
Chapter 10

QUERY SYSTEMS

To this point, we have seen two systems for manipulating relational
databases. In Chapter 1 we saw update commands for adding, deleting, and
modifying tuples in relations. In Chapters 2 and 3 we introduced the rela-
tional algebra to express selections, restrictions, and combinations of rela-
tions in a database. We call a formal system that can express updates to rela-
tions an update system. A query is a computation upon relations that yields
other relations. A query system, such as the relational algebra, is a formal
system for expressing queries. Query systems form the underlying structure
of query languages: the special purpose programming languages used in
database systems to formulate commands. We examine several query
languages for relational database systems in Chapter 15.

In this chapter we cover three other query systems. The tuple relational
calculus is essentially a formalization of the set-former notation we used to
define the operators in relational -algebra. Domain relational calculus is simi-
lar, except the variables range over single domain values rather than entire
tuples. We shall see that both tuple calculus and domain calculus are
equivalent in expressive power to relational algebra. We also introduce a
modification of tableaux as a means to express queries. While tableaux can-
not express all of the queries representable in relational algebra, the subclass
they can represent seems to include many of the queries that might naturally
arise in a real application. Furthermore, they lend themselves well to testing
of equivalence and transformations, as we shall see in the next chapter.

Although a few query languages are based on relational algebra, most are
based on either calculus or tableaux. The main reason is that the algebra is a
procedural system, while the other three are non-procedural. That is, an ex-
pression in relational algebra gives a set of operations on relations and an
order in which to perform them (up to certain associativities). We shall see
that the calculi and tableaux simply express what the result of the computa-
tion should be, but not how to carry out the computation. Thus, query
languages based on non-procedural systems tend to be higher-level, relieving
the user of such languages from having to determine how to derive a desired

224

Equivalence and Completeness 225

answer. The burden for this determination naturally falls to the query lan-
guage processor of the given database system. In this chapter we shall show
that expressions in either calculus can be translated effectively into algebraic
expressions. However, the algebraic expressions we end up with can by no
means be expected to be efficient means to evaluate the calculus expressions.
In the next chapter we explore ways of modifying algebraic expressions to
make them easier to evaluate.

We shall also, briefly, introduce conjunctive queries, which are a.subclass
of domain calculus expressions. Conjunctive queries are similar to tableaux que-
ries, and also lend themselves well to equivalence testing and transformation.

10.1 EQUIVALENCE AND COMPLETENESS

The expressions in the various query systems we shall study can be viewed as
mappings from databases to relations. That is, for an expression E, and a
database d, we can evaluate E on d and get a particular relation r. We call r
the value of expression E on d, and denote it E(d).* We would like to say two
expressions El and E2 are equivalent, written El = Ez, when E,(d) = Ez(d)
for every database state d. The problem is that we must know the scheme of
the database to decide equivalence. For example,

would be equivalent if we consider the schemes of r and s to be ABC and
ABD, but not if the schemes were ABCD and ABCE. We therefore consider
equivalence to be relative to a particular database scheme. Sometimes the
particular database scheme is immaterial, since the two expressions are
equivalent for every database scheme where they are both properly formed.
For example,

gA=a(r w S) and oA~=a(r) w S

are equivalent for any database scheme where the relation scheme for r con-
tains A.

The last example suggests a stronger notion of equivalence: El = Ez if
El(d) = Ez(d) for every database d over every database scheme that is con-
sistent with both El and E2. Unfortunately, this definition of equivalence is
not transitive.

*In Chapter 3, before the introduction of databases, we were denoting E(d) as E(sI,sZ, . . . , sk)
where d is the database (~1, s2, . . . , sk}.

226 Query Systems

Exampb 10.1 Consider the following algebraic expressions:

El and E2 are equivalent under the alternative definition above. In any
database consistent with El and Ez, the schemes of r and s must both be Al?.
El requires the two schemes be the same, where E2 requires the scheme of s
be AB. Similarly, E2 and E3 can be shown equivalent under the alternative
definition. However, El and E3 are not equivalent, since there are databases
consistent with both where the schemes of r and s are both ABC.

The situation can be worse than that given in Example 10.1. Under the
alternative definition, there are expressions El, E2, and E3, with El E E2
and E2 = Es, where El and E3 do not even define relations over the same
scheme for some mutually consistent databases (see Exercise 10.1). Hence,
we shall always assume equivalence is relative to a fixed database scheme.

Once we define the other query systems, we shall discuss equivalence of ex-
pressions in different systems. One comparison we shall make between
systems is expressive power. Query system QS, is as expressive as query sys-
tems QS, if for every expression E2 of QS,, and every database scheme com-
patible with Ez, there is an expression El of QS, such that El = EZ. Note
that El may depend upon the particular database scheme. QS1 and QS, are
equally expressive if each is as expressive as the other. A query system is com-
plete if it is as expressive as relational algebra. We shall see that tuple
calculus and domain calculus are both complete, while tableau queries and
conjunctive queries are not.*

In Chapter 3 we defined the relational algebra 64 for a universe of at-
tributes U, with corresponding domains, a set of relations { rl, r2, . . . , rP },
and a set of binary comparators 0, using constant relations and the operators
union, intersection, difference, select, project, natural join, renaming,
divide, theta-join, and active complement. The relational algebra with com-
plement also allowed complement. However, we also saw, in Theorem 3.1,
that for any relational algebra expression E, there is an equivalent expression
E ’ using only single-attribute, single-tuple constant relations, renaming,
select with a single comparison, projection, natural join, union, difference,
and possibly complement (if the original expression used complement). The
subalgebra of relational algebra using only the constants and operators above

*Traditionally, completeness has been defined as being as expressive as tuple calculus.

Tuple Relational Calculus 227

is equally expressive with the full relational algebra, and hence complete.
Thus when we want to show that some query system Qs is as expressive as
relational algebra, we need only consider expressions using the subalgebra
above. On the other hand, if we want to show relational algebra is as ex-
pressive as Qs, we may use any of the relational operators, to simplify our
task.

Although relational algebra is our benchmark for completeness, we shall
see in Chapter 14 that there are some natural computations on relations that
cannot be expressed by any algebraic expression (see Exercise 10.2).

10.2 TUPLE RELATIONAL CALCULUS

The tuple relational calculus should appear a natural notation to the reader,
since it is quite similar to the set-former expressions used in Chapters 2 and 3
to define some of the operators in relational algebra. Where the relational
algebra has relations as its basic units for manipulation, tuple .relational cal-
culus (tuple calculus, for short) builds its expressions from tuples.

Recall the definition of divide from Section 3.1. If r(R) and s(S) are rela-
tions, with S C R, and R ’ = R-S, then Y + s is the relation

r’(R’) = {tIforeverytuplet,Esthereisatuplet,Er
with t,(R ‘) = t and t,(s) = t,}.

Tuple calculus expressions will have the form

{x(R) IfW,

where f is some Boolean predicate on tuple variable X. The expression
denotes the relation r(R) that consists of all tuples t(R) wheref(t) is true.
We shall shortly give a formal definition of the set of legal formulas, but first
we give some informal examples.

Consider the database consisting of the three relations in Table 10.1. The
database describes replacement parts for aircraft. Relation pinfo gives part
numbers, other parts of which the part is an immediate subpart (not a sub-
part of a subpart) and the name of the part. Relation usedon gives the quan-
tity of each part that is used on each type of aircraft. Relation ilzstock gives
the quantity of each part on hand at various repair locations. Some of the
relations are incomplete. The value 0 for SUBPARTOF means the part is not
a subpart.

228 Query Systems

Table 10.1 The relations pinfo, usedon, and instock.

pinfo(PART#
211

2114
2116

21163
21164

318
206

2061
2066
2068

SUBPARTOF PARTNAME)
0 coach seat

211 seat cover
211 seat belt

2116 seat belt buckle
2116 seat belt anchor

21164 funny little bolt
0 overhead console

206 paging switch
206 light switch
206 air nozzle

usedon(PART# PTYPE NUSED)

211 707 86
211 727 134

2114 707 86
2114 727 134
2116 707 244
2116 727 296

21164 707 488
21164 727 592

instock (PART# LOCATION QUANTITY)

211 JFK 106
211 Boston 28
211 O’Hare 77

2114 JFK 6
2114 O’Hare 28
2116 Boston 341
2116 O’Hare 29

21164 Atlanta 36,391

Example 10.2 For the question “What are the subparts of part number
211,” we might express the answer as

{ x(PART# PA RTNAME) 1 x E pinfo and x(SUBPARTOF) = 2113

Tuple Relational Calculus 229

The value of this expression is given in Table 10.2. The expression may not
interpret the question correctly, if subparts of subparts, subparts of subparts
of subparts, and so forth, were also meant to be included.

Table 10.2 Subparts of part 211.

(PART# PARTNAME)

2114 seat cover
2116 seat belt

Example 10.3 The answer to the question “How many coach seats are used
on a ?27?” can be expressed as

(x(NUSED)lx E usedon andx(PTYPE) = 727 and there is ay E pivzfo

where x(PART#) = y(PART#) and y(PARTNAME) = “coach seat”}

The value of this expression on the database in Table 10.1 is given in Table
10.3.

Table 10.3 Number of coach seats used on a 727.

(NUSED)
134

10.2.1 Tuple Calculus Formulas

The set of legal tuple calculus formulas will be defined relative to

1. A universal set of attributes U, with a domain, dam(A), for each at-
tribute A in U;

2. A set 9 of binary comparators on domains; and
3. A set d of relation names (rl, r2, . . . , rp } on schemes RI, Rz, . . . ,

R,, all subsets of U.

We first give the rules for building formulas, and then distinguish a subset of
legal formulas according to a set of restrictions. We give the intuitive mean-
ing of each formula as we go, but postpone the precise definition of the inter-
pretation of a formula until after the set of legal formulas has been defined.

230 Query Systems

Tuple variables will generally be lower case letters from the very end of the
alphabet, while we reserve t, u and v to stand for individual tuples.

The basic building blocks of formulas are atoms, of which there are three
kinds:

al. For any relation name r in d, and for any tuple variable x, I(X) is an
atom; I(X) stands for x E r.

a2. For any tuple variables x and y (not necessarily distinct), any com-
parator 0 E 8, and any attributes A and B in U that are
B-comparable, x(A) 0 y(B) is an atom.

a3. For any tuple variable x, any comparator 8 E 9 and any attributes A
and B in U that are &comparable, if c is a constant in dam(A), then
c 19 x(B) is an atom; if c is a constant in dam(B), then x(A) 8 c is an
atom.

Example 10.4 For the database of Table 10.1, some atoms are pinfo(x),
x(PART#) = y(PART#), and x(QUANTITY) I 20.

We use the connectives -(not), /\(and), v(or), 3(there exists) and v(for
all) to recursively build formulas from atoms, according to the following six
rules. The formulas are similar to those of first-order predicate calculus us-
ingr1,r2, r,, as unary relation symbols.

fl. Any atom is a formula.
f2. If f is a formula, then lf is a formula; 1 f is true exactly when f is

false.
f3. If f and g are formulas, then f A g and f v g are formulas; f A g is

true exactly when both f and g are true, f v g is true when eitherf or
g is true.

f4. If x is a tuple variable, f is a formula involving x, and R is a subset of
U, then gx(R)f is a formula. That formula is true if there is some
tuple t over R that makes f true when substituted for x in R.

f5. If x is a tuple variable, f is a formula involving x, and R is a subset of
U, then vx(R)f is a formula. That formula is true if for every tuple t
over R, f is true when t is substituted for x.

f6. If f is a formula, then cf) is a formula.

Parentheses are used to override the precedence of the connectives. We
assume 3 and v are of highest and equal precedence, followed by 1, A, and
v in decreasing precedence.

Tuple Relational Calculus 231

Example 10.5 The atoms in Example 10.4 are all formulas by fl. By f2,

lx(QUANTITY) I 20

is a formula. By f3 and f6,

(x(PART#) = y(PART#) v lx(QUANTITY) I 20)

is a formula. By f3 again,

instock A (x(PART#) = y(PART#) v -, x(QUANTITY) I 20)

is a formula. Finally, by f6 and f4,

%(PART# LOCATION QUANTITY)
(instock A (x(PART#) = y(PART#) v lx(QUANTITY) 5 20))

is a formula. The parentheses added by f6 are necessary, for the unparenthe-
sized formula

ax(PART# LOCATION QUANTITY)
i&o&(x) A x(PART#) = y(PART#) v 1 x(QUANTITY) I 20

is equivalent to

((gx(PART# LOCATION QUANTITY) instock (x))A
x(PART#) = y(PART#)) v x(QUANTITY) I 20

by the precedence of the connectives given.

10.2.2 Types, and Free and Bound Occurrences

Before we formally define the interpretation of a formula, we must be precise
about what ‘y is a formula involving x” and “when t is substituted for x”
mean. We also want to exclude certain nonsensical formulas, such as

usedon A x(LOCATION) = “JFK”

There is a typing problem with x, for usedon implies x is a tuple variable
on PART# PTYPE NUSED, but x(LOCATION) implies a different scheme.

232 Query Systems

We shall define the type of a tuple variable x, that is, the scheme for x. We
also define the mention set of x, which is the set of attributes x occurs with in
a formula. We shall always want the mention set of x to be contained in the
type of x. We also define when an occurrence of x is free or bound in a
formula.

The idea of free and bound occurrences of tuple variables is analogous to
global and local program variables in a language with nested procedure
declaration.

Example 10.6 Consider the program sketched in Figure 10.1. Any mention
of X, Y or Z in the body of MAIN refers to the variable declared in declara-
tion 1. Any mention of Y or Z in the body of SUB1 also refers to declaration
1, while any mention of X or W refers to dectaration 2. Y and Z are global to
SUBI; they reference the same storage location at some procedure outside of
SUBl. X and W are local to SUBI; they reference storage locations that are
unseen by procedures outside of SUBl, although they can be seen by pro-
cedures inside SUBl. In the body of SUB12, X, Y and W are global, but Z is
local. Note that in procedure SUB12, every occurrence of Z in declaration 3
and the body can be changed to another variable without changing the mean-
ing of the program, as long as the new variable is not one that is global to
SUB12. However, changing every occurrence of W in SUB12 could substan-
tially alter the meaning of the program, since those occurrences of W are
global to SUB12. Also note that occurreltces of variable are global or local.
An occurrence of Z in the body of SUB12 is local, while an occurrence in
SUB1 is global.

proc MAIN;
(1) decl X, Y, Z;

[body of MAIN] . .
pro;? SUBl;

(2) decl X, IV;
[body of SUB11

(3)
p& SUBl2;

decl Z;
[body of SUB121
end SUB12;

end SUBI;
end MAIN,

Figure 10.1

Tuple Relational Calculus 233

In a formula, free and bound variable occurrences correspond to global
and local occurrences of variables in a program. The connectives 3 and V,

called quantifiers, correspond to declarations; they bind occurrences of vari-
ables in their scope. Quantifiers will also serve to type variables in our for-
mulas, just as declarations can do in programs. We shall define free and
bound occurrences recursively, along with type(x, f), the type of variable x in
formulaf, and men(x, f), the mention set of x in f. Both type(x, f) and
men(x,f) are defined only when x has a free occurrence inf (x “occurs free”
inf). We also use freedom, boundness, type, and men to define the class of
Zegaf formulas, through restrictions on when different connectives can be
used.

First, consider the cases wheref is an atomic formula.

al. If f is t’(x), then x is free in f, and type(x, f) = men(x, f) = R,
where R is the relation scheme for r.

a2. If f is x(A) 8 y(B), then x and y are both free inf, 2ype(x, f) and
type(y,f) are both undefined, men(x,f) = A, and men(y,f) = B.

a3. Iff is x(A) 19 c or c 8 x(A), then x is free inf, tupe(x,f) is undefined,
and men(x,f) = A.

Atomic formulas, as long as they obey the requirement on comparators
and domains, are all legal. Next, consider the cases where f is built from
smaller formulas. Assume g and h are both legal formulas,

f2. If f = lg, thenf is legal, and all occurrences of variables in f are
free or bound as they are in g. For every variable x that occurs free in
f, typek.0 = type(x,g) and me+,f) = me+, g).

f3. If f = g A h or f = g v h, then all occurrences of variables in f are
free or bound as their corresponding occurrences are in g and h. For
every variable x that occurs free in f, if 2ype(x, g) and type(x, h) are
both defined, they must be equal forf to be legal. If the type of x is
defined for only one subformula, say qpe(x, g), and x occurs free in
h, then type(x, g) 3 men(x, h) must hold forf to be legal. In either
case, type(x, f) = type(x, g). If the type of x is undefined for both
subformulas, then type(x, f) is undefined. In all cases, men(x, f) =
men(x, g) U men(x, h).

f4. Eff = gx(R)g, then x must occur free in g forf to be legal. Further-
more, type(x,g) must be R, if it is defined, and R must contain
men(x,g). All occurrences of x in f are bound; type(xf) and
men(xJ) are not defined, since x does not occur free in f. Any oc-

234 Query Systems

currence of a variable y # x is free or bound in f as it was in g;
type(yS) = typdy,gl and mentytf) = men(y,g).

f5. Iff = vx(R)g, then all restrictions and definitions are the same as
in f4.

f6. If f = (g), thenf is legal, and freedom, boundness, type and men
are the same as for g.

In a formula such as gx(R)g or Vx(R)g, it is useful to distinguish which
occurrences of x in g are actually bound by the quantifier. An occurrence of x
in 3x(R)g is bound to 3x(R) if that occurrence of x is free in g. The same
holds for 3 replaced by V. If the occurrence of x: in g is bound, then it must be
bound to some quantifier contained in g.

The next five examples refer to the database given in Table 10.1. For these
examples let

R1 = PART# SUBPARTOF PARTNAME,
R2 = PART# PTYPE NUSED, and
R3 = PART# LOCATION QUANTITY.

Example 10.7 Letf be the formula

vx(R3) (-I instock v x(QUANTITY) 5 IOO).

All occurrences of x are bound; they are in the scope of x(R3). This formula
is true if for every tuple t in irzstock, t(QUANTITY) I 100.

As shorthand notation, we shall use

vx(R) E rf for b(R) (1 Y(X) vf).

Similarly, we shall use

ax(R) E rf for 3x(R) (r(x) Af 1.

ExampIe 10.8 Let f be the formula

vx(R3) E instock(3y(R3) E instock
(x(LOCATION)= y(LOCATION)/\ x(PART#)= z(PART#))).

All occurrences of x and y are bound. Each x is bound to vx(Rs); each y is
bound to vy(R3). The lone occurrence of z is free; type(z,f) is undefined;
men(zJ) = PART#.

Taple Relational Calculus 235

ExampIe 10.9 Letf be the formula

3x(R3) E instock(x(LOCATION) = “JFK” A
vy(R$ E usedon((x(PART#) # y(PART#) V y(PTYPE) # “747”) V

3x(R3) E instock(x(PART#) = y(PART#) A x(LOCATION)
= z (LOCATION))))

(We use double quotes around domain values that come from non-numeric
domains, so that values are not confused with variables. For consistency, we
use the quotes even when the specific value is numeric.) Let x1, x2, . . . , x6 be
the six occurrences of x in the order they occur in f. All occurrences of x are
bound, however, x1, x2, and x3 are bound to the first 3x(R,), while x4, x5,
and x6 are bound to the second 3x(R3). All occurrences of y are bound, but
the lone occurrence of z is free. Note that the subformula

3x(R3) E instock(x(PART#) = y(PART#) A x(LOCATION)
= z(LOCATION))

could be changed to

3w(R3) E iizstock(w(PART#) = y(PART#) A w(LOCATION)
= z(LOCATION))

to make f easier to read.

Example 10.10 Let f be the formula

gx(R2) (usedon (x) A x(LOCATION) = y(LOCATION)).

We see that for the subformulas

g = usedon and
h = (x(LOCATION) = y(LOCATION)),

type(x,g) = Rz, while men(x,h) = LOCATION. Hence the subformulag Ah
is not legal, sof is not legal.

Example 10.11 Let f be the formula

3x(R2) (instock A x(LOCATION) = y(LOCATION)).

236 Query Systems

for the subformula

g = (instock A x(LOCATION) = y(LOCATION)).

type(x,g) = R3, hence formulaf is not legal.

Another shorthand notation, which did not arise in the examples, is

where S is a set of attributes Ai AZ . - . Ak. It stands for the formula

MAI) = y(4) A x642) = y(A2) A -. - A x(Ak) = y(A&

When discussing formulas, we shall writef(xi, x2, . . . , x,) to indicate that
there are free occurrences of variables x1, x2, . . . , x, inf. However,f(xi, x2,
‘.‘f x,,) does not necessarily mean that x1, x2, . . . , x, are the only variables
that occur free inf.

10.2.3 Tuple Calculus Expressions

We denote a tuple calculus Se as a sextuple

NJ, 9, dam, R, d, e),

where U is the universe of attributes, 9 is the set of domains, dom is a map-
ping from U to 9, R is a set of relation schemes over U, d is a database on
the schemes in R, and 8 is a set of comparators that includes at least equality
and inequality for every domain in Do. A tuple calculus expression over ZC
has the form

where

1. f is a legal formula relative to U, a>, dom, R, d and 8.
2. x is the only tuple variable that occurs free in f.
3. R is a subset of U.
4. If type(xJ) is defined, it is equal to R, otherwise, R E? men(x,f).

By a slight manipulation of notation, we let dam(R) stand for the set of all
tuples with scheme R. To define the value for a tuple calculus expression, we
need to substitute tuples for tuple variables.

Tuple Relational CaIcdus 237

Definition 10.1 L&f(x) be a legal formula. Let R be type(x$), if type(x,f)
is defined, otherwise let R be any subset of U containing men(x4). Then
f with t substitutedfor x, denotedf(t/x), is the formula obtained by modify
ing each atom inf containing a free occurrence of x, as follows.

al. If the x in r(x) is free, replace r(x) by true if t E r, otherwise, replace
r(x) by fake.

a2. If the x in x(A) 8 y(B) is free, replace x(A) by the constant c E
dam(A) where t(A) = c, provided x # y. The same holds fory(B) 8’
x(A). If x = y, that is, the atom is actually x(A) 0 x(B), replace the
entire atom by true if c1 0 ~2, where cl = t(A) and c2 = t(B), other-
wise, replace the atom by false.

a3. If the x in x(A) 8 c is free, replace the entire atom by true if c1 0 c,
where cl = t(A). Otherwise, replace the atom byfalse. Handle c B
x(A) in a similar manner.

Note we are slightly extending the definition of formula here to include the
Boolean constants true and f&e as atoms. Under this extension, if f(x) is a
legal formula, so is f (t/x) (see Exercise 10.4).

Example 10.12 Let f (x) be the formula

vy(RJ (1 instock V ly(PART#) = x(PART#)
vy(QUANTITY) 5 x(QUANTITY) v x(L,OCATION) = “JFK”)

If t is the tuple (2114 O’Hare 28) over scheme R3 = PART# LOCATION
QUANTITY, then f (t/x) is

‘dv (Rd (1 instock v ly(PART#) = 2114
Vy(QUANTITY) I 28 V fake).

Example 10.13 Let f (y) be the formula

1 instock V -y(PART#) = 2114
y(QUANTITY) 15 28 v false.

If t is the tuple (2116 Boston 341) over scheme R,, thenf(t/y) is

7 true V Tfalse Vfalse Vfalse.

If t = (2114 JFK 6), thenf(t/y) is

-true V -true V true Vfalse.

238 Query Systems

Definition 10.2 Let f be a legal formula with no free tuple variables, but
where true and false may appear as atoms. The interpretation off, denoted
I(f), is defined recursively as follows.

fl. If f is tie, then I(f) = true.
Iff is false, then I(f) = false.

f2. If f is 18, then g must have no free variables. Let I(f) = f&e if
I(g) = true, otherwise let I(f) = true.

f3. If f is g A h org v h, then neither g or h have free variables. If f is g A
h, let I(f) = true exactly when I(g) = I(h) = true, otherwise,
l(f) = false. If f is g v h, let I(f) = fake exactly when I(g) =
I(h) = false, otherwise, I(f) = true.

f4. If f is gx(R)g, then x is the only variable that occurs free in g, (see
Exercise 10.5). I(f) = t rue if there is at least one tuple t in &m(R)
such that I(g(t/x)) = true, otherwise, I(f) = false.

f5. If f is vx(R)g, then x is the only variable that occurs free in g.
I(f) = true if for every tuple t in don(R), I(g(t/x)) = true, other-
wise I(f) = false.

f6. If f is (g), then I(f) = I(g).

Example 10.14 Lot f be the formula

zc(R3) (instock A x(LOCATION) = “JFK” A
Wy(R3) (1 instock V ly(PART#) = x(PART#) V

y(QUANTITY) I x(QUANTITY))),

where R3 = PART# LOCATION QUANTITY, as before. Intuitively, I(f) is
true if there is some part such that more of that part is stored at JFK than
anywhere else. Let us compute I(f) for the database of Table 10.1. Formula
f has the form 3x(R3) g(x), so we need to know if I(g(t/x)) = true for some
t E dom(RJ. Rather than trying all such tuples, we also note that g(x) has
the form instock A g ‘(x), so we only need check tuples from dom(R3) that
are in instock. (Using shorthand notation, f could be written 3x(R3) E
instock g ‘(x).)

A little more inspection tells us that we only need try tuples in instock where
the LOCATION-value is JFK. Let us first try the tuple t = (2114 JFK 6).
We have

g(t/x) = (true A true A

Vy(R,) (1 instock v ly(PART#) = 2114 v
y (QUANTITY) I 6)),

Triple Relational Cahlus 239

which simplifies to

vy(RJ (1 instock v ly(PART#) = 2114 V

y(QUANTITY) I 6).

This formula has the form vy(R3) h(y), so we need to test whether I(h(u/y))
= true for every tuple u E dom(Rs). Again, we can limit the search: since
h(y) has the form 1 instock V h ‘(y), we need only consider tuples in in-
stock. Getting straight to the point, choosing u = (2114 O’Hare 28), we
have

h(u/y) = (1 true v 1 true vfalse).

Clearly I(h(u/y)) = false, so I(g(t/x)) = false.
We back up and try t = (211 JFK 106). Now

g(t/x) = (true A true A
Vy(&) (--, instock v ly(PART#) = 211 v

y(QWANTITY) s 106)),

which simplifies to

Vy(R,) (1 instock V ly(PART#) = 211 v

y(QUANTITY) s 106).

Again, we have a formula of the form Vy(R& h(y), so we have to check that
I(h(u/y)) = true for every tuple u E dom(R,). As before, we need only test
tuples in instock. Every choice for u makes I(h(u/y)) = true. For example, if
u = (2116 O’Hare 29), we have

h(u/y) = (1 true v -false v true),

so I(h(u/y)) = true. If u = (211 Boston 28), then

h(u/y) = (TtrueV ~trueVtrue),

SO~(~(U/Y)) = true. HenceI(g(t/x)) = true and it followsI = he. Note
that Icf) = false if y(QUANTITY) I x(QUANTITY) is changed to
y(QUANTITY) < x(QUANTITY) (see Exercise 10.7).

240 Query Systems

We can now say what relation a tuple calculus expression defines.

Definition 10.3 Let E = {x(R))f(x)) b e a tuple calculus expression over
the tuple calculus Ze =

(U, a>, dom, R, d, 0).

The value of expression E on the current state of database d, denoted E(d), is
the relation I on scheme R containing every tuple t E dam(R) such that

I(f(t/x)) = true.

Example 10.15 The expression E =

(x(PART# PARTNAME)jay(Rr) E pinfo (y(SUBPARTOF) = 211
A x(PART# PARTNAME) = y (PART# PARTNAME))}

is a formalization of the expression in Example 10.2, where Rr = PART#
PARTNAME SUBPARTOF. L&f(x) denote the formula in this expression.
To evaluate E(d) for d, the database in Table 10.1, we need to find every tu-
ple t E dom(PART# PARTNAME) such that I(f(t/x)) = true. Inspection
shows that we need only consider tuples in xpAnr# PARrNAME (pinfo). Chaos-
ing t = (211 coach seat},

f(th) = 3yly(Rd E pinfo (y(SUBPARTOF) = 211
A 211 = y(PART#) A “coach seat” = y(PARTNAME)).

Icf(t/x)) will be true only if there is a tupIe (211 coach seat) in pinfo, which
there is not. Thus, (211 coach seat) is not in E(d).

Choosing t = (2114 seat cover>,

f(t/x) = 3y(Rd E pinfo (y(SUBPARTOF) = 211
A 2114 = y(PART#) A “seat cover” = y(PARTNAME)).

1(f(t/x)) = true in this case, so 2114 seatcover is in E(d). The only other
choice of t that makes I(f(t/x)) = true is t = (2116 seat belt}, so E(d) is as
given in Table 10.2.

Example 10.16 The expression in Example 10.3 can be formalized to

Tuple Relational Calculus 241

E = (x(NUSED)I~Z(R~) E medon (x(NUSED) = z(NUSED)
A z(PTYPE) = “727” A 3y(R1) f pinfo (z(PART#) = y(PART#)

A y(PARTNAME) = “coach seat”))},

where Rz = PART# PTYPE NUSED and RI is as in the last example. E(d),
for the database given in Table 10.1, is given in Table 10.3. Note that in both
this example and the last, an extra tuple variable was necessary going from
the informal to the formal version of each expression. The extra variables
handle the implicit projection in the informal versions.

Example 10.17 Consider the expression

E = (x(R2)1 -I usedon V x(PTYPE) # “707”},

where R2 is as in the last example. If any of the domains for PART#, PTYPE
and NUSED is infinite, then E(d) will be an infinite relation, since there will
be infinitely many tuples not in usedon. The complement of IT(d), for d the
database in Table 10.1, is given in Table 10.4. In this case, but not always,
the complement is finite (see Exercise 10.13).

Table 10.4 Complement of E(d).

(PART# J’TYPE NUSED)

211 727 134
2114 727 134
2116 727 296

21164 727 592

Example 10.18 Again refering to the database d in Table 10.1, consider the
expression

E = (x(PARTNAME PTYPE)j3y(R,) E pinfo
3z(R2) f usedon (y(PART#) = z(PART#)
A x(PARTNAME) = y(PARTNAME) A z(NUSED) > 200
A x(PTYPE) = z(PTYPE))},

where RI and Rz are as given in previous examples. E(d) gives all part names
and plane types where more than 200 of the part are used on a plane of that
type. E(d) is shown in Table 10.5.

242 Query Systems

Table 10.5 Relation Between Part Name and Plane Type.

(PARTNAME PTYPE)
seat belt 707
seat belt 727
seat belt anchor 707
seat belt anchor 727

10.3 REDUCING RELATIONAL ALGEBRA WITH COMPLEMENT
TO TUPLE RELATIONAL CALCULUS

In this section we show that tuple calculus is as expressive as relational alge-
bra with complement. We shall eventually show that they are equally ex-
pressive. In Section 10.4 we shall give an alternative interpretation for tuple
calculus formulas. Under the alternative interpretation, tuple calculus and
relational algebra without complement are equally expressive.

Theorem 10.1 Let a =(U, a>, dom, R, d, 0, 0) be a relational algebra
with complement and let 3C = (U, 33, dom, R, d, 0) be a tuple calculus.
For any algebraic expression E over (II, there is an equivalent tuple calculus
expression F over 3e. That is, for any state of d, E(d) = F(d).

Proof As we noted in Section 10, it is sufficient to assume E comes from the
subalgebra (R ’ where 0 is replaced by the set of operations renaming, select
with a single comparison, projection, natural join, union, difference, and
complement, and where only single-attribute, single-tuple constant relations
are allowed. The proof proceeds by induction on the number of operators
illE.

Basis No operators. Then E is either a constant relation or a single relation
fromd. IfE = <a:A>, thenF= {x(A)(x(A) = a}. IfE = t, whererisa
relation on R, then F = {x(R)lr(x)}.

Induction Assume the theorem holds for any relational algebra expression
with fewer than k operators. Let E have k operators.

CaSe 1 (renaming): E = 8A1, A& A, + By, By, B,(EI). Et has less

than k operators. Let {x(R) If(x) > b e a tuple calculus expression equiv-
alent to El. Then I: is

Reduciug Relational Algebra 243

where S = (R-AlA - - - A,)BIB2 - - - B, and g(x, y) is the formula
that is the “and” of the atoms y(C) = x(C) for each C in R-A1A2 . * .
A, and y(Bi) = x(Ai) for I I i s m.

Case 2 (select): E = uAec(El) or aced. Let {x(R)lf(x)} be a tuple
calculus expression equivalent to IZI. Then F is

or

{xWlf(x) AX(A) Ox(B)).

Case 3 (projection): E = xX(E1). This case is left to the reader (see Ex-
ercise 10.10).

Case 4 (join): E = El w EZ, Let {x(QR)lf(x)) be a tuple calculus ex-
pression for El and let {y(RS)lg(y)) b e a tuple calculus expression for
E2, where QR fl RS = R. Then F is

{dQRSW(QR) gy?V(RS) (f(x) A&) A
z(QR) = x(QR) A z(RS) = y(RS)}.

Case 5 (union): E = El U EZ. This case is left to the reader (see Exercise
10.10).

Case 6 (difference): E = El-E2. This case is left to the reader (see Ex-
ercise 10.10).

Case 7 (complement): E = EI. Let {x(R)lf(x)) be a tuple calculus ex-
pression for El. Then

F = {x(R)] ~.fW>.

Example 10.19 Consider the algebraic expression

E = TSUBPARTOF NUSEdpinfo w UpYypE = dusedon)).

244 Query Systems

for the database in Table 10.1. Equivalent tuple calculus expressions for
pinfo and usedon are

where RI = PART# SUBPARTOF PARTNAME and Rz = PART# PTYPE
NUSED. For UmE = ,&-don) we have

{y(R~)lusedon(y) /\y(PTYPE) = “747”}.

Letting R = PART# SUBPARTOF PARTNAME PTYPE NUSED, an
equivalent expression for pinfo W omypE = ,,(usedon 1 is

{z(R)l3x(R1) 3ytR~) (pinfob) A useddy)
/\y(PTYPE) = “747” A z(R1) = x(R1) A z(Rz) = y(R&.

Finally, an equivalent tuple calculus expression for E is

{w(SUBPART NUSED)lgz(R) (w(R,) 3y(R,)
(pinfo(x) A usedon A y(PTYPE) = “747” A

z(R,) = x(R,) A .z(R2) = y(R2)) A w(SUBPART) =
z(SUBPART) A w(NUSED) = z(NUSED))}.

10.4 LIMITED INTERPRETATION OF TUPLE CALCULUS
FORMULAS

The interpretation given for tuple calculus formulas presents some practical
problems when tuple calculus is considered as the basis for a query system.
First, tuple calculus expressions can define infinite relations. Second, it is
not clear that arbitrary formulas of the forms

can be effectively interpreted. The interpretation given would seem to require
searching through all of dam(R), which could be infinite. Even if all the at-
tributes in R have finite domains, do&R) could be unmanageably large. We
shall present an alternative interpretation for formulas where tupIes are
restricted to being composed of domain values that appear in a formula or in
relations mentioned in a formula. The original interpretation shall be called
unlimited, while the alternative interpretation shall be called limited. We

Limited Interpretation of Tuple Cakulus Formulas 245

shall also introduce a class of tuple calculus expressions for which both inter-
pretations always yield the same value.

For the following development, we assume, as in Chapter 3, that domains
of different attributes are either equal or disjoint. This restriction is for
simplification only. We could allow arbitrary intersection of domains, so long
as there is a means to specify all the values of a given domain that appear
anywhere in a relation.

Definition 10.4 Letf be a tuple calculus formula and let A be an attribute.
The extended active domain of A relative to f, denoted edom(Af), is the set
of all values from dam(A) that appear in relations mentioned inf or as con-
stants in f.

If no attribute with a domain the same as dam(A) is mentioned in f, it is
possible for edom(A,f) = @. For a set of attributes R, we let edom(RJ)
consist of all tuples t such that t(A) E edom(A,f) for every A E R.

Example 10.20 Assume that the attributes PART# and SUBPARTOF, in
the database of Table 10.1, have the same domain. Let f be the formula

vy(R,) E pinfo(217 # y(SUBPARTOF) v
3z(R3) E instock (z(PART#) = y(PART#) A

z(LOCATION) = x(LOCATION) A z(QUANTITY) > O))),

where R1 and R3 are as in previous examples. This formula describes all the
locations that stock all the subparts of part 217. Using the states of pinfo and
instock in Table 10.1,

edom(PART#, f) = edom(SUBPARTOF, f) =
{0,206,211,217,318,2061,2066,2068,2114,2116,21163,21164}.

There is an algebraic expression for edom(PART#J) that accounts for the
current state of pinfo and instock. It is

~PART#(@!fo) u m PART#(inStOck) U <217:PART#>
u &UBPARTOF + PART# (rSUBPARTOF(Pinfo)).

By Theorem 10.1, there is also a tuple calculus expression for edom(PART#J).
Note that if g is a subformula of a tuple calculus formula f, then edom(A,g)
c edom(Af) for every attribute A.

244 Query Systems

We now give the limited interpretation of a tuple calculus formula f with
no free variables. The limited interpretation off is denoted i(f), and the
definition is the same as for 1(f), except for the cases f4 and f5 on 3 and V.
These cases are replaced by

f4 ‘. If f is lx(R)g, then icf) = true if there is at least one tupt t in
edom(R,g) such that i(g(t/x)) = true. Otherwise, i(j) = false.

f5 ‘. If f is vn(R)g, then i(j) = true if for every tuple t in edom(R,g)
i(g(t/x)) = true. Otherwise, i(j) = false.

The limited evaluation of a tuple calculus expression E = {x(R)) f (x))
is the relation on R consisting of every tuple t E edom(RJ) such that
i(f(t/x)) = true.

The previous interpretation and evaluation shall be called unlimited. For
Examples 10.15, 10.16 and 10.18, the unlimited and limited evaluations
yield the same value. However, the value for the expression in Example 10.17
is a finite relation under limited evaluation. Limited evaluation always yields
a finite relation, since, given finite relations to start with, edom(R,f) is finite
for any formula f. Also, the limited interpretation of formulas such as
%(R)g and Vx(R)g is effective, since i(g(t/x)) need only be computed for
tuples in edom(R,g).

Example 10.21 The following expression over the database in Table 10.1
always yields the empty relation under limited evaluation:

{x(PART#) I my E instock x(PART#) f y(PART#)}.

Tuple variable x ranges onfy over parts that appear in instock.

Example 10.22 Assuming that dom(PART#) = dom(SUBPARTOF) in the
database of Table 10.1, the expression

E = { x(SUBPARTOF)) my f pinfo x(SUBPARTOF)
y(SUBPARTOF)}

does not necessarily yield an empty relation under limited interpretation.
Tuple variable x ranges over all parts that appear in either the PART# or
SUBPARTOF columns of pinfo. If d, the current state of the database, is as
given in Table 10.1, then E(d) under limited evaluation is given in Table
10.6.

Limited Iute.rpretation of Tuple Calculus Formulas 247

Table 10.6 E(d) Under Limited Evaluation.

(PART#)
21163
2061
2066
2068

10.4.1 Reducing Relational Algebra to Tuple Calculus with Limited
Evaluation

As we have noted, tuple calculus expressions denote only finite relations
under limited evaluation. Algebraic expressions without complement denote
only finite relations. This similarity is no coincidence.

Theorem 10.2 Let CR = (U, D, dam, R, d, 8, 0) be a relational algebra
(without complement), and SC? = (U, 9, dom, R, d, 9) be a tuple calculus.
For any algebraic expression E over & there is a tuple calculus expression F
over 3C such that E is equivalent to F under limited evaluation.

Proof The proof follows that of Theorem 10.1 with case 7 of the induction
omitted. Every tuple calculus expression used in the rest of the proof has the
same value under unlimited and limited interpretation. The details are left to
the reader (see Exercise 10.18).

10.4.2 Safe Tuple Calculus Expressions

Tuple calculus under the limited evaluation, although as expressive as rela-
tional algebra, leaves something to be desired as the basis for a query
language. The value of an expression can depend on columns in relations
corresponding to attributes not even mentioned in the expression. Another
approach to the problem of keeping values of expressions finite and having
effective interpretation of formulas with quantifiers is to use only expressions
where the unlimited and limited evaluations are guaranteed to be the same.

Definition 10.5 A tuple calculus expression {x(R)lf(x)} is safe if the fol-
lowing three conditions hold.

sl. I(f(t/x)) = true implies that t E edom(R,f).

248 Query Systems

~2. For every subformula off of the form 3y(S) g(y, zl, z2, . . ., zk),
&wjJ, Ul/Zl, Q/Q, - - *, uk/zk)) = true implies t E edom(S,g),
where y, zl, 22, . . . , zk are all the free tuple variables in g.

s3. For every subformula off of the form vy(S) g(y, zt, ~2, . . . , zk), t e
edom(S,g) implies I(g,(t/y, zfl/zl, 2422, . . ., uk/zk)) = true
where y, zl, ~2, . . . , zk are all the free tuple variables in g.

Condition sl guarantees that the value of the expression will be a finite
relation under the unlimited evaluation. Conditions s2 and s3 guarantee that
the unlimited interpretation of formulas can be made effective, since only a
finite number of tuples need be considered to interpret sy(S)g or Vy(S)g. If
every place a quantifier is used in fonnulaf, it is involved in the shorthand
3y(S) E s g(y) or vy(S) E s g(y), then conditions s2 and s3 will be satisfied.
The notation 3y(S) E s g(y) stands for gy(S) h(y), where h(y) is s(y) A g(y).
Any tuple t E s is clearly in edom(S,h), and the s(y) atom in h(y) means that
h(t/y) cannot interpret to true no matter what the other free variables in h
are. Similarly, vy(S) E s g(y) stands for vy(S) h(y), where h(y) in this case is
1 s(y) v g(y). Any tuple t not in edom(S,h) is surely not in s, sog(t/y) inter-
prets to true for any such tuple.

If the formulaf(x) actually has the form r(x) r\f’(x), for some relation Y,
then condition sl is satisfied.

Example 10.23 By what we observed above, the expression

{x(R2)lusedon(x) A 3y(R$ E instock
(x(PART#) = y(PART#) A~(QUANTITY) 1 100))

on the database of Table 10.1 is safe, R2 and R3 are the relation schemes of
usedon and instock, as before.

Example 10.24 The expression

{ x(R2) 1 usedon v 3y(R3) E instock
(x(PART#) = y(PART#) /\y(QUANTITY) z 100))

is not safe. The unlimited evaluation of this expression for the database in
Table 10.1 contains the tuple (2116 707 83), for example, which is not in
the extended active domain of R2 for the formula in the expression.

Example 10.25 The expression

Limited Interpretation of Tuple CaIculus Formulas 249

jx(PARTNAME PTYPE)I3y(Rl) f pinfo 3z(&) E usedon
(y(PART#) = z(PART#) A x(PARTNAME) = y(PARTNAME)

A x(PTYPE) = y(PTYPE))}

is safe, even though there is no I(X) term. Any tuple t in the value of the ex-
pression must have a PARTNAME-value that appears inpilzfo and a PTYPE-
value that appears in usedon. A class of safe expressions, of which this ex-
pression is a member, is described in Exercise 10.20.

Lemma 10.1 For any safe tuple calculus expression E, the unlimited and
limited evaluations of E are the same.

Proof Left to the reader (see Exercise 10.21).

Theorem 10.3 Given any tuple calculus expression E, there is a safe tuple
calculus expression F that is equivalent to E under limited evaluation for E.

Proof Exercise 10.22 shows that for any tuple calculus formula g there is
another formula h such that the value of {y(X) (h(y) 3 under unlimited evalu-
ation is edom(X,g) for a given set of attributes S. Furthermore, edom(S,g) =
edom(S,h), so edom(S,g) = edom(S,g A h) = edom(S,g V 1 h).

Given an expression E = (x(R)jf(x)}, we first want to find a formula f'
such that i(f(t/x)) = ICf’(t/x)) for all t E dam(R). The only place i and I
diverge is on subformulas involving quantifiers. We producef ’ by modifying
such subformulas. For a subformula 3y(S) g(y), let h(y) be as outlined
above. Replace this subformula by 3y(S) (g(y) A h(y)). We have i(g(t/y)) =
I(g(t/y) A h(t/y)) for any t E edom(S,g) and @(t/y) A h(t/y)) = fake for
any t g edom(S,g), provided i(g(t/y)) = I(g(t/y)). Hence the modified sub-
formula has an unlimited interpretation equal to the limited interpretation of
the original subformula.

For a subformula try(S) g(y), let h(y) be as above and substitute vy(S)

(g(y) V -h(y)). Assuming i(g(t/y)) = I(g(t/yh i(g(t/y)) = I(g(th) A
1 h(t/y)) for any t E edom(S,g) and I(g(t/y) v 1 h(t/y)) = true for any t e
edom(S,g). Hence the modified subformula has an unlimited interpretation
equal to the limited interpretation of the original subformula.

If we make these modifications to all such subformulas off working from
the inside out, the end result is a formulaf’ where i(f(t/x)) = I(f’(t/x)).
Note that we do not modify subformulas in the h’s, so the process does ter-
minate. To complete the proof, let h ’ be a formula such that the unlimited
evaluation of {x(R) 1 h ‘(x)} is edom(R f). The desired expression P is then

(x(R)lf'(x)Ah'(d}.

250 Query Systems

10.5 DOMAIN RELATIONAL CALCULUS

Domain relational calculus is quite similar to tuple relational calculus, ex-
cept variables represent single domain values rather than entire tupies. Also,
relation symbols can now be multiplace rather than simply unary. To keep
the notation reasonable, it is necessary to assume a fixed order on the at-
tributes in a relation. Since tuple calculus and domain calculus are so
similar, the treatment of domain cakulus will be much briefer. We fist give
some informal examples, again using the database of Table 10.1.

Example 10.26 The expression

(xy lpinfo(x 2 y) A z = 206)

represents all part number-part name pairs that are subparts of part 206.
The expression

represents the same pairs. The value of both these expressions is shown in
Table 10.7.

Table 10.7 Partname-Partnumber Pairs.

(PART# PARTNAME)

2061 paging switch
2066 light switch
2068 air nozzle

Example 10.27 The expression

{xy)& 3w (usedon(zxy) Apinfo(z w “coach seat”)}

represents the number of coach seats used on each plane type. The value of
this expression is shown in Table 10.8.

Table 10.8 Number of Coach Seats Used.

(PTYPE NUSED)
707 86
727 134

Domain Relational Calculus 251

A domain calculus ZDe is denoted the same way as a tuple calculus, namely
as a sextuple (U, a>, dom, R, d, 9). Domain calculus form&s are built from
domain variables using relations, comparators, and the connectives 1, A, V,

3 and V. The basic building blocks are atoms:

al. IfrisarelationindwithschemeAIAz ..-A,, thenr(ala2 .~-a,)
is an atom, where each Ui is either a domain variable or a constant
from dom(A;).

a2. If x and y are domain variables, 0 is a comparator and c is an ap-
propriate constant, then x 8 y, x 0 c and c 0 x are all atoms.

a3. The Boolean constants true and false are atoms.

The atoms are combined recursively into formulas:

f 1. Any atom is a formula.
f2. If f is a formula, then lf is a formula.
f3. If f and g are formulas, so are f A g and f v g.

f4. Iff is a formula, so is gx(A)f, where A is an attribute in U and x is a
domain variable.

f5. Iff is a formula, so is v&A) f, where A is an attribute in U and x is a
domain variable.

f6. If f is a formula, so is (f).

The precedence of connectives is the same as for tuple calculus formulas.

Example 10.28 The following domain calculus formula is similar to the
tuple calculus formula of Example 10.5:

gx,(PART#) 3xz(LOCATION) gx,(QUANTITY)
(instock(x~ x2x3) A (x1 = y A 7x3 I 20)).

The rules for free and bound occurrences of variables are analogous to
those for tuple calculus formulas. To discuss legal domain calculus formulas,
we need to type domain variables. The type of a variable x in formula f,
denoted type(xf), is either a domain in 9 or undefined. We again assume
for simplicity that the domains of two attributes are either equal or disjoint.
We shall not formally define the type of a variable or legal formulas. As with
tuple calculus, legality simply requires that there is consistency as to the
type of a variable and that a quantified variable occur free in the quantified
formula.

252 Query Systems

Example 10.29 Let r(A B C) and s(C D) be relations. For the formula

f = 3x(E) vy(A) (r(y z x) A s(x x) r\y s z)

to be legal, we must have &m(C) = dam(D) = dam(E) and attributes A
and B must be I -comparable. In that case, type(z$) = dam(B). If g is the
subformula

(r(y z x) A s(xx) Ay 5 z),

then @p&g) = dam(C) and tVpe(y,g) = dam(A).

When quantifying variables, we could use domains rather than attributes
to type them. However, it will be useful to have attributes when reducing do-
main calculus to relational algebra.

The substitution of a domain constant c for a domain variable x that oc-
curs free in a formulaf, denotedf(c/x), is analogous to substitution for tuple
calculus formulas. We assume c E type(xJ). Every free occurrence of x in f is
replaced by c, and then atoms composed entirely of constants are replaced by
true and fake as appropriate.

Exampb 10.30 Consider the formula

f = usedon(x “707” y) A Vw(QUANTITY)
(~instock(x”JFK”w)vw ryvx = 2116).

Variable x is free inf, f (211/x) is the formula

g = usedon(211 “707” y) A Vw(QUANTITY)
(7 instock(211 “JFK” 2) V w L y V false).

Variable y is free in g; g(86/y) is

true A vw(QUANTITY)
(-I instock(211 “JKF” 2) V w z 86 V false),

which simplifies to

vw(QUANTITY) (7 instock(211 “JFK” 2) v w 2 86).

Domain Relational C&&s 253

The unlimited interpretation of a domain calculus formulaf with no free oc-
currences of variables is denoted Icf). The definition is essentially that for
tuple calculus formulas. For a formulaf = ax(A) g(x), I(j) = true if and
only if there is a c E dam(A) such that I(g(c/x)) = true. For a formulaf =
vW)g(x), W> = t rue if and only if for every c E dam(A), I(g(c/x)) = true.

Example 10.31 Let h be the formula

vw(QUANTITY) (1 instock(211 “JFK” w) V w L 86)

from the end of Example 10.30. To calculate I(h), we need to know
1(h ‘(c/x)) for every c E dom(QUANTITY) where h ‘(w) is the formula

1 instock(211 “JFK” W) V w L 86.

The first disjunct in h ‘(w) interprets to true for all choices of w except 106,
and the second disjunct interprets to true for every c E dom(QUANTITY).
Hence I(h) = true.

A domain calculus expression over SC? has the form

{~I(AI)x~(A~) 9 . . U4,)l,fhq, . . . , xn)}

where

1. f is a legal domain calculus formula with exactly the free variables x1,

2.?l,A;I’
Xrl?
. . . , A,, are distinct attributes in U, and

3. type(xif) = dom(Ai) for 1 5 i 5 n.

The value of this expression under unlimited evaluation is the relation over
scheme A 1 A 2 * + * A, containing every tuple (ct c2 * * . c,) such that ci E
dom(Ai), for 1 I i I n, and Icf(ct/xr, c2/x2, . . ., c,/x,) = tie. As be-
fore, the value of expression E for database d is denoted E(d).

Example 10.32 Using the formula from Example 10.30, we have the do-
main calculus expression

E = { x(PART#) y(NUSED)) usedon(x “707” y) A
vw(QUANTITY) (1instock(x “JFK”w) v w L y vx = 2116)).

254 Query Systems

E denotes the part number and number used for each part used on a 707
such that the quantity of that part instock at JFK is at least the number used
or the part number is 2116. E(d), under unlimited evaluation, for the state of
the database d given in Table 10.1 is shown in Table 10.9.

Table 10.9 Part Number and Number Used.

(PART# NU SED)

211 86
2116 244

As with tuple calculus, we can give a limited interpretation for formulas
and limited evaluation for expressions. The extended active domain of an at-
tribute A in a domain calculus formulaf, denoted edom(A,f), is the set of all
elements of dom (A) that occur as constants inf or in relations mentioned inf.
The limited interpretation of a domain calculus formula f with no free
variables, denoted i(f), differs from the unlimited interpretation only for
quantified formulas. Iff is &(A) g(x), then i(f) = true if and only if there is
a constant c E edom(A,g) such that I(g(c/x)) = true. Similarly, iff is Vx(A)

g(x), then i(j) = t rue if for every constant c E edom(A,f) I(g(c/x)) = true.
To get the limited evaluation of an expression

Xi ranges over edom(Ai,f), for 1 I i I n, and limited interpretation is used
forf.

Example 10.33 Consider the expression

(x(PART#)jvy(PART#) vz(PARTNAME)
ypinfo(y x z) A x # 318)

for the database of Table 10.1, where we assume dom(PART#) = dom(SUB-
PARTOF) = non-negative integers, The unlimited evaluation of this expres-
sion yields an infinite relation. The value under limited interpretation is
given in Table 10.10.

We can also define the class of safe domain calculus expressions. An ex-
pression

CXI(AI)XZ(AZ) --.x,(A,)lf(x,,xz, . . .,xn>l

is safe if the following three conditions hold.

Reduction of Tuple Calculus to Domain Cafculus 255

sl. If for constants c1,c2, . . . , c, I(f(c,/xi, cz/xz, . . . , c,/x,)) = true,
then ci E edom(Aif) for I I i I it.

~2. For each subformula off of the form gy(A) g(y), I(g(c/y)) = true
implies c E dom(A,g).

s3. For each subformula off of the form Vy(A) g(y), c C edom(A,g) im-
plies I(g(c/y)) = true.

These three conditions serve the same purpose as the corresponding condi-
tions for safe type calculus expressions.

Table 10.10 Value under Limited Interpretation.

(PART#)

21163
2061
2066
2068

Example 10.34 The expression in Example 10.32 is safe. Both x and y must
appear in usedon, and 1 instock(x “JFK” 2) v w 1 y v x = 2116 interprets
to true if w does not appear in instock. The expression in ExampIe 10.33 is
not safe. There are values for x that do not appear in pinfo that make the for-
mula true.

The following two results are analogs of Lemma 10.1 and Theorem 10.3,
and are stated without proof.

Lemma 10.2 For any safe domain calculus expression E, the unlimited and
limited evaluations of E are the same.

Theorem 10.4 Given any domain calculus expression E, there is a safe do-
main calculus expression I; that is equivalent to E under limited evaluation
for E.

10.6 REDUCTION OF TUPLE CALCULUS TO DOMAIN
CALCULUS

As we saw in Example 10.9, any tuple calculus formula can be modified to an
equivalent formula where the same tuple variable is not bound in two places.
For this section, we assume that in a tuple calculus expression

256 Query Systems

x does not occur bound inf, nor is any other tuple variable bound in more
than one place.

The translation of a tuple calculus expression E to an equivalent domain
calculus expression is straightforward. Let E = { x(R)lf(x) >. Any tuple vari-
able y appearing in f is associated with a unique relation scheme S. Either y
appears in gy(S) or Vy(s), or y = x and S = R. Let S = AI A2 *. - AR.
Tuple variable y is replaced by k domain variables yI,y2, . . . yk, Any atom
r(y) becomes r(yIy2 - . - yk). Any atomy(Ai) 0 a or a Oy(Ai), for a a constant
or another tuple variable component, becomes yi 6 a or a 8 yi, respectively. A
quantified subformula gy(S) g becomes

~YI(AI) 3~2V2) . - - 3yk(Ak)g,

while Vy(S) g becomes

VYI@,) v2bW + - - vyk(Ak)g.

Ify =xandS= R, then x(R) at the beginning of the expression is replaced
by

Example 10.35 The tuple calculus expression

E = {x(NUSED)j3z(R2) (usedon A x(NUSED) = z(NUSED) A
z(PTYPE) = “727” A y(R1) (pinfo(y) A
z(PART#) = y(PART#) A y(PARTNAME) = “coach seat”))}

is that of Example 10.16 with the shorthand notation written out. We replace
x by ~1, z by zl, ~2, 23, andy byyr, ~2, y3 to get the domain calculus expres-
sion

P = (xl(NuS~~)13~l(pA~~#)3z2(~~~~)3z3(~~~~~)
(usedon(zl z2 z3) A x1 = z3 A z2 = “727” A

3y11(PART#) 3y2(SUBPARTOF) 3y3(PARTNAME)
(pinfo(yly2y3) A z1 = y1 /\y3 = “coach seat”))).

F can be simplified to

{xl(NUSED)I3zl(PART#) (usedon(zl”727”~~)
A 3yz(SUBPARTOF) (pinfo(zl y2 “coach seat”}))}.

Reduction of Domain Calculus to Relational Algebra 257

Theorem 10.5 Let E be a tuple calculus expression and let F be the domain
calculus expression obtained from P by the translation given above. Then

1. E = F under unlimited evaluation,
2. E = F under limited evaluation, and
3. If E is safe, then F is safe.

Proof 1. Left to the reader (see Exercise 10.27).
2. The equivalence follows from part 1 and the observation that for any

attribute A, if g is a subformula of E and g ’ is the corresponding sub-
formula of F, edom(A,g) = edom(A,g ‘). The equality follows since
g and g ’ mention exactly the same relations and constants.

3. Any place the formation 3yi(Ai) occurs in F, it is actually part of a
subformula

wll(A,) 3ydAJ . . I wAA,)g’(y,,yz, . . .,YR)

that was the translation of a subformula 3y(S) g(y) in E, where S =
A, A2 .-- AR. Let cj E dom(Aj) for 1 r: i I k, and suppose
Q’kl/Yl, 4y2, - * *, ck/y~)) = true. By the correspondence of g
and g ‘, I(g(t/y)) = true for t the tuple cl c2 * - . ck. If ,?Z is safe, then
t E edom(R,g). It follows that ci E edom(Ai,g ‘). Hence condition ~2
of the definition of a safe domain calculus expression is satisified for
F. Conditions sl and s3 can similarly be shown to be satisfied if E is
safe.

10.7 REDUCTION OF DOMAIN CALCULUS TO
RELATIONAL ALGEBRA

In this section we show that relational algebra with complement is as ex-
pressive as domain calculus with unlimited evaluation, and also that rela-
tional algebra (without complement) is as expressive as domain calculus with
limited evaluation. These results, combined with those of Sections 10.3,
10.4.1 and 10.6, show that relational algebra with complement and tuple and
domain calculus under unlimited evaluation are equally expressive. Rela-
tional algebra and tuple and domain calculus under limited evaluation are
also equally expressive, hence the tuple and domain calculi under limited
evaluation are complete,

Theorem 10.6 Let E be an expression over a domain calculus 5X? = (U, a>,
dom, R, d, e). Let GX = (U, ZD, dom, R, d, 0, 0) be a relational algebra with

258 Query Systems

complement. There is an algebraic expression F over @ that is equivalent to
E under unlimited evaluation, provided there are sufficient attributes in U
for each domain in 33.

Proof Let E = {q(AJ x2(A2) - - - ~&4n)lf(~,,~~, - . -9 x,)1.
For each subexpression g off we shall find an algebraic expression I;g for

iYluMY2u32) '-'Ym(&?t)lgtYl,Y2, - * .ty,>>

where yl, YZ, . . . , y, are all the free domain variables in g and the Bj’s are
chosen to have appropriate domains.

First, replace domain variables in f so that no variable is bound in two
places or occurs both free and bound in f, Next, note that every variable is
associated with an attribute, either by a quantifier @x(A) or W(A)), or by
appearing to the left of the bar in the expression E (x(A)). For each domain
variable x, if A is the attribute associated with x, let att(x) be an attribute B
such that dam(A) = dam(B). Furthermore, let &t(x) be chosen such that
for any domain variable y # x, &t(y) # &t(x). It is at this step that the re-
quirement for a sufficient number of attributes for each domain arises.

For any attribute A, there is an algebraic expression for dam(A). One such
expression is

(c:A) U {c:A),

where c is an arbitrary element of dam(A). In what follows, [A] will stand for
an algebraic expression for dam(A).

We now recursively define the algebraic expression J$ for each subformula
g off. F’ will be equivalent to the domain calculus expression

(Yltatt(Yl))y2(atttY2)) ..*Y,(att(Y,))lgtyl,y2, *. .,y,>).

Case1 SubformulagisanatomoftheformxBy,x8x,x8c,orcf3x,
for x and y domain variables and c a domain constant. Let A = &t(x)
andB = &t(y). The algebraic expressions for these atoms are

~,,([A3 w LB]),

~AOA([AI),

Q&U), ad
u,~A([A]), respectively.

Note the join in the first instance is necessarily a Cartesian product.

Reduction of Domain Calculus to Relational Algebra 259

Case 2 Subformula g is an atom of the form r(ar uz . * - ak) where a; is
either a constant or a domain variable. Let D1 Dz . . . Dk be the relation
scheme for r. Let Bi = att(ai) if ai is a variable; let Bi = Di otherwise.
The algebraic expression Fg is

where
C is the selection condition made up of the “and” of comparisons

Di = ai for each ai that is a constant,
N is the renaming D,, D2, . . . , Dk + B1,B2, . . . , Bk, and
X is the set of attributes { Bi (ai is a variable}.

Case 3 Subformula g is 1 h. Let Fh be the algebraic expression for h.
Then F” = F,, .

Case 4 Subformula g is h A h ‘. Let h have free variables z1,z2, . . . , zk,
Vl,VZ, - * *, vP and let h ’ have free variables z1,z2, . . . , zk, w1,w2, . . . ,
wg , where vl,v2, . . . , vP and w1,w2, . . . , wq are distinct. F;, and FL are
the algebraic expressions for h and h ‘. Let att(vi) = Bi, 1 5 i 5 p, and
Utt(Wi) = Cj, 1 I i 5 4. Let

and let

F2 = F; w [B,] W [B2] w . . . w [B,].

F1 is Fh with columns added for all the attributes in sch (Fi) - sch(Fh) =
c,c;! *-- C,. F2 is Fi with columns added for all the attributes in
sch(l;h) - sch(F,‘) = BIB2 . . . B,. Note that sch(Fl) = sch(F2) =
{att<y)ly * fr i is ee n g }. The algebraic expression Fg is Fl 17 F2.

Case 5 Subformulag is h v h ‘. This case is left to the reader (see Exer-
cise 10.28).

Case 6 Subformula g has the form XV(A) h. Fh is the algebraic expres-
sion for A. Let at&r) = B. Note that dam(A) = dote(B). The algebraic
expression Fg for g is simply ‘R;Y-~(F~) where X = sch(Fh).

260 Query Systems

Case 7 Subformula g is VX(A) h, r;, is the algebraic expression for h.
Let au(x) = B. The algebraic expression $” for g is Fh + [B]. (This
one case is the only reason we ever bothered with division.)

Recursively, using these seven cases, we can build up an expression Fj that is
equivalent to

We are not assured that att(xi) is necessarily Ai, so we need one final renam-
ing operation to actually obtain the algebraic expression F equivalent to E.

Example 10.36 E =

{x(PART#) y(NUSED)jusedon(x “707” y)
~w(QUANTITY)(+zstock(x“JFK”w)Vw~yVx=2116)}

is the domain calculus expression from Example 10.32. Let &t(x) =
PART#, &t(y) = NUSED, and &t(w) = QUANTITY. To keep things tidy,
let Fp = [PART#], FN = [NUSEDJ, and Fa = [QUANTITY]. The
algebraic expression for in&o&(x “JFK” w) is

FI = aPART# QUANTITd~LOCATION = JE&-ck)).

(Renaming is unnecessary in this instance.) The algebraic expression for
1 in&o&(x “JFK” w) is F,. The algebraic expressions for w L y and x =
2116 are

Fz = ~QUANTITY~NLJSED(F~ W FN) and
F3 = oPART# = 2&F&d.

An algebraic expression for

1 instock(x “JFK” w) v w 1 y v x = 2116

is

Ft, = (FI W FN) U (F2 w Fp) U (F3 W FQ w FN).

Adding the quantifier Vw(QUANTITY), we get the algebraic expression

Reduction of Domain Calculus to Relational Algebra 261

The algebraic expression for usedon(x “707” y) is

The equivalent algebraic expression for E is F = F6 n F5. No final renaming
is necessary.

Just for fun, we can write F out:

If we look back at the meaning of E given in Example 10.32, we see that a
simpler algebraic expression equivalent to E exists, namely

~PART#NUSED(~QUANTITY 2 NUSED V PART#= 2116(usedon W instock)).

Corollary For LIX?, & and E as given in Theorem 10.6, there is an algebraic
expression F over CR without complement that is equivalent to E under
limited evaluation.

Proof The details are left mainly to the reader (see Exercise 10.30).
The proof here is similar to that of Theorem 10.6, with some modifica-

tions. The first problem is the correct expression for [A]. Expression E can
be further modified so that where b(A) or t%(A) appear, &t(x) = A. Also,
in xl(Al) q(A$. - * x,(A,), we can choose att(xi) = Ai, I 5 i s n, since
Ai f Aj for i f j. With this modification of E, any attribute symbol A ap-
pears at most once in E. If A appears in 3x(A)g or Vx(A)g, then IA] should
be an algebraic expression for edom(AJ).

The second problem is removing the use of complement from case 3.
The third problem is that the algebraic expression F’ for each subformula

g off will not be equivalent to

Eg = {Yl(att(Yl))Yz(att(yz)) * - ‘ym(att(y,))(g(yl,y2, . . .,y,>>

under limited interpretation, as one might think. Rather, Fg will represent
Eg where quantified formulas are given the limited interpretation, but yi
ranges over [utt(yi)], 1 I i 23 m, which may properly contain
edom(att(yihg).

262 Query Systems

10.8 TABLEAU QUERIES

This section covers a query system based on tableaux, namely tableau
queries. Tableau queries are not as expressive as relational algebra, but they
can represent any algebraic expression involving only select with an equality
comparison, project, and join. With certain extensions, algebraic expres-
sions involving union and difference can be handled. Tableau queries are of
particular interest because they can be optimized to minimize the number of
joins in the corresponding algebraic expression, although the optimization
process can be somewhat expensive computationally. There is a subclass of
the tableau queries that can be so optimized efficiently. It is also possible to
modify tableau queries to take advantage of FDs and other data dependen-
cies in a database, in a manner similar to the chase computation.

Tableau queries come in two flavors, “untagged” and “tagged.” The first
flavor is for queries against a single relation. Queries against a multirelation
database can also be handled, if the relations are the projection of a common
instance. The second flavor is used for queries against multirelation data-
bases where the relations do not necessarily come from a common instance.

We present a class of algebraic expressions we can represent with tableau
queries.

Definition 10.6 A restricted algebraic expression E is an algebraic expres-
sion built up from relations and single-tuple constant relations using

1. select in the form ~AA=~
2. project, and
3. natural join.

Intersection could also be allowed, as it can be expressed by join, and
select is not strictly necessary, since it can be expressed by join with a con-
stant relation. While restricted algebraic expressions exclude many in-
teresting queries, there are many queries they can express.

Exmple 10.37 The query “What are the parts used on a 747?” against the
database in Table 10.1 can be expressed by the restricted algebraic expres-
sion

TWTNAME(~IYPE = dpinfo WI usedon)).

10.8.1 Single Relation Tableau Queries

This section develops tableau queries for a single relation database. While
such queries are not in themselves very interesting, they will serve to

Tableau Queries 263

demonstrate techniques and proofs that carry over to the multirelation case.
Also, single relation tableau queries will serve to represent queries for a
multirelation database where all the relations in the database are the projec-
tion of a common instance. Since the parts database is getting a little old, we
introduce a new database for future examples. The database shown in Table
10.11 describes meals for our little airline. The attributes FL,, ME, DT, OP,
NM stand for flight, meal, date, option and number. The relation serves tells
what meals are normally served on each flight. Relation choice tells what the
different options are for each meal for a given date. Relation ordered tells
how many of each option have been ordered for a given flight on a given date.
Only the portion of the figure to the dashed line is ordered. Note that the
three relations given join completely. We let meals be the relation that is the
join of the three relations in the database, which is just ordered with the col-
umn to the right of the dashed line added.

A tableau query is a modified version of a tableau as introduced in Chapter
8. As before, there are distinguished and non-distinguished variables. In ad-
dition, there are constants and blanks. Distinguished variables, non-distin-
guished variables, and constants are collectively called symbols. A tableau
query also has a summary, which is a special row of the tableau. We shall
write the summary between two lines above the rows in the tableau query. A
tableau query for a relation r(A1 A2 * * * AR) must satisfy the following
restrictions:

ql . The columns are labeled A, ,A2, . . . , A,+
q2. Any variable may appear in only one column.
q3. If a distinguished variable appears in a column, it must also appear

in the summary for that column.
q4. Only symbols (no blanks) may appear in the rows.
q5. Only distinguished variables, constants, and blanks may appear in

the summary.
q6. If constant c appears in the A-column, then c 6 dom(Ai).

Generally, we denote the summary as wg, and the rows as wl,wz, . . . , w,.

Example 10.38 Table 10.12 gives a tableau query for the relation meals
that is the join of the relations in Table 10.11.

To evaluate a tableau query Q for a relation r(R), we must extend the
definition of a valuation. A valuation p of a tableau query Q is a function
from the symbols of Q to domain values such that if cx is a symbol in the
A-column of Q, I E dam(A) and if c is a constant, then p(c) = c. Valua-
tion p can naturally be extended to map rows of Q to tuples in dam(R), and
to map the summary of Q to dom(S), where S is the set of columns of Q
where the summary does not contain a blank. We then extend p to map Q to

264 Query Systems

Table 10.11 The Relations serves, choice, and ordered.

serves(F’L ME)

56 B
56 L
57 D
106 L
106 D
107 D

choice(ME DT OP)
B 15 Aug eggs
B 1.5 Aug waffles
B 16 Aug eggs
L 15 Aug sandwich
L 16 Aug lasagne
L 16 Aug salad
D 15 Aug pot roast
D 15 Aug seafood crepe
D 16 Aug pot roast
D 16 Aug flounder
D 16 Aug chicken

I
ordered(FL, DT

56 15 Aug
56 15 Aug
56 16 Aug
56 15 Aug
56 15 Aug
57 15 Aug
57 16 Aug
106 16 Aug
106 16 Aug
106 16 Aug
106 15 Aug
106 15 Aug
106 16 Aug
106 16 Aug
107 15 Aug
107 16 Aug

OP

eggs
waffles
eggs
sandwich
salad
pot roast
pot roast
sandwich
lasagne
salad
pot roast
seafood crepe
flounder
chicken
pot roast
chicken

NM) [(ME)
27 ; B

60 j D

Table 10.12 Tableau Query for the Relation meals.

OWL DT OP NM ME)

w 0 a2 a3 a4

by b2 a4 b5
!: 106 a2 1: a4 b5
w3 107 b6 b, b8 b4

Tableau Queries 265

a relation, namely p(Q)={ p(wi)I w is a row in Q}. Note that p(we) is not in- i
cluded in p(Q).

Example 10.39 If Q is the tableau query in Table 10.12 and p is the valua-
tion shown in Table 10.13, then p(we) = (15 Aug pot roast 40) and p(Q) is
shown in Table 10.14.

Table 10.13 Valuation Table for p.

p(az) = 15 Aug P(h) = 57
,a = pot roast P(&) = 15 Aug
P&4) = 40 db~) = 60
~(106) = 106 db4) = D
p(107) = 107 P(W = D

p(b6) = 15 Aug
p(b7) = pot roast
P(&) = 60

Table 10.14 Valuation Table for p(Q).

dQ)W DT OP GM ME)

57 16 Aug pot roast 60 D
106 15 Aug pot roast 40 D
107 15 Aug pot roast 60 D

The value of tableau query Q on relation r, denoted Q(l), is the relation

{ p(we) Ip is a valuation for Q and p(Q) E r }.

Example 10.40 Let Q be the tableau query in Table 10.12 Q(meals), for
meals the join of the relations in Table 10.11, contains the tuple (15 Aug pot
roast 40); p(we) = (15 Aug pot roast 40) and p(Q) E meals, for p the
valuation of Table 10.13. Q(meals) is the answer to the question “For any
meal that flight 107 serves, and for any option available for that meal, how
many of that option does flight 106 have ordered for that meal on each day?”
Q(meals) is shown in Table 10.15.

Table 10.15 Q(meals).

Q(meals)(DT OP NM)
15 Aug pot roast 40
15 Aug seafood crepe 40
16 Aug flounder 40
16 Aug chicken 40

266 Query Systems

It happens that Q is equivalent to the algebraic expression

TDT OP NM(~OI’MEh& w TDT OP NMb$L= l~l&=als) b-d

RME(~FL=lO7(meals)))).

This algebraic expression is equivalent to

if seroes, choice and ordered ace projections of meals.

We can immediately derive a tuple calculus expression equivalent to a
given tableau query. Let Q be a tableau query for relation r(R) with sum-
mary wa and cows w1,w2, . . . , w,. Let S be the set of attributes where we is
non-blank. The equivatent tuple calculus expression is

E = wmYl(R) E r 3y*(R) E r * * * 3yn(R) E I
fhYl9Y29 **.,y,))

where f is the conjunction of the atoms

1. x(A) = yi(A) where w. and wi have the distinguished variable for the
A-column,

2. yi(A) = yj(A) where w,(A) = w&A) and wi(A) is not a constant,
3. x(A) = c where we(A) = c, c a constant, and
4. yi(A) = c where w&A) = c, c a constant.

Expression E is safe, and moreover, is equivalent to an algebraic expres-
sion involving at most n - 1 joins (see Exercise 10.35). Note that the choices
for yby2, . . . , yn in r correspond to p(w1),p(w2), . . , , p(w,) for some valua-
tion p such that p(Q) E r.

Example 10.41 Let R,,, = FL DT OP NM ME. An equivalent tuple calculus
expression to tableau query in Figure 10.13 is

CdDT OP NM)I3yyl(R,) 3y2(R,) 3y3(R,)
COTI = yz(DT) A x(OP) = yl(op) A X(OP) = y2(o~) A
x(NM) = y2WM) A yl(ME) = y3(ME) A y#L) = 106
Ay3(FL) = 107)).

Note that the atomyl(OP) = yz(OP) could have been included, but would be
redundant.

Tableau Queries 247

Definition 10.7 Let Q be a tableau query with scheme R and let ~1, be a row
of Q. If A is an attribute in R, then w is matched in the A-column if w(A) =
c for some constant c, w(A) = wO(A) for the summary wo, or w(A) = w ‘(A)
for another row w ’ in Q. We call w(A) a matched symbol. Let match(w) =
{A 1 w is matched in the A-column}.

Definition 10.8 Let Q be a tableau query on scheme R. Let d be a database
over R with scheme R = (R1,R2, . . . , R, }. Q applies to database d if for
each row w in Q there is a relation scheme Ri E R with match(w) E Rj.

Example 10.42 For the tableau query Q in Table 10.12,

match(wl) = DT OP ME
match(wz) = FL DT OP NM
match(w3) = FL. ME.

Q applies to the database of Table 10.11. Q would not apply to a database d
with database scheme { DT OP, OP ME, FL DT OP NM, FL. ME}.

Let Q be a tableau query with summary w. and rows wl,w2, . . ., w, that
applies to database d. If the relations of d are all projections of a common in-
stance Y, then Q can be evaluated against d as follows. For each row wi in Q,
let ri(Ri) be a relation in d such that mutch(wi) E Ri. For a valuation p on Q,
we let p(Q) G d mean that p(wi(Ri)) E ri. That is, p maps a portion of wi
containing mutch(wi) to a tuple in ri. We can then let

Q(d) = { p(wa)I P is a valuation for Q where p(Q) c d },

It should be clear that Q(d) = Q(r). For a valuation p such that p(Q) c I it
also happens that p(Q) E d. For any valuation p such that p(Q) E d, there
is a valuation p ’ such that p(wO) = p ‘(wO) and p ‘(Q) c r. Valuation p ’
always exists, since if p(wi(R;)) = ti E ri, there is a tuple t E r such that
t(Ri) = ti. We can consistently choose p ’ such that p ‘(wi) = t.

The condition that the relations in d be the projections of a common in-
stance Y must hold for Q(d) to be well-defined. The choice of relation ri for
row wi can affect Q(d) if the condition does not hold.

Example 10.43 Let d be the database shown in Figure 10.2. If Q is the
tableau query

xi8 Query Systems

A(A B C)
a1

then Q(d) can be either (1:A) or (2:A), depending on whether r1 or r2 is
chosen for w 1.

q(A B) t2(A Cl
1 3 2 4

Figure 10.2

10.8.2 Tableau Queries for Restricted Algebrafc Expressions

In this section we shall see how to translate a restricted algebraic expression
over a relation r into an equivalent tableau query. By the nature of the
operators in a restricted algebraic expression, if any subexpression is iden-
tically the empty relation, then the entire expression is identically the empty
relation. We shall use Qg to denote a special tableau query that always
evaluates to the empty reIation.

For a given restricted algebraic expression E for relation r, we define an
equivalent tableau query Q recursively. Let the relation scheme for r be
AlA ..-A,.

Case 1 E is r. Then Q is

Case 2 E is (cI:B1 c2:B2 a -- ck:Bk), where B1 B2 -- - Bk c AI A2
. . . A, and ci is a constant in dom(Bi). Q is the tableau query consisting
only of a summary wg, where wg has ci in the B;-column, 1 5 i 5 k, and
is blank elsewhere (see Exercise 10.34).

Case 3 E is uAicc(E ‘). Let Q ’ be the tableau query for E ‘. There are
three possibilities for Q.

a. If Q’=Qg, then Q = Q#.
b. If wd is the summary for Q ‘, and wd(Ai) = c ‘, then if c = c ‘,

Q = Q ‘. Otherwise, when c # c ‘, Q is Qd.

Tableau Queries 269

c. If wd is the summary for Q ‘, and wd(Ai) = ai, then Q is Q ’ with
every occurrence of ci replaced by c.

Case 4 E is rX(E ‘). Let Q ’ be the tableau query for E ‘. If Q ’ = QQI,
then Q=Q@. Otherwise, let wd be the summary of Q ‘. The summary wg
for Q has wo(Ai)=wd(Ai) for Ai E X and is blank elsewhere. The rows of
Q are the rows of Q ‘, except if ai is the distinguished variable for the Ai
column, and A, L X, then ai is replaced by a new nondistinguished
variable.

Case 5 E is E ’ w E”. Let Q ’ and Q ” be tableau queries for E ’ and
E”. Assume that no nondistinguished variable appears both in E’ and
E”. There are three possibilities for Q.

a. If Q’ or Q” is Qg, then Q = Qo.
b. If wd and w{are the summaries of Q ’ and Q”, and wd(Ai) = c ’

and w$Ai) = c” for some Ai, and constants c ’ and c” are un-
equal, then Q is Qo.

c. Otherwise, the summary w. has
i. wo(Ai) = c if either wd(Aj) = c or

w{(Ai) = c (if ai is changed to c in the summary, it is
changed everywhere).

ii. w,(Aj) = a; if i. does not apply and either wd(A;) = ai or
wi(Ai) = ai, and

iii. wo(Ai) = blank elsewhere
and the rows of Q are the rows of Q ’ and Q “.

Example 10.44 Let E be the restricted algebraic expression

m& TDT ME(nm OP ME(@~=5&zd)) w TDT OPhed) w meal)

for the relation meal that is the join of the relations in Table 10.11. We shall
translate E to a tableau query, combining steps as we go. A query tableau for
a~=~(meal) is shown in Figure 10.3. A tableau for xFL op Mn(om=sb(meal))
is shown in Figure 10.4. Figure 10.5 gives the tableau for nFL op ME(un=56
(meal)) W ~DT &meal). Figure 10.6 gives the tableau for ?TDT &an op ME
(u~=&meal)) W 7f nr &meal)) W meal, and Figure 10.7 gives a tableau
query for all of E.

Theorem 10.7 If E is a restricted algebraic expression for relation T, and Q
is the tableau query obtained by the method given above, then E is equivalent
to Q.

270 Query Systems

(FL DT OP NM ME)

56 a2 a3 a4 a5

56 a2 a3 a4 as
Figure 10.3

(m, DT OP NM ME)
56 a3 a5

56 bl a3 bz as
Figwe 10.4

(FL, DT OP NM ME)

56 a2 a3 a5

56 bl a3 bz ag
b3 a2 a3 b4 bs

Figure 10.5

(FL DT OP NM ME)

al a2 a3 a4 a5

56 bl b6 b2 a5
b3 a2 b6 b4 bs
at a2 a3 a4 a5

Figure 10.6

(FL DT OP NM ME)

at a2

56 bl b6 b2 b7
b3 a2 b6 h by
at a2 ba bg b

Figure 10.7

Proof We proceed by cases.

Case 1 E is r. The reader should recognize the corresponding tableau
query Q as the identity mapping, hence Q(r) = r.

TabIeau Queries 271

Case 2 E is (cl:B1 c2:B2 - - - ck:Bk), If wo is the summary of Q and
p is a valuation of Q, then p(Wo(Bi)) = ci, 1 5 i I k, so Q(r) =
(cl:B1 cz:Bz - - - ck:Bk).

Case 3 E is UA~=,(E ‘). It should be obvious that Q is equivalent to E
for possibilities u and b. For possibility c, suppose t is a tuple in E(r).
Then t(Ai) = c and t is a tuple in E’(r). It follows that there is a valua-
tion p of Q ’ where p ‘(Q ‘) C r such that p(wo’) = t and hence
p(Ui) = C. Ext en d ing p, if necessary, so that p(c) = c, we see that
p(Q) G r and p(w,-J = t, h ence t E Q(r). Similarly, it follows that if t is a
tuple in Q(r), t E E(r). We conclude E and Q are equivalent.

Case 4 E is ?rx(E ‘). If Q ’ = QQ, then E ’ is identically the empty rela-
tion on sch(E ‘), hence E will be identically the empty relation on X, so
Q is correctly chosen. Otherwise, let t be a tupie in E(r). There must be
atuplet’inE’(r)witht’(X) =t.Letpbeavaluationsuchthatp(Q’) c_r
and p(wo’) = t ‘. If for any attribute Ai that is projected away by rx we
let p(bj) = p(ai), where bj is the nondistinguished variable that replaced
ai in Q ‘, then p(Q) C r and p(wo) = t, so t E Q(r). A similar argument
shows that any t in Q(r) is also in E(t), so E and Q are equivalent.

Case 5 is left to the reader (see Exercise 10.38).

Although every restricted algebraic expression has an equivalent tableau
query, not every tableau query comes from a restricted algebraic expression.

Example 10.45 Consider the tableau query Q in Figure 10.8. Q is not the
translation of any restricted algebraic expression using the method previously
given. Suppose that Q came from expression E. E must be of the form
E’ W E”. Let Q ’ and Q” be the tableau queries for E ’ and E”. Which rows
of Q came from Q’ and which came from Q”? Assume without loss of

Q(A B)
al a2

bz
;: b2
bt 42

Figure 10.8

272 Query Systems

generality that row w1 came from Q ‘. Row w2 must also come from Q ‘, since
it agrees with w1 on a non-distinguished symbol. Likewise, w3 comes from
Q ‘. No rows come from Q “, so E” must be a constant relation, which is a
contradiction, since Q contains no constants. Hence Q does not come from
any restricted algebraic expression (see Exercise 10.39).

The method given for translating restricted algebraic expressions over a
single relation also works for expressions over a database d if all the relations
in d are projections of a common instance r. If E is a restricted algebraic ex-
pression over d, replace each occurrence of ri by x&r), where Ri is the
scheme of ri, and proceed as before. The resulting tableau query Q is guaran-
teed to apply to database d. Any row w in Q can be traced to a subexpression
?T&), which means match(w) E Ri. Suppose, for example, that I is a rela-
tion on ABCD and Ri = AC. The tableau query for x&) is

Q’(A B C D)

a1 a2

w’ u1 bl a2 b2

Row w ’ eventually becomes w in Q. The nondistinguished symbols in w ’ can
never become matched, either through selection or joining. Hence match(w)
in Q will be contained in Ri = AC.

Example 10.46 Let E be the expression

TOP MEhL=106, DT=lSAug (serves W choice))

for the database in Table 10.11. Figure 10.9 shows a tableau query equiva-
lent to E.

(FL DT OP NM ME)

a3 4

106 bl b2 b3 a5
b4 15Aug a3 b5 a5

Figure 10.9

10.8.3 Tableau Queries that Come from Algebraic Expressions

Although we shall not characterize all tableau queries that come from
restricted algebraic expressions, the following theorem does characterize
some of those tableau queries.

Tableau Queries 273

Theorem 10.8 Let Q be a tableau query for relation r(R). If Q has at most
one matched symbol in every column, then Q can be derived from some
restricted algebraic expression by the translation method given.

Proof It suffices to consider only tableau queries with no constants in the
summary. If Q has constants ci,c2, . . . , ck in columns Bi,&, . . . , Bk of the
summary, then Q is the tableau query for the expression

(q:B, cz:& “‘ck:Bk) HE’,

where E’ is the tableau query for Q with all its constants in the summary
changed to blanks.

Let Wl,W2, . . ., w, be the rows of Q. For each wi we form an algebraic ex-
pression Ei. Let Xi be the set of columns where wi has a constant. Let Yi =
match(wi) - Xi. Start with the expression r. For every attribute A E Xi, ap-
ply the selection aA,,, to the expression. Finally, apply the projection zyi
to get Ei. Let E = ny(El w Ez w - - - w En), where Y is the set of col-
umns where the summary of Q is not blank. It is left to the reader to show
that J? translates into Q by the correct choice of nondistinguished variables at
each stage (see Exercise 10.41).

Note that the proof only depends on there not being both a distinguished
variable (necessarily matched) and a matched nondistinguished variable in
each column. Any number of constants can appear in a column, in addition
to another matched symbol.

Example 10.47 Let r be a relation on scheme ABCD and let Q be the
tableau query for r shown in Figure 10.10. Q can be derived from the
restricted algebraic expression

The tableau queries Q,, Q2 and Q3 to be used for subexpressions 7rACD(r),
R~(cB~~(uD&)), and TB~(Y) are shown in Figure 10.11.

AtA B C D)

a~ bl bz b3
b4 2 b2 3

b5 a2 b6 b3

Figure 10.10

274 Query Systems

al a3 a4

al bl a3 a4

Q@ B C D)
a3

b4 2 a3 3

b5 a2 b6 a4

Figure 10.11

10.8.4 Tableau Queries far Multirelation Databases

We now modify tableau queries so they can represent restricted algebraic ex-
pressions on databases where the relations are not necessarily the projection
of some common instance. We associate a particular relation with each row
in the query. Actually, we assume that all the relations in the database have
distinct schemes, so we simply associate relation schemes with rows.

Let d be a database with scheme R over R. A tagged tableau query Q for d
is similar to a regular tableau query with scheme R, except the rows of Q may
contain blanks and every row has a tag. The tag of row w, denoted tag(w), is
some relation scheme S E R. Row w is blank in exactly the columns in R - S.
We view a valuation p for Q as mapping row w to a tuple over tag(w). The
notation p(Q) C d then means that for each row w in Q, p(w) E s, where s is
the relation in d with scheme tag(w). If w. is the summary of Q, we let

Q(d) = (P(WO>~P is avaluation of Q such that p(Q) E d).

Example 10.48 Harking back to the database d in Table 10.1, we can con-
struct the tagged tableau query Q shown in Figure 10.12. P#, SP, PN, PT,
NU, LC, and QY are abbreviations for PART#, SUBPARTOF, PART-
NAME, PTYPE, NUSED, LOCATION, and QUANTITY. Tags are shown
in parentheses to the right of each row. Q(d) is shown in Figure 10.13.

Tableau Queries 275

Q(P# SP PN PT NU LC QY)

bl 211 bz (P# SP PN)
bl 707 as (P# PT NU)
bl a4 a7 (P# LC QY)
bl 727 b3 (P# PT NU)

Figure 10.12

QWNJ LC QY)
86 JFK 6
86 O’Hare 28

244 Boston 341
244 O’Hare 29

Figure 10.13

The tags are written in Figure 10.12 only for emphasis. They can be in-
ferred from the non-blank portion of each row.

The translation from restricted algebraic expressions to tagged tableau
queries is essentially the same as for the single-relation case. The only dif-
ference is the tableau query for a single relation s with scheme Al A2 - + - Ak.
The tableau for s has a summary with distinguished symbols in the columns
corresponding to A, AZ . . . Ak and blanks elsewhere. It also has a single row
that is identical to the summary.

Example 10.49 The tableau query Q in Figure 10.12 is the translation of
the algebraic expression

For a database where all the relations are the projection of a common in-
stance, the tagged tableau query derived from an algebraic expression is
equivalent to the untagged version. The two tableaux will be essentially iden-
tical, except some unmatched symbols in the untagged version will be blanks
in the tagged version.

276 Queq Systems

10.8.5 Tableau Set Queries

The range of algebraic expressions that can be modeled by tableaux can be
extended if we allow sets of tableaux to denote a query. In this section we
return to regular tableau queries, although the extension described works for
tagged tableau queries as well.

Definition 10.9 A monotonic algebraic expression E is an algebraic expres-
sion built up from relations and single-tuple constant relations using

1. SekCt in the fOiTII aA=,,

2. project,
3. natural join, and
4. union.

Note that with union and intersection, selection conditions with h and V are
possible. Also, union can be used to construct multiple-tuple constant
relations.

Definition 10.10 Tableau queries Q1 and Qz are compatibZe if they have the
same scheme and their summaries are blank in the same columns. A set of
tableau queries is compatible if each pair of queries in the set is compatible.

Definition 10.11 A tableau set query over scheme R is a set Q = { Qt, Q2,
. . ., Q, } of compatible tableau queries, all with scheme R. For a relation
r(R), the value of Q on Y, denoted Q(r) is

Ql(r> U Q*(r) U - - . U Q,(r).

Example 10.50 Let meals be the join of the relations in Table 10.11. Let Q
be the tableau set query { QI,Qz}, where Qt and Qz are shown in Figure
10.14. Q(meaZs) is given in Figure 10.15.

Theorem IO-9 Let E be a monotonic algebraic expression. There is a
tableau set query Q that is equivalent to E.

Proof By Theorem 10.7, it is sufficient to show that any monotonic
algebraic expression E is equivalent to a monotonic algebraic expression

El U E2 U - -. U E,

where each Ej is a restricted algebraic expression. The equivalence follows
because select, project, and join all distribute over union.

Tablean Queries 277

Q1F-L DT

a1

OP NM ME)

a3 a4

56 15 Aug a3 bz b3
al 15 Aug a3 a4 b3

Q2W DT

a1

OP NM ME)

a3 a4

56 16 Aug a3 b2 b3
at 16 Aug a3 a4 b3

Figure 10.14

Q(meaLs)(FT OP NM)
56 eggs 27
56 waffles 23
56 eggs 50
56 sandwich 50
56 salad 50
106 sandwich 80

Figure 10.15

From Section 2.2 we know that

aA=c(El U E2) = uA,,(E~) U uAEc(E2)

for expressions El and E2. Exercise 2.8 a) gives us

Q(EI U E2) = qdEd U 7rx(E2).

It is not hard to show that

El w (E2 U E3) = (El W Ed U (El W E3)

as well. Repeated application of these identities will transform a monotonic
algebraic expression into the union of restricted algebraic expressions. Note
that if E contains k unions, m can be a large as 2k.

‘_

278 Query Systems

Example 10.51 The tableau set of query Q of Example 10.50 can be derived
from the expression

10.9 CONJUNCTIVE QUERIES

Conjunctive queries are a subset of domain calculus expressions. Although
they are not as expressive as domain calculus, they can express many useful
queries, and do occur as subexpressions in domain calculus expressions.
Their main interest, as with tableau queries, is that they can be optimized
effectively.

A conjunctive query for database d is a domain calculus expression of the
form

such thatf is the conjunction of atoms of the form r(aI a2 - - * a,), where I E d
and each ui is either a constant, xj for somej, or yk for some k.

Example 10.52 The tagged tableau query tJ in Figure 10.12 is equivalent to
the conjunctive query

(x,(NU)X~(LC)X~(QY)I~~,(P#) 3yz(PN) 3y3(NU)
pinfo(y 1 211~2) A usedon(y, “707” x1) A
instock(y l x2 x3) A usedon (y , “727” y3) >.

Every conjunctive query is a safe domain calculus expression. They are as
expressive as tagged tableau queries that do not contain constants in the
summary (see Exercise 10.45). Conjunctive queries are basically tagged
tableau queries where a symbol may appear in multiple columns. Conjunc-
tive queries are easily translated into equivalent algebraic expressions (see
Exercise 10.46).

10.10 EXERCISES

iO.l Using the alternative definition of equivalence where expressions
must have the same value on all mutually consistent databases, ex-

Exercises 279

hibit algebraic expressions El, Ez, and Es, where El = Ez and Ez =
Es, and where there exists a database d that is mutually consistent
with El and E3, but El(d) and Es(d) are relations over different
schemes.

10.2* Consider databases with the same scheme as the one in Table 10.1.
Prove that there is no expression in relational algebra that denotes
the relation r(PART SUBPART ‘) that contains a tuple p s if and
only if s is a subpart of p, or a subpart of a subpart, or a subpart of a
subpart of a subpart, and so on. That is, s is used somewhere in p.

Many of the following exercises refer to the database pictured in Table
10.16. The usage relation gives, for each aircraft type, the number in service,
the combined miles of flight (in ten thousands), and the combined hours of
flight (in hundreds). The accidents relation gives, for each aircraft type and
type of accident, the number of accidents and the number of people injured.

Table 10.16 Relations accidents and usage.

usuge(PTYPE INSERV TMILES THOURS)

707 14 7,358 1,839
727 12 6,621 1,642
747 8 3,784 841

Al00 3 1,213 397
DC8 21 11,016 2,803

accidents(FTYPE TACC NACC INJURED)

707 takeoff 2 6
727 takeoff 1 3
727 landing 4 17

Al00 landing 1 12
Al00 inflight 1 6
DC8 inflight 1 26

The domain of INSERV, TMILES, THOURS, NACC, and INJURED is
the non-negative integers; dom(PTYPE) = { 707, 727, 747, AlOO, DC8,
DClO}; and dom(TACC) = {takeoff, landing, inflight, taxiing). The com-
parators for the non-negative integers are =, f , < , 5, 1, > . The com-
parators for the other two domains are just = and # . Let RI be the scheme
of usage and R2 be the scheme of accidents.
10.3 For each of the formulas, state which are legal. For the legal for-

mulas, state for each tuple variable occurrence whether it is free or

280 Query Systems

bound; if it is bound, indicate to which quantifier it is bound. Also
for the legal formulas, for each tuple variable that occurs free in the
formula, give type and men. Recall RI is the scheme of usage and Rz
is the scheme of accidents.
(a) x(PTYPE) = y(PTYPE) h y(THOURS) L 1,000.
(b) x(TACC) A x(INSERV).
(c) x(TACC) A usage(x).
(d) 3xfRd hag&) A WR2)

(accidents(x) A x(PTYPE) = x(PTYPE) A x(NACC) =
y(NACO)N.

(e) Vx(R1) E accidents (x(PTYPE) = y(F”TYPE) A

3t(RlR2) (z(INSERV) 1 y(INSERV) A
z(PTYPE) L x(PTYPE))).

(f) vx(R1) 3x(R2) (x(NACC) < 6).
(g) ox E accidents{ -x(PTYPE TACC) =

y(PTYPE TACC) v (x(NACC) z y(NACC) A

x(INJURED) L y(INJURED))).
10.4 Assuming the atoms true andfalse are both legal formulas, show that

f(t/x) is legal iff(x) is legal.
10.5 Show that if legal formulaf = 3x(R)g has no free variables, then x is

the only variable that occurs free in g.
10.6 Using the database of Table 10.16, give the (unlimited) interpreta-

tion of each of the following formulas, where RI and R2 are the
schemes of usage and accidents.
(a) Vx(R1) (x(INSERV) < 60).
(b) Vx(R,) (1 usage(x) V x(INSERV) < 60).
(c) VX(R~) E accidents (x(PTYPE) # “727” A

(x(TACC) = “landing” v x(TACC) = “takeoff”).
(d) 3x(R1) E usage 3y(R2) E accidents

(x(PTYPE) = y(PTYPE) A y(TACC) = “inflight” A
x(TMILES) > 5,000 A y(NACC) d 1).

(e) 3x(R1) C usage 3y(R1) E usage Vz(R$ 6 accidents
Vw(R2) 6 accidents (1 (x(PTYPE) = z(PTYPE) A

y(PTYPE) = w(PTYPE)) v z(TACC) z w(TACC) v
z(NACC) I w(NACC)).

Hint: There is a join going on here.
10.7 Let f be the formula

3x(RJ (&stock(x) A x(LOCATION = “JFK” v

vy(R,) (7 instock v ly(PART#) = x(PART#) v
y(QUANTITY) < x(QUANTITY))

Exercises 281

for the database in Table 10.1, where R3 = PART# LOCATION
QUANTITY. Show that I(j) = false for any state of the relation
instock.

10.8 Using the database in Table 10.16, give the value of (x(R1)&)} for
each of the following choices forf (under the unlimited evaluations).
(You can write an infinite relation on a single sheet of paper as
follows. Write the first tuple on half the sheet. Write the next two
tuples on half of what remains. Write the next four tuples on half of
what now remains. Continue in this manner until you have written ail
the tuples. Warning: This method does not work for uncountably in-
finite relations.)
(a) f(x) = usage(x) A &THOURS) 2 1,000.
(b) f(x) = usage(x) A Vy(R2) E accidents

(x(PTYPE) # y(PTYPE)).
(c) f(x) = 3y(R1) E usage

(x(PTYPE INSERV TMILES) = y(PTYPE INSERV
TMILES))

(d) f(x) = usage(x) A my f accident
(x(PTYPE) # y(PTYPE) V Vz(Rz) E accident

(y(PTYPE) = z(PTYPE) v y(TACC) + z(TACC)
v y(NACC) > z(NACC))).

(e) f(x) = 3y(@,) ,E usage (x(PTYPE) = y(PTYPE) A
%z(R;) E usage(x(INSERV TMILES THOURS) =
z(INSERV TMILES THOURS) A
z(INSERV) I 5)).

(f) f(x) = 3y(Rz) E accidents(x(pTYPE) = y(PTYPE) A
t!z(R,) E usuge(x(INSERV TMILES THOURS) =
z(INSERV TMILES THOURS) A

z(INSERV) 5 5)).
10.9 For the database in Table 10.16, give tuple calcuIus expressions that

will provide the answers to the following questions:
(a) Which plane types have no inflight accidents listed?
(b) Which plane type has logged the most miles and how many miles

is that?
(c) Which plane types have more hours but less inflight accidents

than other plane types? (Assume that there is an attribute
PTYPE ’ with the same domain as PTYPE and that no entry for
a plane type and accident type in accidents means no accidents of
that type.)

10.10 Complete cases 3, 5, and 6 of Theorem 10.1.

282 Query Systems

10.11 Give equivalent tuple calculus expressions for the following algebraic
expressions over the database in Table 10.16.
(a) 7rmypE (usage W accidents).
(b) oFTYPE= v INSERV I 10 (usage).

(c) accidents .
(d) (707:PTYPE 12:INSERV 1,213:TMILES)

10.12 Let E be the algebraic expression El f E2, where sch (El) = RS and
sch(E2) = S. Give a tuple calculus expression equivalent to E in
terms of formulas in the expressions {x(RS)Jf(x)} and (y(S)Jg(y)}
for El and E2.

10.13 Give a tuple catculus expression E for the database d in Table 10.16
such that E(d) and its complement are both infinite under the un-
limited interpretation.

10.14 For the following formulas, let T be a relation on ABCD and S a rela-
tion on CDE where dam(A) = dam(C) = dam(E) = positive in-
tegers. For each formulaf, give an algebraic or tuple calculus expres-
sion for edom(A,f).
(a) r(x) A x(c) s 10.
(b) 3z(ABCD) 3y(CDE) (z(B) = x(B) A z(D) = y(D) A x(W) =

Y(CD)).
(c) 3x(ABCD) (x(C) 5 z(C) v (z(E) 5 15 A z(E) z 5))

10.15 Repeat Exercise 10.6 using the limited interpretation of formulas.
10.16 Repeat Exercise 10.8 using the limited evaluation of expressions.
10.17 Give a tuple calculus expression E for the database d in Table 10.16

such that E(d) is finite under both the unlimited and limited inter-
pretations, but such that the value is different under the two
interpretations.

10.18 Show that every tuple calculus expression used in the proof of
Theorem 10.1, except for case 7, has the same value under unlimited
and limited evaluation (provided you did Exercise 10.10 properly).

10.19 Which expressions in Exercise 10.8 are safe?
10.20 Let r],Y2, . . ., r,, be relations on schemes RI, Rz, . , . , R,. Let E be

any expression of the form

1. f is an arbitrary legal tuple calculus formula with no quan-
tifiers,

2. iZlJ2, ' * *, z4 } is a subset of (y1,y2, . . . , yp }, and

Exercises 283

3. g is the conjunction of atoms, where for every attribute A E S
there is an atom x(A) = z,(A) or x(A) = c in g.

Show that E is safe. Is E safe if some of the 3 ‘s are changed to V ‘s? If
f may contain quantifiers?

10.21 Prove Lemma 10.1. You may wish to define safe tuple calculus for-
mulas as those satisfying conditions s2 and s3 of the definition of safe
expression.

10.22 Let R be a set of attributes. Show that for a legal tuple calculus for-
mula g there is another formula h such that the value of {y(R) (g(y) >
under unlimited evaluation is edom(R, g), and such that edom (R,g) =
edom(R, h).

10.23 Give the unhmited and limited evaluations of the following domain
calculus expressions for the database in Table 10.16
(a) {x(PTYPE)y(INSERV)[(~z(TMILES) gw(THOURS)

(usage(xy 2 w) A (z 2 4,000 v w 2 1,ooo))).
(b) { x(TACC) 1 vy(PTYPE) vz(NACC) vw(INJURED)

1 accidents(y x z w)}.
(c) {x(I?TYPE)~(INSERV)J~ r 10 A VZ~(TMILES) vz2(THOURS)

(1 usuge(x y ~1~2) aw(INIIJRFD)
accidents(x “inflight” 1 w)) 1.

10.24 Which expressions in Exercise 10.23 are safe?
10.25 Give domain calculus expressions to answer the questions in Exercise

10.9.
10.26 Convert the tuple calculus expressions in Exercise 10.8 to equivalent

domain calculus expressions, and simplify where possible.
10.27 Prove part 1 of Theorem 10.5.
10.28 Complete case 5 of the proof of Theorem 10.6.
10.29 For each domain calculus expression E in Exercise 10.23 give an

equivalent algebraic expression, assuming unlimited evaluation of E.
10.30* Complete the proof of the corollary to Theorem 10.6.
10.31 Which of the tuple calculus expressions in Exercise 10.23 have equiv-

alent restricted algebraic expressions?
10.32 Compute Q(meals) for the following tableau queries, where meals is

the join of the relations in Table 10.12.

(4 Q<fi DT OP NM ME)

aI a2

284 Query Systems

(b) QW DT OP NM ME)

al a2 a4

al 15Aug br bz b3
al a2 bl a4 h

(4 Q(= DT OP NM ME)

57 a2

57 15 Aug bl b2 b3
57 a2 bl a4 b4

(d) Q<R DT
ai

OP NM ME)

a3 a4

al bl
b4 bs

b2 b3 a4
a3 b6 a4

10.33 Give algebraic expressions equivalent to the tableau queries in Exer-
cise 10.32.

10.34 What is the difference between tableau queries Q and Q ’ below?

Q(A) Q’(A) 5 5
x -

10.35 Let R be a relation scheme and let Al A2 - - - A, C R. Consider a
tuple calculus expression

E = (x(AIA2 - - - &)/3,n(R) E r 3y2(R) E r - - - Q,(R) E T
x(Ar)=bl~r(A2)=b2~.-.~x(Am)=b,~

dYl1Y29 . ..9YnH

where bi is either a constant in dom(Ai) OryJAi) for some 1 I j I n
and, g is the conjunction of atoms of the forms yi(Ak) = yj(Ak) and
y;(Ak) = c, c a constant, in dom(Ak).
(a) Show that E is safe.
(b) Show that E is equivalent to an algebraic expression with at most

n-l natural joins and no theta-joins.

(c) Show that E is equivalent to a tableau query.
(d) Show that if g is an arbitrary formula without quantifiers that

may contain atoms of the form yi(Ak) 8 yj(Al) and
yi(Ak) = c, then (a) and (b) can be shown, but not (c).

0.36 Let Q be a tableau query that applies to database d. Assuming the
relations of d are projections of a single relation r, show how to derive
a tuple calculus expression on database d that is equivalent to Q.

0.37 Give equivalent tableau queries for the following restricted algebraic
expressions on the database of Table 10.12, assuming the relations
are all projections of a common instance.
(a) TOP ME(uFIAO&e?w) w uDT=lS Au&choice)).
(b) TOP Mu(am=&serves) W UDT=~S &Ordered) W choice).
(c) (B:ME eggs:OPTION) w ordered.

Cd) %X(~JDT=IS AUG OP=salad (serves W choice)).

10.38 Prove case 5 of Theorem 10.7.
10.39’ Show that the tableau query Q in Figure 10.8 is not equivalent to any

10.40

10.41
10.42

10.43

10.44

10.45

10.46

tableau query Q ’ that comes from a restricted algebraic expression.
Give a tableau query that comes from a restricted algebraic expres-
sion, but that is not characterized by Theorem 10.8.
Complete the proof of Theorem 10.8.
Repeat Exercise 10.37 without the assumption that the relations are
projected from a common instance.
Let r be a relation on scheme ABCD . Give tableau set queries for the
following algebraic expressions.
(a) aA=6 V (BE7 ,? C=2)(f)

(b) (~,4=&) u U.+,(r)) w ~cD(~A=&)).
Let E be an algebraic expression involving relation T, single-tuple
Constant relations, select in the form oAcc, project, join, union, and
difference. Are there necessarily tableau set queries Qr and Q2 such
that

E(r) = Q~tr) - QArP

Show that there is a conjunctive query equivalent to any tagged
tableau query that does not have constants in its summary.
Show that a conjunctive query

(xI(AI)xz(A~) - - . ~,AA,)I~YI(~I) 3y2tB2) - . - 3.~,,@m)

ffXl,XZ, *- -,&?,y1,y2, -*a, Ym)h

wheref is the conjunction of k atoms, has an equivalent algebraic ex-
pression using renaming, k - 1 equijoins, and a single projection.

. . ..’

286 Query Systems

10.11 BIBLIOGRAPHY AND COMMENTS

Codd [1971a, 1972b] proposed relational calculus as the benchmark for
query language completeness and showed its equivalence to relational
algebra. The concept of safe expressions, as well as the general structure of
the equivalence proofs, are from Ullman [1980]. However, Codd’s and
Ullman’s proofs are for the case where relations have ordered columns and
no attribute names.

Conjunctive queries are due to Chandra and Merlin [1976], and are the
basis for tableau -queries introduced by Aho, Sagiv, and Ullman [1979a,
1979b]. Tableau set queries are due to Sagiv and Yannakakis [1978], who
also handle the difference operator in a limited form. Klug [198Ob, 1980~1
has extended tableau queries to handle inequality comparisons.

As the structure of tuple and domain calculus indicates, there is a close
connection between predicate logic and databases. Gallaire and Minker
[1979] have edited a collection of papers on that connection. Jacobs [1979,
1980a, 198Ob] has dealt extensively with the use of logic in database theory.

In Chapter 14 we shall see that there are natural operations on relations
that cannot be expressed in relational algebra, thus questioning the aptness
of the definition of a complete query system.

