q2 define the same mapping on SAT(OP + ME). 

Ql(FL DT OP NM ME) 

a2 a3 a4 

bl b2 ~3 h b4 
106 a2 a3 a4 b5 
107 b6 b7 b8 b4 

Figure Il.48 

Q2(FL DT OP NM ME) 

a2 a3 a4 

106 a2 a3 a4 b4 
107 b, b7 b8 b4 

Figure 11.49 

If Qi and Q2 are compatible tableau queries on scheme R and C is a set of 
FDs and IDS, Qr IC Q2 means Qi(r) z Q2(r) for every relation r(R) in 
SAT(C). Similarly, Q, = c Q2 means Q,(r) = Q2(r) for every relation in 
SAT(C). 

We can extend the chase computation to a tableau query Q with two slight 
modifications. First, the F-rule gives priority to constants in renaming. Sup- 
pose we have an FD X + A and two rowswi and w2 where w,(X) = w2(X). If 
w*(A) and w2(A) are unequal constants, we replace the entire tableau query 
by the tableau query 8 that maps every relation to the empty relation. Clearly, 
for any relation r E SAT(X + A), there can be no valuation p such that 
p(Q) C r. If wl(A) is a constant and w2(A) is not, we set w2(A) to be that 
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constant. The second modification is that if ever a distinguished variable is 
changed to a constant, the change carries through to the summary. 

We let chasec(Q) be the result of applying F- and J-rules for C to Q until 
no more changes can be made. The proofs of Chapter 8 work with minor 
changes to show that chasec(Q) is thereby well-defined. We also state the 
following two theorems without proof. 

Theorem 11.5 Let Q be a tableau query and let C be a set of FDs and JDs. 
Q = c chase&Q). 

Theouzm 11.6 Let QI and Q2 be tableau queries and let C be a set of FDs 
and JDs. QI 2 c Q, if and only if chasec(Qt) 2 chasec(Q2). 

Corollary QI = c Q2 if and only if chasec(Q,) = chasec(Q2). 

Example 11.45 Returning to the last exampIe, if C = {OP --+ ME], then 
QT = chase&Q,) is shown in Figure 11.50. Qz = chasec(Qz). Also, 
MINEQ CQ> = Q2, so 521 =c Q2. 

QT(FL DT OP NM ME) 

a2 a3 a4 

h b2 a3 h b4 
106 a2 a3 a4 b4 
107 b6 b7 b8 b4 

Figure 11.50 

Example 11.46 Tableau queries Ql and Q2 in Figure 11.51 clearly are not 
equivalent, since their summaries are different. If C = {A r + AZ, A4 - 
A,}, then QT = chasec( Q2) are shown in Figure 11.52. The third row of QF 
supersedes all the rest, so QT 3 Q3, where Q3 is shown in Figure 11.53. 
Similarly, the first row of QT supersedes the last, so Q,* E Q3 = QT. Hence 
ill =cQ2- 

Definition 11.12 Let C be a set of FDs and JDs. A tableau query Qr is 
C-minimum if there is no tableau query Q2 with fewer rows than Q, such that 
QI ‘~92. 

Certainly, finding a C-minimum equivalent tableau query given a tableau 
query Q and a set C of FDs and IDS is no easier than finding a minimum 
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Ql(At A2 -43 A41 

al a2 a3 

al a2 bl b2 
b3 7 a3 b2 

QdA1 A2 -43 A41 

al 7 a3 

at h a3 b2 
at 7 b3 b4 

Figure 11.51 

QfW A2 A3 A41 

al 7 a3 

al 7 h b2 
b3 7 a3 b2 

a1 7 a3 b2 
b3 7 bl b2 

Q,*A, A2 A3 A4) 

al 7 a3 

al 7 a3 b2 
al 7 h 4 

Figure 11.52 

QdAl -42 A3 A4) 

al 7 a3 

al 7 a3 b2 

Figure 11.53 

equivalent tableau query. We might hope to combine MINEQ and the chase 
computation to get an algorithm for C-minimum equivalence of simple 
tableau queries. If Q is a simple tableau query, we cannot necessarily apply 
MINEQ to chase&Q). Note that in Example 11.46, Q1 was simple, but 
chaseC(Ql) was not. The problem can arise even with FDs alone, and remov- 
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ing superseded rows does not always restore simplicity (see Exercise 11.29). 
Applying the chase to MINEQ(Q) does not necessarily yield the desired 
result either (see Exercise 11.30). 

11.5.4 Extensions for Multiple-Relation Databases 

We first consider a database d on database scheme R over U where every 
relation is the projection of a common instance r(U). Our results on 
equivalence carry over easily, since if a tableau query Q applies to d, then so 
does any minimum equivalent query for Q. 

Example 11.47 Let d be the database {q(AB), r(BC), s(AC)} that is the 
projection of some common instance over ABC. Figure 11.54 shows a 
tableau query Qt for the algebraic expression 

Q1 is simple, so we may apply MINEQ to get tableau query Qr’ in Figure 
11.55. The algebraic expression above is equivalent to cB&). However, the 
tableau query Qz in Figure 11.56 for the algebraic expression 

is minimum. 

Ql(A B C) 
C 123 

bl c a3 
b2 c b4 
b2 bs a3 

Figure 11.54 

bl c ~3 

Fii 11.55 
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Q# B C 1 
a2 a3 

bl a2 a3 
c a2 b2 
c b3 a3 

Figure 11.56 

When we introduce dependencies, problems arise, for chasec(Q) might 
not apply to d, even if Q did. We might interpret our result Q = o chasec(Q) 
as a statement about equivalence of queries over different databases that are 
projections of the same instance. 

Example 11.48 Let {q(AB), r(BC), s(CD)} and d ’ = {q ‘(ABC), 
r’(BCD)} both be databases that are the projections of the same instance 
overABCD. LetC = {C + D }. Q in Figure 11.57 is the tableau query for 
the algebraic expression 

on database d. Q ’ = chase&Q> is shown in Figure 11.58 and Q ” = 
MINEQ (Q ‘) is shown in Figure 11.59. Neither Q ‘ nor Q” applies to d. 
However, both apply to d ‘. We can interpret Q = Q ’ as saying the aigebraic 
expression 

for database d ’ is equivalent to the expression above for database d whenever 
instance r is in SAT(C). 

Q(A B C D) 

al a4 

a1 4 b2 b3 
b4 bl b5 b6 
b7 bs b5 a4 

Figure 11.57 



Tableau Query Optimization 341 

Q’(A B C D) 

a1 a4 

~1 bl b2 b3 

b4 h b5 a4 
b7 h bs (14 

Figure 11.58 

Q”(A B C D) 

(11 a4 

al bl b2 b3 

b4 bt bs a4 

Figure 11.59 

When C consists of only FDs, there is another way to interpret chase&Q). 
The rows that do not correspond to any relation for database d can be re- 
garded as corresponding to joins of relations, provided that F-rules were ap- 
plied in a certain restricted manner. The joins are ones that can be computed 
efficiently, so any minimization that takes place in computing chasec(Q) can 
be viewed as replacing arbitrary joins by efficient joins. We now take up this 
type of join. 

Let d be a database over database scheme R that is the projection of a com- 
mon instance r(u). Let F be a set of FDs that r satisfies. If rt(XY) and 
q( YZW) are two relations in d such that XY fl YZW = Y, and Y --r 2 is an 
FD in F+, then the rrextension of rz by Y + Z is fl w 7rrz(r2). The 
r2-extension of rl by Y + 2 has the same number of tuples as x1 and can be 
computed by a single pass through rl and r2 if both relations are sorted on Y. 
Note that y1 W 7ryZ(r2) = 7r xuz(r). Such a join, where the common attri- 
butes of the two relations functionally determine all the attributes of one of 
the relations, is called an extension join. 

A subset R of U is an RF-extension if q&) can be computed from data- 
base d only using extension joins and projection. That is, R is a subscheme of 
some relation in d or there is a program P of the form 

41 + Sl w w,z,h% 

q2 + s2 Da Q,z,(si); 

qk + sk w ~Y,Z,(s;) 

‘. 
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where 

1. si is either a relation in d or qj forj c i; the same for $, 
2. qi is the $-extension of si by Yi -P Zi for some FD Yi -P Zi in P, and 
3. the scheme of qk isR’ 1 R. 

(See Exercise 11.34.) 

Example 11.49 Let d = {rl(AB), Q(BC), r3(CD), r,(BDEI)] be a data- 
base over database scheme R = (AB, BC, CD, BDE1]. Assume d is the 
projection of an instance r(A B C D E I) in SAT(F), where P = { C --) D, 
BD --) E}. CE is an RF-extension, for consider the program 

41 + 12 w r3; 

42 + 41 w 7mL&4). 

Both joins are extension joins and the scheme of q2 is BCDE, which contains 
CE. AE is not an RF-extension. A only appears in relation rl, which can 
never participate in an extension join because none of A, B, and AB appear 
as the left side of a nontrivial FD in F+ . 

Given a set of FDs F and a database scheme R over U, we can modify the 
chase computation to decide whether some set R E U is an RF-extension. 
The modification is that an F-rule cannot be applied to equate two nondis- 
tinguished variables. However, any FD in F+ may be used as the basis for 
an F-rule. We call this computation the extension chase with respect to F, 
denoted echaseF. 

Theorem 11.7 Let F be a set of FDs and let R be a database scheme over at- 
tributes U. Let TR be the tableau for R. Let R E U. If echasedTR) has a row 
that is distinguished on all the attributes in R (and possibly more), then R is 
an RF-extension. 

Proof Initially, if some row in TR is distinguished on the attributes in R, 
there must be some relation scheme R ’ in R with R ’ 1 R, so R is in an RF- 
extension. 

The inductive hypothesis is that at any point of the computation of 
echasedTR), if some row w is distinguished on the attributes in S, then S is 
an RF-extension. Assume at some point in the computation we have rows wi 
and w2 that are distinguished on Si and S2, and that we apply the F-rule for 
X + A to make wl(A) distinguished (hence w2(A) already is). Since no non- 
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distinguished variable is ever repeated, and WI(X) = wz(X), we must have 
X E S1 andX E Sz. 

We need to show that SIA is an RF-extension. Assume d is a database on R 
that is the projection of an instance r(U). Since S1 and Sz are RF-extensions, 
we can construct relations qr(Sr) = ?T~*(Y) and qz(Sz) = ns,(r) using only 
extension joins and projection. We can then construct q3(SIA) as the q2-ex- 
tension of q1 by X + A. Hence SIA is an RF-extension. Note that the only 
way WI(A) can become distinguished is through the direct application of an 
F-rule to wl. 

Example 11.50 Figure 11.60 shows TR for the database scheme R = CAB, 
BC, CD, BDEI} of Example 11.49. Figure 11.61 shows echusedTTR) for 
F={C+D,BD+E}. WeseethatRisanRF-extensionifR GAB,R G 
BCDE or R C BDEI. 

TR(A B C D E I ) 

al a2 bl b2 b3 h 

b5 a2 a3 b6 b7 h 
b9 bl0 Q3 a4 b,, blz 

b13 a2 bl4 a4 a5 a6 

Figure 11.60 

echaseF( TR) (A B C DE I) 

al ~2 bl b, b3 b4 

b5 a2 a3 a4 a5 bg 

b9 ho ~3 a4 bll bl2 
h a2 h a4 a5 a6 

Figure 11.61 

It is not sufficient for R to be an RF-extension that chaseF(TR) be distin- 
guished on R. In fact, the converse of Theorem 11.7 holds (see Exercise 
11.37). 

Example 11.51 Figure 11.62 shows the tableau TR for database scheme 
R = {AD, AB, BDE, CE}, which we last saw in Example 8.41. Let F = 
{A + C, B 4 C, CD + E}. We see that echasef(TR) = TR. However, 
chaseF(TR) # T n, as we see in Figure 11.63. There is a row of chuseF( TR) 
distinguished on CDE, but ADE is not an RF-extension (see Exercise 11.39). 
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T&A B C D E ) 

at bl b2 a4 b3 
aI a2 b3 b4 65 
b6 a2 b7 a4 a5 
ba b9 a3 blo a5 

Figure 11.62 

chased T&i B C D E ) 

al b2 b2 a4 a5 
al a2 b2 b4 b5 
b6 a2 b2 a4 a5 
h b9 a3 ho a5 

Figure 11.63 

Returning to tableau queries, let d be a database on database scheme R 
that is the projection of an instance r(U). Let Q be a tableau query that ap- 
plies to d. For a set of FDs F, we can apply echaseF to Q. However, rather 
than requiring that a symbol may only be replaced by a distinguished 
variable, we require that a symbol may only be replaced by a matched sym- 
bol. The matched symbols in Q correspond to distinguished variables in TR. 
Since Q applies to d, for any row w in Q, there is always a relation scheme S 
in R such that match(W) c S. 

Consider Q ’ = echaseF( Q). There may be a row w ’ in Q ’ such that S ’ = 
match(w ‘) is not contained in any scheme in R. However, S ’ will always be 
an RF-extension. Thus, Q ’ applies to some database d ’ = { rl(R1), r2(R2), 
. . ., rp(Rp)} where Ri is an RF-extension for 1 I i I p. Every relation in d ’ 
can be computed from relations in d through extension joins and projections. 
If Q is the tableau query for some restricted algebraic expression for d, Q ’ 
will be a tableau query for some restricted algebraic expression for d’ (see 
Exercise 11.40). 

Example 11.52 Referring back to Example 11.47, Figure 11.57 shows the 
tableau query for the algebraic expression 

for the database d = { q(AB), r(BC), s(CD)}. It turns out that Q’ = 
chaseF( Q) = echaseF(Q) for F = { C -+ D }, so Q = F Q ’ for the tableau 
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query Q ’ in Figure 11.58. Q” does not apply to d, because the matched set of 
the second row is BD. However, BD is an RF-extension for database scheme 
R = {AB, BC, CD }. Thus, the algebraic expression above is equivalent 
under P to 

where r ’ can be computed by extension joins and projections from r and s. 

We actually have slightly more leeway in computing echasedQ). Suppose 
w is a row in Q and match(w) = S, and suppose there is a relation s(S ‘) in d 
such that S ’ 1 S. We can treat w(A) as a matched symbol for any A E S ‘, 
even if A C S. Consider: If we add a row w ’ to Q, where w ‘(S ‘) = q(S ‘) and 
w ’ is new nondistinguished variables elsewhere, then we have not changed 
the mapping Q defines, since w supersedes w ‘. Furthermore, Q still applies 
to d and match(w) = S’. 

Finally, in this section, we turn to tagged tableau queries and extensions of 
our equivalence results to databases that are not projections of a common in- 
stance. The fundamental change to validate the results is that a containment 
mapping between tagged tableau queries must preserve tags. That is, we re- 
quire that a containment mapping always maps blanks to blanks, and never 
maps a symbol to a blank. 

Example 11.53 Let d be a database {q(AD), r(BC), s(AC)j that is not 
necessarily the projection of any common instance. Figure 11.64 shows the 
tagged tableau query Q1 for the algebraic expression 

Qc(Q=,(q) c-4 y c-4 s). 

Figure 11.65 shows the tagged tableau query Q2 for the algebraic expression 

The mapping I,L defined by 
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is a containment mapping from Qz to Qi, so Q, 7 Qi. We conclude 

for any choices of q, Y, and S. 
Recall that in Example 11.46 we saw that 

if q, r, and s are all projections of a common instance. Q3 in Figure il.66 is 
the tagged tableau query for uB=,(r). Note that Q, f Q3, because no con- 
tainment mapping is possible from Qi to Qa. 

Q,(A B C) 
c a3 

bl c CAB) 
c a3 ma 

bl a3 (AC) 
Figure 11.64 

a2 a3 

a2 ~3 WC) 

bl a3 (AC) 

Figure 11.65 

Q&4 B Cl 
c a3 

C a3 (BC) 

Figure 11.66 

The results for data dependencies in the single relation case do not carry 
over entirely to tagged tableau queries. In general, in computing the chase of 
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a tagged tableau query, only F-rules may be applied, and then only to rows 
with the same tag. 

Example 11.54 Figure 11.67 shows two tagged tableau queries, Ql and Q2, 
for the database d = (r(A B C), s(B C D)}. Given that r and s both satisfy 
P = {B -+ C}, we might conclude that Qt and Q2 are equivalent under I;. 
However, as the reader may verify, Ql(d) + Qz(d) for the states of r and s 
given in Figure 11.68. 

Ql(A B C D) 
a1 a4 

~1 bl b2 (ABC) 
h b3 a4 

al bl b2 (ABC) 
bl 4 a4 @CD) 

Figure 11.67 

r(A B C) s(B C D) 

1 3 5 3 5 7 
2 4 5 4 6 8 

Figure 11.68 

The problem in Example 11.54 is that while r and s both satisfy B -+ C, the 
function from B to C defined by r is not consistent with the function from B 
to C defined by s. F-rules can only be applied to rows with different tags if 
consistency of FDs is required. Note that if a database d has a minimal 
BCNF database scheme with respect to the FDs in I;, then the issue is moot. 
No FD in F+ applies to two rows in a tagged tableau query for d if the rows 
have different tags. 
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Il.55 Tableau Set Query Equivalence 

Here we return to untagged tableau queries. Recall that a tableau set query 
Q with scheme R is a set of compatible tableau queries { Q1, Q2, . . . , QP }, all 
with scheme R (necessarily). Recall also that Q(r) is 

Q,(r) U Qdr) U - - - U Q,(r). 

The notions of containment and equivalence extend directly to tableau set 
queries. 

Definition 11.13 Let Q1 and Q2 be tableau set queries with scheme R. Then 
QI c 42 if QI<~) c 42(r) f or every relation r(R). Q1 = Q2 if Qi(r) = Q*(Y) 
for every relation r(R). 

The following theorem characterizes containment of tableau set queries. 

Theorem 11.8 Let Ql and Q2 be compatible tableau set queries with 
scheme R. Q1 7 Qz if and only if for each tableau query Q2 in Q2 there is a 
tableau query Q, in Q, such that Q1 Z Q2. 

Proof The if direction follows directly from the definition of Q,(r) and 
Qz(r). For the only if direction, we again use the technique of regarding the 
rows of a tableau query as a relation. Let Q, be any tableau query in Q2 and 
consider Qz(Q,). If we is the summary of Qz, then we E Qz(Qz), since wo E 
Qz(Q2) (by the identity valuation). Since Qi 7 Qz, w. E Q1(Q2>. There must 
be a tableau query Q1 in S1 such that w. C Q,( Q2). Let v. be the summary of Q,. 
The valuation p such that p( Qi) E Q2 and p(vo) = w. is a containment map- 
ping from Q, to Q,. Hence Q1 7 Q2. 

Example 11.55 Using the tableau queries Qi = Q4 in Figure 11.69,\we 
define tableau set queries Q 1 = (QI, Q2, Qd and QZ = (Q3, Qd- QZ 7 
QI, since Q4 7 QI, Q4 7 Q2, and Q3 2 Q3. QI 2 Q2, since none of QI, Q2, 
or Q3 contain Q4. 

Definition 11.14 A tableau set query Q is nonredundant if it does not con- 
tain distinct tableau queries Q, and Q2 such that Q, 7 Q2. 

Theorem 11.9 Let Q1 and Q2 be nonredundant tableau set queries. If Qi = 
Qz, then for every tableau query Q1 E Q1, there is one and only one tableau 
query Ql E Qz such that Q, = Q2. 
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QdA B C 1 
al 4 

al bl b2 
b3 bl 4 

Q3M 13 C) 
3 a3 

3 bl a3 
3 5 b2 

Q&4 B C 1 
al a3 

al bl bz 

b3 bl a3 

Figure 11.69 

Proof Let Q, be a tableau query in Qi. Since Q1 G Q2, there is a tableau 
query Q2 E Q2 such that Q, E Q2. Similarly, since Qi 7 92, there is a 
tableau query Q3 in Q1 such that Q3 3 Q2. We see Qr g Q3, which means 
Qi = Q3, or else Q1 is not nonredundant. We conclude Qr = Q2. If there is 
another tableau query Q4 in Q2 such that Q, = 94, then Q2 = Q4 and Q2 
is not nonredundant. Hence Q2 is the only tableau query in 42 equivalent 
to Q,. 

Corollary If Q is a nonredundant tableau set query, there is no tableau set 
query equivalent to Q with fewer tableau queries. 

Proof Left to the reader (see Exercise 11.43). 
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Example 11.56 Consider the tableau set query Qi = { Qi, Qz, Qs} in Ex- 
ample 11.55. Qi is not nonredundant, since Q2 3 Ql. If we let Q3 = (Qz, 
(23 1, then QI = 43. Q3 is nonredundant, since Q2 $ Q3 and Q3 $ Qz. 

11.6 OPTIMlZING CONJUNCTIVE QUERIES 

Recall that a conjunctive query over a database d is a domain calculus ex- 
pression E of the form 

{x&q XZ(A2) * ’ * ~,(A,)~~YI(~I) 3~2032) -’ - 3yy,(B,) 
fbt, x2, . . ..-%.Yl,Y2, -,ym).) 

such thatf is the conjunction of atoms of the form 

where r E d and each ai is one of the X’S, one of the y’s, or a constant. Each 
atom inf represents a relation to be joined in evaluating E. We would like to 
find a conjunctive query equivalent to E that minimizes the number of atoms. 
The approach to minimizing conjunctive queries is almost exactly that of 
minimizing tableau queries. 

One obvious requirement for equivalence of conjunctive queries is that they 
define relations over the same scheme. Any conjunctive query E’ that is 
equivalent to E above must have the form 

{w,(4) ~2642) - e. w,(A,)I~zI(CI) 322(G) -’ - 3zp(Cp) 
gtw1, w2, - * -, w,, 21, 22, * - ‘5 2,)). 

Afolding J/ fromE toE ’ is a mapping of the domain variables and constants of 
E to the domain variables and constants of E’ such that 

cl. $(xi) = wi, 1 I i I n; 
c2. $(c) = c for any constant c; and 
c3. If r(a1 Q2 -. - uR) is any atom inf, then r($(ai) 9(a2) - - - $(uk)) is an 

atom in g. 

Foldings are quite similar to containment mappings of tagged tableau queries. 

Example 11.57 Let d be the database { q(ABC), r(BCD), s(AD)}. Assume 
dam(C) = dam(D). Let E be the conjunctive query 
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4(x1 yl y2) A r(yl y2 x2) A f-(yl x2y3) A dxl y4)1 

and let E ’ be the conjunctive query 

{w(A) ~2(D)l3zrUG ( q WI ~1~2) A &I w2 ~2) A s(w, 6)). 

The mapping 1c/ in Figure 11.70 is a folding from E to E ‘. There is no folding 
from E ’ to E, since the atom S(W r 6) in E ’ cannot map to any atom of E. 

$4x1) = w1 rL(Yl) = Zl 

$(x2) = w2 r(l(Y2) = w2 

:;;3; z 12 

4 

Figure 11.70 

For conjunctive queries El and E2, let El 2 E2 mean the obvious thing. 
The proof of the following theorem is similar to that of Theorem 11.1, and is 
left as Exercise 11.44. 

Theorem 11.10 Let El and E2 be conjunctive queries that define relations 
over the same scheme. El 7 E2 if and only if there is a folding fromEI toE2. 

Definition 11.15 A conjunctive query E is minimum if there is no conjunc- 
tive query E ’ equivalent to E with fewer atoms in its formula. 

From Theorem 11.10 we can show that any minimum equivalent conjunc- 
tive query for a given conjunctive query E is unique up to a one-to-one 
renaming of domain variables. That is, if El and E2 are minimum equivalent 
conjunctive queries for E, then there is a folding $ from El to E2 whose in- 
verse is a folding from E2 and El. 

Let El be 

{xl(Al) ~2W2) - - . ~,(~)I~YI(~I) 3~2(82) --a ~y,,O,n) 

.0X19X29 ‘**,x,,yl,y2, *- *,y,)] 

and let E2 be 

(~6-4,) w2b42) * -- w,(A,)I3z1(Cd 3dCz) - - - 3zp(Cp) 

&?(Wl, w2, * * * 3 w,, Zl, 22, f * *, z,>>. 
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By Theorem 11.10, there is a folding $i2 from El to Ez and a folding $21 from 
Ez to El. If $r2 maps two atoms off to the same atom of g, then $21 0 $12 is a 
folding from the atoms of El to a proper subset of those atoms. The identity 
mapping is a folding from this subset to all the atoms. We conclude that we 
can remove some atoms (and possibly some of the y’s) from El to get an 
equivalent conjunctive query, a contradiction. Thus $iz must be one-to-one 
on the atoms off. By a similar argument, we can show $i2 is one-to-one as a 
mapping of variables and constants. (If not, there must be someyi that is not 
mentioned inf.) Thus, the inverse of $r2 is indeed a function. The inverse of 
$iz must also be defined on all variables and constants in Ez, or else there is 
some atom of g not mapped to by $ i2, which implies E2 is not minimum. 

To show that $$ is indeed a folding, we must show that conditions cl- 
c3 in the definition of folding hold. We have $12’ (wi) = xi, since $i&) = wi. 
If r(br b2 . - - bk) is an atom in g, it must be mapped to by some atom 
r(al a2 1. - aL) inf, or else E2 would not be minimum. Therefore, r($$(bi) 
4G’uQ) - * - tiiwk)) = da1 a2 -* - ak> is in f. The only condition left to 
check is c2: t&l (c) = c for any constant c. The only way a problem can arise 
isif+,, = cforsomel 5 i s m. 

For an atom r(al a2 - - - uk) inf and a folding $, let $(r(ui a2 -. - uk)) be 
r(Jkb, $b2) - -. $(uk)). Consider the folding &i = $21 0 4i2 from El to 
itself. Everything we have shown so far about $I~ applies to J/21 by symmetry. 
The folding rl/11 must be a one-to-one mapping on atoms of El, since it is the 
composition of two such mappings. Let cyl be an atom of El that contains yj 
in the jth position. Consider the sequence cxl, (Ye, cx3, . . . of atoms from El 
such that $ir(c~~) = al+l, C 1 1. The sequence must eventuahy repeat an 
atom. Suppose CY~ = olqr for q < q ‘. If q > 1 then $il(aq-i) = olg = 
h@-1) and $11 is not one-to-one on atoms. Hence q = 1. But since 
h(yb = c and $21(c) = c, vh(yb = c. Also, &i(c) = c, so each of CY~, a3, 
014, . *. must have c in the jth position, which contradicts al = oq r. The 
premise that $rz(yi) = c must be incorrect. 

We summarize our argument in the following theorem. 

Theorem 11.11 Let El andE2 be two minimum conjunctive queries. El = E2 
if and only if there is a folding $ from El to E2 such that G-r is a folding from 
E2 to E,. 

As a consequence of Theorem Il. 11, it is not hard to show that for any 
conjunctive query E there is a minimum equivalent conjunctive query E ’ that 
is E with some atoms and quantified variables removed. Minimizing a con- 
junctive query E reduces to finding a folding from E to E’ that maps the 
atoms of E to a proper subset of themselves. 
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Example 11.58 Let d be the same database as used in Example 11.57. Con- 
sider the conjunctive query 

E = {~1L4)~2(~)13~1(0 3~200 3y3tC) WAC) MD) 
4(x1 3Yl) A q(x1JQy3) A r(3y1 x2) A 

dy2y4 x2) A dx1 5) A dxl ys)} 

over database d. The folding $~i for E that maps yz to 3, y3 and y4 to yl, and 
everything else to itself shows that the conjunctive query 

E’ = {x,(A) x~WI~YI(C) 3ydD) 

qh 3~1) A 43~1x2) A s(-q 5) A s(x, YS>) 

is equivalent to E. The folding $2 for E ’ that rnapsys to 5 and everything else 
to itself shows that 

E” = {xi(AhtA)I~ydC) q(xl 3~1) A r(3yl x2) A s(x, s)> 

is equivalent to E ’ and hence to E. E” is clearly minimum (why?), so E” is a 
minimum equivalent conjunctive query for E. 

Determining whether a given conjunctive query E is minimum is an NP- 
complete problem. No known method for testing minimality is significantly 
better than examining all foldings from E to itself to see if one maps the 
atoms of E to a proper subset of themselves. Nevertheless, if E contains only 
a few atoms, such a search will not be prohibitive, especially if E is to be 
evaluated many times. 

11.7 QUERY MODIFICATION FOR DISTRIRUTED DATABASES 

Some database systems support relational databases whose parts are physi- 
cally separated. Different refations might reside at different sites, multiple 
copies of a single relation might be distributed among several sites, or one re- 
lation might be broken into pieces and the pieces distributed. In order to 
evaluate a query posed at one site, it may be necessary to transfer data be- 
tween various sites. The dominant element in the time required to process 
such a query will often be the time spent transferring data between sites, 
rather than the time spent on retrieval from secondary storage or computa- 
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tion. Efficient query evaluation depends on minimizing communication be- 
tween sites. 

Example 11.59 Suppose that the expression r w uAza(s) must be 
evaluated at site I of a distributed database system, where r is stored at site 1, 
but s is at site 2. Site 1 could ask site 2 to transmit all of relation s, and then 
compute the selection itself. A more reasonable approach, if s is large, if for 
site 1 to transmit the selection condition A = u to site 2. Site 2 then performs 
the selection and transmits the result, which is presumably much smaller 
than s, to site 1. 

In this section we shall look at semijoin, which is a useful operation for 
computing joins in a distributed system, and fragmented relations, which are 
relations that have been horizontally decomposed and stored at multiple 
sites. 

11.7.1 Semijoins 

Before defining semijoin, we demonstrate its utility with an example. 

Example 11.60 Let relations r(A II) and s(B C D), as shown in Figure 
11.71, be stored at site 1 and site 2, respectively, of a distributed database. 
Suppose we wish to compute P- w s at site 1. We could transmit all of s from 
site 2 to site 1 and compute the join at site 1. There would be 21 values sent in 
that transmission. Alternatively, we can compute I’ = x&) at site 1, send 
r ’ to site 2, compute s ’ = Y ’ w s, and send s ’ to site I. We can then com- 
pute T w s as r w s ‘. Relations I ’ and s ’ are shown in Figure 11.72. For 
this method, only 15 values must be transmitted: 6 for r ’ and 9 for s ‘. 

44 B) s(B c 
1 4 4 13 
1 5 4 14 
1 6 7 13 
2 4 10 14 

2 6 10 15 
3 7 11 15 

3 8 11 15 

3 9 12 15 

F&Ire 11.71 

D) 
16 
16 
17 
16 
17 
16 
16 
16 
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r ‘(A) s’(B c D) 

i- 4 13 16 
5 4 14 16 
6 7 13 17 
7 
8 
9 

Figure 11.72 

Definition 11.16 Let r(R) and s(S) be two relations. The semijoirz of r with 
s, denoted r D< s, is the relation r& w s). That is, Y D< s is the portion of r 
that joins with s. 

Recalling some of the transformations from Section 11.3, we have 

Thus, r D< s can be computed knowning only ~~,-&s); all of s is not neces- 
sary. (In Example 11.60, F-’ = ?rB(r) and s ’ = s D< r.) The property of semi- 
join that interests us is that (r D< s) W s = T W s (see Exercise 11.46). If r 
and s are at different sites, computing r w s as (r D< s) w s saves transmit- 
ting data whenever I is larger than 7rRns(r) and r D< s put together. If I and s 
join completely, there is no savings, of course. However, even in a database 
where all relations are projections of a common instance, queries can involve 
joins between relations that do not join completely, as a result of selections. 
In such cases, semijoins may be effective. Sometimes semijoins can replace 
joins completely. 

Example 11.61 Let q(A B), r(B C), and s(C D) be the three relations 
shown in Figure 11.73. Suppose q , r, and s are dispersed at sites 1, 2, and 3, 
respectively, and that we wish to evaluate the algebraic expression 

E = 7rD(aA=l(q w r Da s)) 

at site 3. First we note that E is equivalent to 

E’ = ndaA=l(q) Da r w s). 

To evaluate E ‘, we first compute q ’ = aA,, at site 1. We next send 
?rB(q ‘) to site 2 and compute r ’ = r D< q ’ there. We then send T&T ‘) to site 
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3 and compute s ’ = s E-C r ’ at site 3. The desired result is n,(s ‘), which we 
also compute at site 3. Relations q ‘, I’, and s ’ are shown in Figure 11.74. 
Note that no relation was transmitted in its entirety. 

q(A IO r(B C) s(C D) 
1 4 4 7 7 11 
1 5 5 7 8 11 
2 4 5 8 9 12 
2 6 6 9 10 11 
3 6 6 10 

Figure 11.73 

q ‘(A B) r ‘(B C) s’(C D) 

1 4 4 7 7 11 
1 5 5 7 8 11 

5 8 

Figure 11.74 

Frequently during the evaluation of a query in a distributed database, 
there is a point at which intermediate result relations rl, r2, . . . , rP exist at 
different sites, and the next step is to compute tI w r2 w . . . w rP at a 
single site. It is helpful if we can easily compute the portion of each relation 
that takes part in the join. 

Definftion 11.17 Given database d and a relation r(R) in d, thefull reduc- 
tion of r relative to d, denoted FR(r, d), is RR(W (d)). That is, FRfr, d) is 
the portion of r that takes part in the join with all the other relations in d. 

Example 11.62 Let d be the database { q(A B), r(B C), s(A C)> for the 
relations q, T, and s in Figure 11.75. FR(q, d) = q ‘, I’;R(r, d) = t ‘, and 
FIZ(s, d) = s’ are shown in Figure 11.76. 

q(A B) f-w Cl 44 0 
1 4 4 7 1 8 
1 5 5 7 2 7 
2 4 5 8 2 8 
2 6 6 8 3 7 
3 6 

Figure 11.75 
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q’M B) r ‘(B C) s’(A C) 

1 5 4 7 1 8 
2 4 5 a 2 7 
2 6 6 8 2 8 

Figure 11.76 

Definition 11.18 Let d = { rl, r2, . . . , rP > be a database. A semijoin pro- 
gram SP for d is a sequence of assignment statements of the form 

We let SP(ri, d) denote the final value of ri after executing SP on d. 

Definition 11.19 A semijoin program SP for database d = { rl, t-2, . . . , rp 1 
is afufl-reducer if for any state of d, 

FR(ri, d) = SP(ri, d), 1 5 i I p# 

Note that FR (rj, d) C SP(ri, d) whether or not Sp is a full reducer for d (see 
Exercise 11.48). 

Example 11.63 Let d be the database {rl(Al AZ), rz(Az A3 A4 AS), r3(A3 
A4 A& r4(A4 As AT)). Figure 11.77 shows a semijoin program SPI for d. 
SP, is not a full-reducer for d. Consider the state of d shown in Figure 11.78. 
SPl(rz, d) is shown in Figure 11.79. It contains the tuple (4 5 7 lo), which is 
not in FR( rl, d), since it joins with no tuple in ri. 

The semijoin program SP1 in Figure 11.78 is a full-reducer for d. For ex- 
ample, using the state of d in Figure 11.75, SPZ(r2, d) is the relation in 
Figure 11.79, which is FR(r2, d). Proving that SP2 is indeed a full reducer is 
not a trivial task, nor is SP2 the shortest full-reducer for d (see Exercise 
11.49). We indicate here why, for example, SP& d) is necessarily FR(r2, d). 

By Exercise 11.48, SP2(r2, d) 1 FR( r2, d). We need to show that every 
tuple in SPz(r2, d) will actually join with tuples from the other three rela- 
tions. Note that of the other three relations, only r3 and r4 have intersecting 
schemes, and the intersection is contained in the scheme of r2. If a tuple t2 
from r2 joins individually with tuples tl, t3, and t4 from rl, r3, and r4, it will 
join with them collectively. Since r2 is semijoined with t-1, r-3, and r-4 in steps 3, 
4, and 5 of SP,, such tuples t 1, t3, and t4 must be present for any tuple 
t2 in r-2. 
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1. r2+r2iXr3; 

2. r2 + r2 cx r-4; 
3. Yl + 7.1 lx ‘1. 

Figure 11.77 

rl(Al A21 12642 -43 A4 Ad 

1 3 357 9 
2 3 3 6 7 9 

4 5 7 10 

r3L43 A4 Ad r4L44 As A7) 

5 7 11 7 9 13 
6 8 12 7 10 13 

Figure 11.78 

SPih,d)(A2 A3 A4 AS) 
3 5 7 9 
4 5 7 10 

Figure 11.79 

SP, : 
1. r3+r3iXr4; 

2. r4 + r-4 D< i-3; 

3. r2 + r2 DC r-3; 

4. r2 + r2 D< r-4; 

5. r2+r2D<rl; 

6. r-1 + rl D< r2; 

7. r3 + r3 IX r2; 

8. r4 + r4 D< r2. 

Figure 11.80 

-2(r,,dK42 A3 4 A,) 

3 5 7 9 

Figure 11.81 
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Example 11.64 The database d in Example 11.62 has no ft.&reducer. The 
state of d shown in Figure il.75 remains unchanged no matter what semi- 
joins are performed, yet none of the relations in d is fully reduced. 

In Chapter 13 we shall return to semijoin programs and characterize those 
databases for which full-reducers exist. 

11.7.2 Fragments of Relations 

In a distributed database, a given relation is not necessarily stored in its en- 
tirety at any single site. Its tuples may be dispersed among several sites for 
performance considerations. For example, a database of airline reservations 
might be broken up to put all tuples for each flight at the site where the flight 
originates. Sometimes, the same tuple is stored at several sites. We shall call 
the pieces of a relation that reside at each sitefragments of the relation. Pro- 
cessing a query at one site may involve retrieving fragments from other sites. 
If the assignment of tuples to fragments follows some rule, then that rule can 
be used to reduce the number of fragments accessed in processing a query. 

We shall define fragments using selection conditions. A fragment of a rela- 
tion Y will be u&r) for some selection condition C. 

For the following discussion, let sl, ~2, . . . , sg be the fragments of relation 
r, where sit I d i 5 p, is defined as a,$> for some selection condition C;. 
We call { Ci, Cz, . . . , C, } the fragmentation scheme forf. One condition we 
wish always to hold is 

r=s1us2u **- us,. 

That is, we can recover Y from its fragments. We assume there is also a condi- 
tion Co that r is guaranteed to satisfy: T = at,(r). To be certain that r can 
always be represented as the union of its fragments, the fragmentation 
scheme must have the property 

That is, any tuple that satisfies Cc must necessarily satisfy one of the condi- 
tions in the fragmentation scheme. We call any fragmentation scheme that 
has the property above valid. 
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Example 11.65 Let Y be a relation on scheme A B D, where the domain of 
each attribute is the positive integers. Assume Y always satisfies the condition 
Co where 

Cois(A I BvB I D)AA #D. 

The fragmentation scheme ( C,, C2, C3 ) for Y where 

CIisA =B 
CZisB = D, and 
C3isA 5 D 

is valid forf (why?). 

Knowing the fragmentation scheme for r can help in processing queries. 
Suppose, perhaps as part of a larger query, we want to evaluate uo(r) at a 
given site. We could send out a request for a&) for each fragment si that is 
not at the site. However, we are guaranteed to get nothing back whenever C A 
Ci E false. Thus, we need only ask for ac(si) whenever C A Ci f false. 

We can actually do better at eliminating fragments from consideration. 
Suppose that for condition C1 there is a condition Cj such that 

C A Cl j C A Cj. 

Any tuple t in Y that appears in fragment s1 and satisfies C will also appear in 
fragment sj. Thus, fragment s1 need not be consulted to evaluate u,-(r). In 
general, if 

then fragment s1 can be removed from consideration. We call this implica- 
tion the efimirzation requirement. 

Example 11.66 Let r be a relation on scheme A B D, where the domain of 
each attribute is the positive integers. Assume P satisfies the condition CO 
where 

COisA rB/\B 5 D. 

Let x1, s2, x3, and s4 be fragments for r corresponding to the fragmentation 
scheme ( Cr, Cz, C3, C4 > where 
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C,isA cB, 
CZisB I 3AB <D, 
C3 is B > 3, and 
C4isA = D. 

The reader should check that this fragmentation scheme is vatid. 
Suppose we want to evaluate a&) where 

CisA< BAB < D. 

Which fragments must we consult? Fragment s4 is out, since C A C4 = false. 
Also, since 

c A Cl * KC A C,) v (C A C,)l, 

s1 could be eliminated, Alternatively, since 

C A G2 * C A Cl and 
CAC, * CACl, 

s2 and s3 could be eliminated, and only s1 retained. 

In general, when determining which fragment can be eliminated in 
evaluating CJ&-)~ C ’ = C A CO can be used in place of C. If C f, Cc, this 
replacement could allow more fragments to be eliminated. 

We have not touched on algorithms to test validity or the elimination re- 
quirement. The complexity of such algorithms depends heavily on the par- 
ticular domains for attributes and the permissible forms of selection condi- 
tions. As we saw in the last example, there can be more than one possibility 
for a minimal set of fragments to consult to evaluate a&). The smallest set 
among the minimal sets might not be the optimal choice for evaluating the 
query. There are other considerations, such as communications costs (it 
could cost more to talk to one site than another), whether one of the 
fragments is already at the site where the query is being evaluated, and the 
amount of duplication among tuples in the minimal sets. 

11.8 EXERCISES 

11.1 Let Y and s be the relations from Example 11.9. Give the number of 
disk accesses necessary to compute r w s by the following methods. 
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(a) Read the blocks of r into memory 4 at a time, and for each group 
of 4, read in the blocks of s one at a time. 

(b) Read the blocks of s into memory 2 at a time, and for each group 
of 2, read in the blocks of r three at a time. 

11.2 For the relations r and s of Example 11.9, suppose only r is sorted on B. 
Can you find a more efficient way to compute r w s than the one 
where neither r nor s is sorted on B. Suppose each disk block only 
contains 5 tuples? 

11.3 Assume T and s are relations such that r E s. Simplify the following 
expressions. 
(a) r W s 
(b) u,i=otr) - s 
(4 r&-) t-l Q(S) 

11.4 Give the expression tree for each of the following expressions, then 
merge nodes and simplify where possible. 
(a) (rr W r2 W r3) U (r2 w r3 W rq) U (fl W r3 W r4) U 

h-1 b-3 r-2 W r4) 
(b) (r w 4) 17 (uA&) - s) 
(c) 7rTp#rNaooT&rp w low), for rp and low as given in Example 

11.1. 
11.5 Give the expression tree for each of the following expressions, then 

apply algebraic optimization to each. The schemes of 4, r, and s are 
ABD, BDF, and PG. 
(4 e=d(7kd4 W r) - mdr M s)) 
(b) n&q w r w uG=Js)) 
(c) d@A=d%=d(q) w (r - d3BDk w s)))) 

11.6 Consider the statement 

11.7 

where the schemes of sl, s2, . . . , sk are all disjoint. Suppose X only 
contains attributes from sr, s2, . . . , sP for somep < k. Show a way to 
transform the statement to a program containing only p- 1 for- 
loops, given that you may easily test if a relation is empty. 
Apply the query decomposition algorithm to the initial statement of 
Example 11.33 using the foIlowing alternatives for comparisons 
C&j. 
(a) Cl, C2. C3, Cg, and C6 are the same, C4 is z. G 5 3 
(b) Cr, Cz, C3, and C6 are the same, C4 is z. G I 3, C5 is y.F = 4 
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(c) C1, C3, Cd, and C5 are the same, C2 is x.A = 5, C6 is x3 d 9 
(d) C2-C6 are the same, Ct is w.B = 7 

11.8 For the statement 

let PI be the program that results from query decomposition where 
{Sl, s29 - ’ -, sP }, p < k is instantiated, then sl, s2, . . . , sP are all 
iterated. Compare the structure of PI to the program P2 that results 
where sl, s2, . . . , sP are iterated without the instantiation first. 

11.9 Consider the tuple caicuius expression and the corresponding 
algebraic expression at the beginning of Section 11.4. Let h be the 
formula 

3Yl(Rl) E r1 3Y2@2) E r2 * * * 3y,(R,) E rm g(y1, y2, . . .) ym). 

Let E be the corresponding part of the algebraic expression, namely 

rr& w s2 w - - * w s,). 

Can you find modifications to h that correspond to applying instan- 
tiation and iteration to the statement Y + E? Hint: For instantiation, 
it is necessary to introduce a new tuple variable into h. 

11.10 Consider relations rl(Al A2), r2(A2 A3), r3(Ag Ad), and r4(A4 As). 
Below are two methods to compute rl w r2 w ~3 w 14. Assuming 
each relation has IZ tuples, under what conditions will the second 
method require less time. Assume time is measured by the number of 
executions of assignment statements. Single tuples are treated as one 
tuple relations in the assignment statements. 

Method 1: 
r +a 
for each tuple tI in rl do 

for each tuple t2 in r2 do 
for each tuple t3 in r3 do 

for each tuple t4 in r4 do 
r t- r U (tl W t2 W t3 W t4) 
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Method 2: 
Sl t 87 
for each tuple tl in rl do 

for each tuple t2 in ~-2 do 
Sl +- 81 u ttl w t2); 

s2 + a 
for each tuple t3 in r3 do 

for each tuple t4 in r4 do 
s2 + s2 u 03 [XJ t4); 

r + a 
for each tuple u1 in s I do 

for each tuple u2 in s2 do 
r + T u (241 w 24 

11.11 Give an example where option 5 of the query decomposition heuristic 
would be used. That is, give a connection graph where options i-4 do 
not apply. 

11.12 Find two tableau queries Q, and Q2 such that Q1 covers Q2 but 
Q2 Z QI. 

11.13 Prove Lemma 11.1. 
11.14 Find two tableau queries Q, and Q, such that Qi = Q2, Q2 is Qi 

with a single row removed, but the row is not superseded in Qi. 
11.15 Show that removing all superseded rows from a tableau query does 

not necessarily guarantee a minimum tableau query. 
11.16 Prove Theorem 11.3. Note that the containment mapping can do 

nothing more than rename nondistinguished variables. 
11.17 Give an algorithm to decide if two tableau queries are identical up to 

a one-to-one renaming of nondistinguished variables. 

Definition 11.20 An expression tableau query is a tableau query that can be 
derived from a restricted algebraic expression by the method of Chapter 10. 

11.18 Prove the following: 
(a) If Q1 is an expression tableau query, and Q2 is a subtableau of 

Qi that is minimum and equivalent to Q,, then Q2 is an expres- 
sion tableau query. 

(b) Tableau query Q is equivalent to an expression tableau query if 
and only if every and any minimum equivalent tableau query for 
Q is an expression query. 

(c) There is a tableau query that is equivalent to an expression 
tableau query but is not itself an expression tableau query. 
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11.19 Find an efficient method to determine if a simple tableau query is an 
expression tableau query. 

11.20 Let Q be an expression tableau query that is not simple. What is the 
fewest rows Q can have? 

11.21 Show that a minimum equivalent tableau query for a simpIe tableau 
query Q is also simple. 

11.22 For the tableau query Q in Figure 11.40, compute COMP,,(LV,) 
where 
(a) i = 1 and j = 2, (c) i = 3 and j = 6, 
(b) i = 2 and j = 1, (d) i=4andj=3. 

11.23 Prove Lemma 11.3. The proof depends on the simplicity of Q. 
11.24 Find an algorithm to compute COMP,(w) in O(k2 n) for a tableau 

query Q with k rows and IZ columns. 
11.25 Find MINEQ(Q) for tableau query Q in Figure 11.40. 
11.26 Let Q be a simple tableau query and let v and w be rows of Q. Show 

that if w ’ is a row in COMP,(w), then COMP,(w) = COMP,(w ‘). 
11.27 Are any of the following tableau queries equivalent? 

Qi(A, A2 -43 A4) 

a1 a2 

al bl b2 4 
b3 a2 b2 b3 

Qz(Al A2 -43 A4) 

al a2 

bl a2 b2 b3 
b4 a2 b5 b6 
b7 ba bz b6 
al bg b2 4 

Qd-41 A2 A3 A4) 

ai a2 

al bt b2 4 
a1 b3 b4 b5 
b6 a2 b2 b5 
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Q&I A2 A3 A4) 

al a2 

a1 a2 b2 4 

b3 a2 62 b3 

bs a2 b2 4 

11.28 

11.29 

11.30 

11.31 

11.32 

11.33 

11.34 

11.35 

11.36 

Which tableau queries in Exercise 11.27 are equivalent on 
SAT(A3 + A4)? 
Exhibit a tableau query Q and a set C of FDs such that Q is simple 
but chase&Q) is not, nor can chasec(Q) be made simple be remov- 
ing superseded rows. 
Given a simple tableau query Q and a set C of FDs and IDS, show 
that chasec(MINEQ(Q)) is not necessarily a C-minimum equivalent 
tableau query for Q. 
If Q is an expression tableau query, and C is a set of FDs and IDS, is 
chasec( Q) necessarily an expression tableau query? 
Let d = {q(AB), r(BC), s(AC)} b e a database that is the projection 
of a common instance over A B C. Use tableau query optimization to 
find algebraic expressions equivalent to the following with fewer 
joins, if such exist. 
(4 ‘lrB(q w r b-4 ~1 
(b) rAC(q w r) 
(‘d ?TAC(q m r w s) 
(d) ~ACbA=&) C-4 @C=c,(d w s). 

Let d be a database over database scheme R. Assume d is the projec- 
tion of an instance r(U) in SAT(F) for some set F of FDs. Let ql, q2, 
. . .) qm be a sequence of relations such that wi, 1 s i I m is either 

i. a relation in d, or 
ii. the qj-extension of qk by Y + 2 forj < i, k < i and Y + 2 

E F. 
Let S be the scheme of qm. Show that qm = r&). 
LetFbeasetofFDs.L.etR={R1,R2, . . ..R.}beSYNTHESIZE(F) 
for the SYNTHESIZE algorithm of Chapter 6. Let U = Ri R2 - - - R,. 
Under what condition is U an RF-extension? 
Let F be a set of FDs and let R = (Rr, R2, . . . , RP} be a database 
scheme, where U = R 1 R 2 . - - R,. Suppose F I= *[RI. Is U necessar- 
ily an RF-extension? 
Let F be a set of FDs and let R be a database scheme over U. Show 
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that if R E U is an RF-extension, then echaseF(TR) contains a row 
distinguished at least on the attributes in R. 

11.37 Let F be a set of FDs and let R be a database scheme. Prove that if F 
is enforceable on R, then echuseF(TR) = chase,(TR). Recall that I; 
is enforceable on R if some cover G of F applies to R. 

11.38 Show the ADE is not an RFextension for F = {A --+ C, B --) C, 
CD + E} and R = (AD, AB, BDE, CE}. 

11.39 Show that if F is a set of FDs and Q is an expression tableau query, 
then echaseF(Q) is an expression tableau query. 

11.40 Fiid the containment relationships between the tableau set queries 

QI = {QI, Q3I 
42 = tQ29 Q3I 
z3 y I:13 ;2;e,, 

4- 39 4 

where tableau queries QI, Q2, Q3, and Q4 are given below. Which of 
Q1-Q4 are nonredundant? 

Q,(A B C D) 

al a3 

a1 bl b2 b3 

b4 bl a3 b5 

b4 b6 b7 b3 

QAA B C D) 
a1 Q3 

~1 61 b2 b3 
b4 bl 43 b5 

QdA B C D 1 

Ql Q3 

~1 bl b2 b3 
b4 bl a3 b3 
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Q4tA B c D) 
a1 a3 

al 5 bl b2 
b3 5 a3 b4 

11.41 Prove the corollary to Theorem 11.9. 
11.42 Prove Theorem 11.10. 
11.43 Let d be the database (q(A B C), r(B CD), s(A D)} where dam(B) = 

dam(C). Find minimum equivalent conjunctive queries for the 
following conjunctive queries. Give a folding to justify each answer. 
(a) (xdA) ~203) x~(C)I~YI(D) 3ydC) 

&l x2x3) A dx2X2Yl) A +Y2Y1) A +2x3 6)) 

(b) {xdBb4.W3ydA) 3ydC) 3ydA) 

94(B) ws(C) q&4) XY~B) ~YYS@) 

dY1 nlY2) * dY3Y4YS) * dY6Y7Y5) 

* dyi Y8) A dY3YS) A dY6 x2)) 

(cl {x,(A) XZ(D)l3Yl(D) 3y2l-4) 

4x1 Yl> A dY2Yd A dY2 x2)) 
11.44 For relations r and s, prove r w s = (r D< s) w s. 
11.45 For relations r and s, show that 

r ’ = r D< s and 
s ‘=slxr’ 

always join completely, and that I w s = t ’ w s ‘. 
11.46 If SP is a semijoin program for database d, and Y is a relation in d, 

show that SP(r,d) 2 FR(r,d). 
11.47 (a) Show that the semijoin program SP, in Example 11.63 is a full- 

reducer for d. 
(b) For database d in Example 11.63, give a full-reducer with fewer 

statements than SP2. 
(c)*Prove: If database d = { yl, r2, . . . , rp} has a full-reducer, it has 

one with 2p-2 statements. 
11.48 Let T be a relation on scheme A B D E, where the domain of each at- 

tribute is the positive integers. Assume r always satisfies the condi- 
tion Co where 

C,isArBr\BrDr\DsE. 
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Let 

C1beA<BAB<D 
C2beA=D 
C3beA <D 
CdbeA#BvB#D 
CsbeB <E 

Which of the following fragmentation schemes are valid for r? 
(4 { Cl, C2 I 

(b) CC,, Cd 

(4 c Cl, c4, G > 

(d) CC,, C4, C,}. 

11.49 Let Y be as in Exercise 11.48. Let sl, s2, s3, s4 be fragments for r cor- 
responding to the fragmentation scheme (Cr, CZ, C3, C4 } for the 
conditions Cl-C4 given in Exercise 11.48. Give minimal sets of 
fragments that can be used to evaluate q-(r) for the following choices 
of c. 
(a)A#BAB=D 
(b)B<DnD<E 
(c)A<SAEC~ 
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