
Chapter 9 

REPRESENTATION THEORY 

In this chapter we shall discuss several notions of when a relation is ade- 
quately represented by its decomposition onto a database scheme. We also 
introduce a new type of equivalence for database schemes, data equivalence. 
We first examine both topics for an arbitrary set of relations P, and then 
state further results for the case where P = SAT(C). 

9.1 NOTIONS OF ADEQUATE REPRESENTATION 

We state here some notations that will be used throughout the chapter. We 
want to represent members of a set P of relations. All relations in P are over 
the scheme U. Q denotes the set of all relations with scheme U. We shall 
refer to relations in Q as instances, to avoid confusion with relations that are 
components of databases. R = (Rt, Rz, . . . , RP} will be a database scheme 
such that U = RIRz --- R,. Let M be the set of all databases over R. We 
want to represent instances in P as databases in M, so we shall examine the 
restrictions on R necessary for an adequate representation. 

In the chapters on normal forms, we were looking for database schemes 
that eliminated redundancy and gave lossless decompositions. In this 
chapter, we shall be concerned with enforcing constraints and unique repre- 
sentations. Lossless decomposition frequently will enter into the discussions 
of the second condition. 

We have already seen the project-join mapping defined by R, mR. We 
shall find it useful to separate the projection and join functions. 

Definition 9.1 The project mapping for R, xn, maps instances in Q to 
databases in M. For r E Q, we define 

?TR(r) = d 
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whered = {rr, r2, . . ., rp } is the database in M such that 

When it is understood we are projecting instances onto databases, we use T 
for ?Tu. 

Definition 9.2 The join mapping for R, W, maps databases in M to in- 
stances in Q. For database 

d = {q, r2, . . ., rp) inM, 
Da(d) = rlWr2Da --- Darp. 

Note that the description of R is implicit in the structure of d. 

Example 9.1 Let U = ABC and R = {AB, BC). If r is the instance in 
Figure 9.1, then ru(r) is the database d = { rl, r2 >, where rl and 12 arc given 
in Figure 9.2. The result of w(d) is the instance r ’ in Figure 9.3. Clearly 
rR(r ‘1 = d. If d ’ = { rl, ri), where T; is given in Figure 9.4, then w (d ‘) is 
the empty instance over U. 

r(A B Cl 

1 3 5 
1 4 6 
2 4 5 
2 4 6 

Figure 9.1 

~164 B) r2U3 ‘3 

1 3 3 5 
1 4 4 5 
2 4 4 6 

Figure 9.2 

r ‘(A B C) 

1 3 5 
1 4 5 
1 4 6 
2 4 5 
2 4 6 

Figure 9.3 
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7 5 
8 6 

Figure 9.4 

Deffnftion 9.3 For any subset P of Q, the direct image of P under R, written 
lrRP (or 7rP when R is understood), is defined as 

aRP = (d E M 1 d = n&-) for some t E P). 

If R is a subset of U, the image of P under R, written TRP, is the set 

{s(R) 1 s = ?T&) for some r E P), 

We see that TP C_ ?rQ 9 M. The last containment is proper because not 
every database d is AR(r) for some instance r E Q. 

Example 9.2 The database d ’ = { ri, r-i}, where t-1 is given in Figure 9.2 and 
ri is given in Figure 9.4, is not the projection of any instance on scheme ABC. 

We shall only consider databases in rrQ as candidates to represent in- 
stances in P, since we want ?r to be the mapping from P to M. The set xQ is 
exactly all those databases with scheme R that join completely (see Exercise 
9.2). There is some controversy involved with this assumption, for three 
reasons. 

1. It is an NP-complete problem to decide if a set of relations joins 
completely. 

2. Databases where the relations do not join completely can stih be 
meaningful. 

It is sometimes desirable to store partial information. 

Example 9.3 The database consisting of the relations assigned and canfly 
in Table 9.1 does not join completely, because Bentley is not assigned to any 
flight. We still might want to record the information that Bentley can fly a 
727, even if he is not currently piloting any fiight. However, we cannot repre- 
sent that piece of information in an instance with scheme (PILOT, FLIGHT#, 
PLANE-TYPE} without using some special value in the FLIGHT# column. 

3. The constraint that a database d is in ?Q can only be checked by iook- 
ing at the database as a whole. It is not sufficient to consider the rela- 
tions in the database individually, or even in pairs. 
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Table 9.1 The relations assigned and canjii, constituting a database. 

assigned (PILOT FLIGHT#) canfly (PILOT PLANE-TYPE) 

Bottom 62 Bentley 727 
Brown 113 Bottom 727 
Brown 114 Bottom DC8 

Brown 727 
Brown 737 

Example 9.4 The relations rl, r2 and r3 in Figure 9.5 join completely when 
taken in pairs, but the three relations together do not join completely. 

rib-4 B 1 r2@ c 1 r3L-4 C 1 
a b b c a c’ 
a’ b’ b’ c’ a’ c 

Figure 9.5 

We shall cover these three objections in further detail in Chapter 12. 
Apart from the joinability condition, we want to enforce constraints on the 

databases in ?rQ by enforcing constraints on individual relations in the 
database. We do not want to construct the instance in Q we are representing 
every time we need to test a constraint. 

Definition 9.4 For any subset P of Q, the component-wise image of P under 
R, written CkVu( P), is the set 

{d 6 M 1 d = { rl, r2, . . . , tP }, ri E qi(P)}. 

That is, CWR(P) consists of those databases over R where each relation is the 
projection of some instance in P, but not necessarily the same instance. 

Example 9.5 Clearly, Cl-V,(P) 2 TP. The containment is generally proper. 
Suppose U = ABC, R = (AB, BC) and P = SAT(A * C). Then the data- 
base d = { rl, rz), where ri and r2 are given in Figure 9.6, is in CW,(P) but 
not 7rP. 

rl(A B) T2@ 0 
1 2 2 4 
1 3 3 5 

Figure 9.6 
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To represent P, we are interested in using those databases that are projec- 
tions of instances, and, component-wise, look like projections of instances in 
P. We call this set of interest L, which we define 

L = CW,(P) fl aQ. 

Since TP 5 7rQ, ?rP G L. Figure 9.7 diagrams the relationship among sets 
introduced so far. M ___----- _--- - Q p “R ,---. -----__ _ / ‘\ \ 

0 c3 
( nP : 
\ : 
\ 

- ’ .! -- 
_--- 

(ClJ _--- . 
. 

-. 
L ----__-____ 

.CWR (P) 

Figure 9.7 

Definition 9.5 If N is a subset of M, we define MN to be the set of 
instances 

{w(d) I d E N}. 

We are ready to define our first notion of adequate representation, which 
is due to Rissanen. 

Definition 9.6 Database scheme R decomposes P into independent compo- 
nents if the following two properties hold. 

ICl. If d E L, then there is at most one instance r E P with a(r) = d. 
IC2. If d E L, then there is at least one instance r E P with n(r) = d. 

The first property is sometimes called unique representation. Properties ICl 
and IC2 together are called the independent component condition. 

The independent component condition requires A to be a one-to-one cor- 
respondence from P to L. For every database d E L, there is exactly one 
instance r E P such that r(r) = d. Also, we can represent uniquely each in- 
stance in P by a database in L. We could write ICl and IC2 as a single prop- 



200 Representation Theory 

erty, but we separate them because we use ICl in our other notions of ade- 
quacy. Note that IC2 holds if and only if 7rP = L (see Exercise 9.5). 

The problem with the independent component condition is that it may be 
hard to compute the inverse of x if we ever want to go from databases to in- 
stances. IC1 and IC2 do not require w to be the inverse of T. The situation 
shown in Figure 9.8 could hold. 

Figure 9.8 

Example 9.6 This example is admittedly contrived. Let U = ABC, R = 
{AB, BC) and P consists of all instances that satisfy the constraint: 

For every pair of tuples tl and f2 in Y, 
tl(A) 1 tz(A) implies t,(C) 1 t,(C). 

We are assuming ordered domains for attributes A and C. R decomposes P 
into independent components (see Exercise 9.61, but the join mapping for R 
is not the inverse of the project mapping on P. The instance r in Figure 9.9 
decomposes over R into the database d = { rl, r2 } shown in Figure 9.10, but 
w(d) # r. 

r(A B C) 

1 3 4 
2 3 5 

Figure 9.9 

rl(A B) r2tB C) 
1 3 3 4 
2 3 3 5 

Figum 9.10 

The next notion of adequacy is due to Arora and Carlson. 
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Definition 9.7 Database scheme R describes an information preserving de- 
composition of P if the following two properties hold. 

ACl. Same as ICI. 
AC2. For any instance r in Q, n(v) E L implies Y E P. 

The second property is called constraint containment. AC1 and AC2 together 
are called the information preservation condition. 

We now introduce a new set that will allow us to restate property AC2. 

Definition 9.8 For any subset N of rQ, the preimage of N, denoted N’, is 
the set of instances 

{r E Q I n(r) E N}. 

The set we are interested in is L’. The relationship of L+ to other sets is 
shown in Figure 9.11. 

Figure 9.11 

Lemma 9.1 AC2 is equivalent to the property L’ = P. 

Proof Suppose AC2 holds. For any instance r in L’, r(r) E L, so r E P. 
Therefore L’ G P, so L’ = P. 

Suppose now L’ = P. For any instance r E Q where ?T(T) E L, r E L’. 
Hence, r E P and AC2 is satisfied. 

Clearly, L’ = P implies L = ?rP, hence we have the following result 
relating the independent component condition and the information preserva- 
tion condition. 

Corollary AC2 implies IC2, hence AC1 and AC2 imply ICl and IC2. 
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The implication does not go the other way (see Exercise 9.8). Properties 
AC1 and AC2 require not only that we can represent every instance r in P by 
a database d in L, but also that d could not possibly represent some other in- 
stance s in Q - P. It turns out that the information preservation condition 
actually specifies what the inverse of ?r must be. 

Definition 9.9 The set of instances P satisfies the lossless join property for 
database scheme R if 

LJ. FIX(R) 2 P. 

That is, k~(a(r)) = r for all r E P. Note that w(a(r)) is the same as mu, 
always. 

Lemma 9.2 The LJ property implies the ICl property. 

Proof Suppose the LJ property holds. Let r and t ’ be instances in P. If 
n(r) = n(r ‘), then surely w(B(~)) = w (?r(r ‘)). From the LJ property, 
r = w(?F(T)), hence r = r ’ and ICl is satisfied. 

CoroIIary LJ and AC2 imply AC1 and AC2. 

Lemma 9.3 Properties AC1 and AC2 imply LJ. 

Praof Assume the information preservation condition holds. Let r be an 
instance P and let d = n(r). Now w(d) is also an instance such that 
n(w (d)) = d. Since d c L, by AC2, wd is in P. AC1 requires w(d) = Y, 
since K(T) = K(W(d)). Hence we have r = w(d) = w(n(r)), which is 
property LI. 

To summarize the previous results: 

Theorem 9.1 Given constraint containment (AC2), AC1 is equivalent to LJ. 

It should now be clear that w is the inverse of r on P under the informa- 
tion preservation condition. 

Example 9.7 Let U = ABC, R = {AB, BC) and P = SAT(B + C). The 
FD B + C ensures that the LJ property holds. If instance T obeys B -* C, 
then 7r~c(r) obeys B 4 C and if nB,-(r) obeys B -+ C, r must obey B + C (see 
Exercise 9.10). Therefore, for any instance r such that r(r) E L, r E. P. P 
satisfies AC2 and hence the information preservation condition. 
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We have noted that the independent component condition has the problem 
that the inverse mapping from databases to instances may not always be 
easily computable. Testing membership in P can be of arbitrary complexity, 
and sometimes the complexity carries over to testing which instance in P a 
given database represents. We have seen that AC1 and AC2 require join to be 
the inverse mapping, but they also require that for no instance r in Q - P is 
r(r) in L. That is, not only can we represent every instance r in P by a unique 
database d in L, but there is no possibility that d also represents some in- 
stance T ’ not in P. This property is overly restrictive. Surely if a database d in 
L could represent an instance r in P and an instance r ’ not in P, we can ig- 
nore r’, since it is outside the realm of interest. We present a condition in- 
termediate between independent component and information preservation. 

Definition 9.10 Database scheme K satisfies the joilt condition for P if the 
following properties hold. 

Jl. Same as ICl. 
12. For every database d E L, W (d) E P. 

It is not hard to see that Jl and J2 require w to be the inverse of ?F on P. If 
r is an instance in P, then x(r) E L and, by J2, mu(r) E P. But x(mn(r)) = 
x(r), so, by Jl, mn(r) = r. We have also shown that the LJ property holds on 
P. The join condition also says that we let any database d E L represent the 
maximal instance r in P such that w(r) = d (see Exercise 9.11). We now 
give an alternative characterization of property J2. 

Lemma 9.4 Property 52 holds if and only if FIX(R) fl L’ E P. 

Proof (only if) Property J2 can be stated as WL G P. Let r be an instance 
in FIX(R) n L’. Since r is in L’, T(T) E L. Since r E FIX(R), I = 
w(a(r)), so r E wL, hence r E P. We see FIX(R) n L’ E P. 

(if) Suppose FIX(R) n L’ 5 P, and let t be an instance in wL. Since Y E 
wL, t = w(d) for some database d E L. Clearly x(r) = d, so m&) = r 
and hence r E FIX(R). Since d E L, r E R’. By our supposition, r E P. We 
have that WL C_ P, hence property J2 is satisfied. 

We now compare the join condition with the independent component and 
information preservation conditions. 

Lemma 9.5 Condition J2 implies condition IC2. 

Proof Left to the reader (see Exercise 9.13). 
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Theorem 9.2 AC1 and AC2 imply Jl and J2, which in turn imply ICl and IC2. 

Proof Suppose AC1 and AC2 hold. Jl clearly holds. To see that J2 holds, 
pick any instance r E L, and let t = w(d) for d E L. Since X(T) = d < L, 
AC2 requires I to be in P. Hence WL E P and J2 is satisfied. The other im- 
plication follows from Lemma 9.5. 

To compare AC1 and AC2 to Jl and J2, we note that both require P E 
FIX(R) (LJ condition), but AC2 restricts L’ = P, where Jl and J2 allow P to 
be properly contained in L’. In Figure 9.12, the pair of instances s, s ’ could 
not exist under either pair of properties, but Jl and J2 allow the pair of in- 
stances r, r ‘, while AC1 and AC2 do not. 

Figure 9.12 

Example 9.6 shows that the independent components condition does not 
imply the join condition. The next example gives a database scheme and set 
of instances that satisfy the join condition, but not the information preserva- 
tion condition. 

Example 9.8 Let U = ABC, let R be the database scheme {AB. BC} and 
let P = SAT(B*A). L consists of all pairs of completely joinable relations 
over AB and BC. B-++A is another statement of *[A& BC], so R satisfies 
property LJ, hence property Jl. The join of two relations over AB and BC 
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always satisfies B-HA, so property J2 holds. However, property A2 is 
violated, since for any instance Y E Q, r(t) E L, and P # Q. 

We now look at what property we can add to the independent components 
condition to get equivalence to the join condition, and also what property we 
can add to the join condition to get equivalence to the information preserva- 
tion condition. 

How can property IC2 hold while property J2 fails? This situation can only 
happen if there is some instance r in P such that mn(r) ct P. We formalize 
this property. 

Definition 9.11 Database scheme R preserves P if the following property 
holds: 

PR. For every instance r in P, m&) E P. That is, mRP E P, where 
m&P = w7rP. 

Lemma 9.6 Property J2 implies property PR. 

Pmof Left to the reader (see Exercise 9.16). 

Property PR does not imply property 52, however. 

Example 9.9 Let U = ABC, let database scheme R = (All, BC}, and let 
P = SAT({A+B, B-HA}). Since P S SAT(B-++A), mRP = P, SO PR is 
satisfied. Consider the database d = { rl, r2}, where relations ri and r2 are 
given in Figure 9.13. Database d is in L, since rl = x,&i) and t-2 = 
rBc(s2), where s1 and s2 are the instances from P shown in Figure 9.14. We 
see that w(d), shown in Figure 9.15, is not in P (why?), so property J2 is 
violated. 

rl(A B) f-2@ a 
1 3 3 5 
1 4 3 6 
2 4 4 5 

4 6 
4 7 

Figure 9.13 

. . .- 
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~164 B Cl 
1 3 5 
1 4 5 
2 4 5 

4A B Cl 
1 3 5 
1 3 6 
2 4 5 
2 4 6 
2 4 7 

Figare 9.14 

w(d)(A B Cl 

1 3 5 
1 3 6 
1 4 5 
1 4 6 
1 4 7 
2 4 5 
2 4 6 
2 4 7 

Figure 9.15 

Lemma 9.7 Properties PR and IC2 imply property J2. 

Proof Let r be any instance in WL and let d be the database in L such that 
Y = w(d). By IC2, P = L, so d 6 71-p. Let r ’ be an instance in P such that 
r(r ‘) = d. By PR, mn(r ‘) E P, but mn(r ‘) = r, so, r C P. Hence WL 5 P 
and J2 is satisfied. 

Corollaxy Properties ICl, IC2, and PR hold if and only if Jl and J2 hold. 

We can replace ICl and PR in the corollary above by property LJ. 

Lemma 9.8 Property LJ implies property PR. 

Proof FIX(R) 1 P implies q&P) = P, which in turn implies mR(P) E P. 

Theorem 9.3 Properties LJ and IC2 hold if and only if properties Jl and 
52 hold. 

Proof By Lemma 9.2, LJ implies ICl; by Lemma 9.8, W implies PR. 
Therefore, by the corollary to Lemma 9.7, LJ and IC2 imply the join condi- 



Notions of Adequate Representation 207 

tion. From Theorem 9.2, we know that Ji and J2 imply IC2. Jl and 52 also 
imply LJ (see Exercise 9.17), so they imply LJ and IC2. 

We now look at what need be added to make the join condition equivalent 
to the information preservation condition. 

Definition 9.12 Database scheme R satisfies property S if 

S. FIX(R) 2 I;‘. 

Theorem 9.4 Properties Jl, J2, and S hold if and only if properties AC1 and 
AC2 hold. 

Proof From Theorem 9.2, we know AC1 and AC2 imply Jl and J2. By 
Lemma 9.1, AC2 requires L’ = P. By Lemma 9.3, AC1 and AC2 require 
property IJ, so P G FIX(R). Thus we have L’ = P 5 FIX(R), which im- 
plies property S. 

We now show J2 and S imply AC2. Let r be an instance in L’, where x(f) 
= d, ford E L. By J2, W(d) E P. But S says that mu(~) = r, so T = W(d) E P. 
Therefore, L’ G P. Since we always have L’ 1 P, L’ = P and AC2 is 
satisfied. 

The difference between the join condition and the information preserva- 
tion condition is whether we require only FIX(R) 2 P or the stronger condi- 
tion FIX(R) 2 L’ (see Exercise 9.18). We shall be most interested in cases 
where P is described by some set of constraints C. In that case, FIX(R) 2 P 
is the same as C K *[RI, which we have means to test if C is FDs and JDs. 
The condition FIX(R) 2 L’ is the same as n-C I= *[RI. We use s-C to denote 
the “projected constraints” of C on R: the constraints that necessarily hold in 
the various projections of an instance r onto the schemes in R, where r is in 
SAT(C). That is, s-C is the set of constraints such that L’ = SAT(K). 
SAT(n-C) is exactly those instances I such that r(r) E L. One problem, which 
we examine later, is that the constraints in n-C are not necessarily of the same 
type as those in C, or even embedded versions thereof. There can be prob- 
lems with testing nC e *[RI, therefore. The other part of testing the join and 
information preservation conditions is determining whether WL c P (see 
Exercise 9.18). In terms of projected constraints, we want to test Rc U 
{*[RI) K C. For information preservation, the test reduces to s-C I= C, by 
Theorem 9.4. We shall return to testing the various representation properties 
when P is defined by constraints in Section 9.3. 
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9.2 DATA-EQUIVALENCE OF DATABASE SCHEMES 

In Chapter 8 we saw one notion of equivalence of database schemes R and S 
relative to a set P of instances, namely TR = p Ts. That is, R and S are 
equivalent on P if TR(t) = Ts(r) for all instances I in P. In Chapter 8 we 
were mainly concerned with testing whether TR = r TI, where TI is a tableau 
for the identity mapping. This notion of equivalence says schemes R and S 
are equivalent on P if their respective project-join mappings behave identi- 
cally on P. That is, for any instance r E P, decomposing r onto R involves the 
same loss of information as decomposing r onto S. 

Suppose, however, we are only interested in those instances where no infor- 
mation is lost through decomposition. We may only care that R and S can 
faithfully represent the same set of instances in P, but not that R and S may 
mangle instances differently that are not represented faithfully by decompo- 
sition. We present this weaker notion of equivalence in this section. 

Definition 9.13 Given database scheme R and a set of instances P, theftied 
points of P under R, written K!&(R), is EI’IX(R) n P. 

Definition 9.14 Database scheme R and S are data-equivalent on P, written 
R = p S, if FIXp(R) = I;lx,(S). That is, R and S can faithfully represent the 
same subset of instances in P. When proving data-equivalence, we shall 
generally show two containments. Note that the containment HXp(R) c 
FIxp(S) holds exactly when the containment J’IXp(R) E FIX(S) holds. 

Lemma 9.9 TR = p Ts implies R = p S. 

Proof Left to the reader (see Exercise 9.19). 

The converse of Lemma 9.9 does not hold, as we expect. 

ExampIe 9.10 Let U = ABCD, let R be the database scheme {ABC, CD } 
and let S be the scheme { AB, BCD }, If P consists of just the two instances r 
and s in Figure 9.16, then R and S are data-equivalent on P. Instance r 
decomposes losslessly onto both R and S, while s has a lossy decomposition 
onto both schemes. However, TR and Ts are not equivalent on P, because 
s ’ = T&) is not the same as s” = T&), as shown in Figure 9.17. 

Definition 9.15 Given database scheme R, the preserved set of P under R, 
denoted PRESS, is {r E P 1 m&) E P>. 
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r(A B C D) s(A B C D) 

1 3 5 7 1 3 5 7 
1 3 6 8 2 3 6 7 
2 4 6 8 2 4 6 8 

Figure 9.16 

s’(A B C D) s”(A B C D) 

1 3 5 7 1 3 5 7 
2 3 6 7 1 3 6 7 
2 4 6 7 2 3 5 7 
2 3 6 8 2 3 6 7 
2 4 6 8 2 4 6 8 

Figure 9.17 

Using this definition, R preserves P can be written PRESP(R) = P. We 
also note FIX*(R) E PZ?ESp(R) (see Exercise 9.21). 

Theorem 9.5 Let R and S be database schemes and let P be a set of in- 
stances. Assume P’ is any set of instances such that 

Then FIXP(R) C FIX(S) if and only if ms(r) E mu(~) for all r in P ‘. 

Proof (only if) Let r be an arbitrary instance in P ‘. Since I E PRESp(R), 
instance s = mu(~) is in P. Project-join mappings are idempotent, so s is in 
FIX(R) and hence in FIX,(R). By assumption, s is then in FIX(S). Now r E s, 
so ms(r) C ms(s). Since s is in FIX(S), ms(s) = s. Combining equalities 
and containment we have ms(r) E mu(~), as desired. 

(if) Let r be an instance in I;IX,(R), which implies r E P ‘, By assump- 
tion, ms(r) C mn(~). Now ma(~) = r and ms(r) 2 I, so m&) = r and I E 
FIX(S). Hence FIXI G FIX(S). 

Corollary The following are equivalent: 
1. FIX,(R) E FIX(S). 
2. Ts LK TR for K = FIX,(R). 
3. Ts GK TR for K = PRESP(R). 

Proof Left to the reader (see Exercise 9.22). 
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CorolIary If R and S are database schemes where R preserves P, then 
FIXp(R) C FIX(S) if and only if Ts c p TR. 

Proof Immediate from the equivalence of 1 and 3 in the last corollary. 

We have stumbled onto the result that data-equivalence and regular 
equivalence are the same when P is preserved. 

Theorem 9.6 If R and S are database schemes that preserve P, then R = p S 
is equivalent to Tu = p Ts. 

We know that both the join and information preservation conditions re- 
quire property PR. Thus, if we choose either condition as a notion of ade- 
quate representation, data-equivalence and regular equivalence are the same 
for adequate database schemes. 

9.3 TESTING ADEQUATE REPRESENTATION AND 
EQUIVALENCE UNDER CONSTRAINTS 

We have seen that when the mapping from databases in L to relations in Q is 
the join, then the independent component and join conditions are equivalent. 
The difference between the join and information preservation conditions is 
whether we require P E FIX(R) or the stronger condition L’ E FIX(R). If 
P is defined as SAT(C) for a set of constraints C, the difference is whether 
C I= *[RI or xC L *[RI. Recall that xC is our informal notation for thepro- 
jetted constraints of C on R: the constraints that define the set L’. That is, 
xC is the set of restrictions that necessarily must apply to r&) for 
r 6 SAT(C) and for all relation schemes R E R. 

We are defining xC! in a backwards manner. We want xC to be a set of 
constraints such that L’ = .SA T(n-C). One problem with providing a formal 
definition for nC is that xC cannot necessarily be expressed by the same types 
of dependencies as those in C. There often are dependencies in xC of the 
same type as those in C (see Exercises 9.10 and 9.24), but there can be 
dependencies of other types. 

Example 9.11 Let U = ABCDE, let R = ABDE and let P = SAT(A+E, 
B-E, CE+D }). For any relation r E P, the set of FDs xn(r) must satisfy is F 
= {AC-D, BC-+D}. Consider the relation s in Figure 9.18. Relation s E 
SAT(F), but s is not the projection of any instance in P. (Add an E-column 
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to s and try chasing under the FDs of P.) It turns out that any relation r&t) 
for t E P must satisfy the curious dependency: 

If tl, t2, and t3 are tuples in 7rR(r) such that 

1. tl(A) = t3(A) 
2. t,(C) = Q(C) 
3. tz(B) = t3(B) 

then 
4. tr(D) = Q(D). 

\ 

This dependency is not equivalent to any set of FDs. Note that s does not 
satisfy the dependency. 

s(A B C D) 
1 3 5 7 
2 4 5 8 
1 4 6 8 

Figure 9.18 

Example9.12 L&U =ABCD, let R =ABC andlet P = SAT({A-++BC, 
B-AC, CD ++A 1). Any relation Q(T) for r f P need only satisfy trivial 
MVDs. However, relation s in Figure 9.19 is not the projection of any in- 
stance in P. (Add a D-column and chase under the MVDs of P.) 

s(A B C) 
1 3 5 
1 4 6 
2 4 5 

Figure 9.19 

9.3.1 P Specified by Functional Dependencies Only 

We see there are problems with specifying n-C, and hence with testing 
FIX(R) z? L’. In Chapter 14 we shall examine classes of dependencies that 
can be used to characterize n-C when C consists of FDs and IDS. However no 
decision procedure for implication exists for those more general dependency 
classes. When C is just FDs, even though we cannot express nC with just 
FDs, the set of FDs in n-C suffices for our representation conditions. 

Theorem 9.7 If P = SAT(F) for a set P of FDs, then the independent com- 
ponents, join and information preservation conditions are equivalent. 
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Proof By Theorem 9.2, it suffices to show that if AC1 or AC2 fails, then ICl 
or IC2 fails. Clearly, if AC1 fails, then ICl fails. 

Suppose AC2 fails: L’ # P. Let r be an instance in L’ - P. We may 
assume r has only two tuples (see Exercise 9.27). Instance P must violate some 
FD implied by I;; say X-A. Since r has but two tuples, they must agree on X 
and disagree on A. Thus r has one value in each of the X-columns and two 
values in the A-column. 

If IC2 fails, we are done. Suppose it holds. Let d = n(r); d must be in L. 
By IC2, there is an instance r ’ in P such that dr ‘) = d. Instance Y ’ can only 
have a single value in each of its X-columns. (Why?) However, r ’ must have 
two values in its A-column, and therefore violates X+A. Hence r ’ E P and 
IC2 must fai1. 

We now consider testing the join condition (and hence the other two 
representation conditions) when P = SAT(F) for a set F of FDs. We shall 
test properties LJ and J2 (see Exercise 9.28). W translates to F I= *[RI, which 
we know how to test using the chase. We consider testing 52, which is 
MLEP. 

Definition 9.16 For a database scheme R and a set F of FDs, F restricted 
to R, denoted Fn, is the set of FDs in F+ that apply to any relation scheme R 
in R. 

Example 9.13 Let U = ABCD, R = {ABC, CD} and F = {AD-C, 
CD-A, B-D}. The only nontrivial FDs in FR are BC*A, BC+AB, 
BC+AC, BC+ABC, AB-+C, AB+AC, AB--+BC and AB+ABC. 

Recall that F is enforceable on R if FR = F. 

Lemma 9.10 Let P = SAT(F) for a set F of FDs. Property 32 holds if and 
only if F is enforceable on R. 

Proof We leave the if direction as Exercise 9.30 (only if). We shall show 
that if F is not enforceable on R, then there is a database d in L such that 
w d is not in P. Let X+A Y be an FD in F such that X+A is not in G=FL. 
Let Z be the closure of X under G. Clearly A rC Z. We construct an instance rx 
in Q as follows. Instance rx has two tuples: to, which is 0 everywhere, tZ, 
which is 0 on Z and 1 elsewhere. 

Obviously, rx is not in P, since it violates F. Let d = r(rx). The instance 
W(d) is not in P either, since w(d) 2 rx (see Exercise 9.26). We now show 
that each relation in d is the projection of some instance in P. Let R be any 
relation scheme in R. We define an instance rR in P where x&+X) = xR(rR). 
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Let rR contain two tuples: to as in rx, and tl, which is all l’s except for Q’s in 
(Z n R)+ under F. Instance rR cannot violate any FD in F, or else (Z n R)+ 
would be incorrectly defined. To show that r&-X) = Q(Q), we must show 
(Z fl R)+ f-l R = Z n R. (Those sets are the columns where Q(T~) and 
~j&-~), respectively, contain two symbols.) Suppose B is an attribute that is 
in the first set but not the second. B is clearly in R. Since B E (Z fl R)+, F I= 
ZnR-+B.ButthenFi=Z+B,soB~ZandhenceB~ZflR,acontra- 
diction. We have shown d E L. Since w(d) E P, property J2 is violated, as we 
predicted. 

We saw in Chapter 8 that for a set of FDs F, F I= *[RI can be tested in time 
polynomial in the space required to write F and R. We now present a poly- 
nomial-time test for F being enforceable on R. This test will give us a poly- 
nomial-time test for the join condition when P = SAT(F). 

The Algorithm 9.1 computes X+ under FR. The closure taken in line 5 is 
the closure under F. 

Algorithm 9.1 PCLOSURE 
Input: A set of FDs F over U, a database scheme R over U and a subset X 

of u. 
Output: The closure of X under FR. 
PCLOSURE(F, R, X) 

1. begin 
2. Y:=x; 
3. while there are changes to Y do 
4. for each R E R do 
5. Y:= ((Y n R)+ n R) u Y; 
6. return (Y); 
7. end. 

Example 9.14 Let U = ABCDE, R = {AB, BC, CDE} and F = {AAD, 
D-B, B-tCE}. PCLOSURE(F, R, A) is ABC. Note that A” under F is 
ABCDE. 

Theorem 9.8 PCLOSURE(F, R, X) returns X+ under FR. 

Proof Let Y be the set in the algorithm. Y is initially a subset of X+, and re- 
mains so, since the FD being implicitly used in line 5 is (Y fl R) --t (Y fl R)+ 
fl R, which is in FR (the closure (Y fl R)+ being taken under F). We want 
to show now that every attribute of X’ is eventually added to Y. 

Let H be an FR-based DDAG for X+X+. Assume that the successive sets 
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of node labels during the construction of H are ZO, Z1 , Z2, . . . , Z, , where 
X = Za and X+ = Z,. We claim Zj E Y at the end of the ith iteration of the 
while-loop. Clearly Z0 E Y. Suppose to get from Zi to Z,+r the FD V-t W is 
applied. Since V+ W is in Fu, there is some relation scheme R E R such that 
VW E R . Moreover, V C Zi, so V s Y at the start of the i + lst iteration. 
When R is reached in the for-loop, V C Y fl R, so W C (Y fl R)+ n R, 
since F K FR. Therefore, all of W is added to Y if it is not there already, and 
whatever attribute A E W was added to Zi to get Zi+l is also added to Y. 
Hence, when the algorithm terminates Z, E Y, and so Y = X+. 

Lemma 9.11 PCLOSURE has time complexity O((U( - (RI - (IF;1 1) where 
I I FI I is the space required to write all the FDs in F. 

Proof The while-loop in line 3 can execute no more than IUJ - 1 times, 
since Y can grow no larger than U. The for-loop at line 4 executes I R I times 
for each iteration of the while-loop. The dominating factor in the computa- 
tion of line 5 is determining (Y fl R)+, which we can do in time linear in 
IjFII. Hence we have atotal time complexity of O(IUI-IRI.IIFll). 

Theorem 9.9 The join condition can be tested in time polynomial in I W I, 
IRI, and I IFI I when P = SAT(F) and F is all FDs. 

Proof By our previous discussion, property LJ is testable in polynomial 
time. From Lemma 9.10 we know property J2 holds if F = FR. We need only 
test FR I= F, which we can do using PCLOSURE for each FD X+ Y in F to 
see if X+ under FR contains Y. This test involves IFI calls to PCLOSURE, 
which is certainly of polynomial time-complexity. 

When F = Fu, we can find a cover G for Fu that applies to R in time 
polynomial in the input (see Exercise 9.32). However, when F + FR, it is an 
NP-complete problem to determine for a set G of FDs that applies to R 
whether FR = G, given R, F and G. 

The next two examples show that the properties LJ and 52 are indeed in- 
dependent when P is described by FDs. 

Example 9.15 Let U = ABC, R = {AC, AB} and P = SAT((A+C, 
B+C 1). LJ is satisfied, because the FD A -+ C holds. 52 fails, because FR # 
B+C. so F is not enforceable on R. 

Example 9.16 Let U and P be the same as in Example 9.15, but now let 
R = (AC, BC}. F applies to R, so it is enforceable, and J2 is satisfied. How- 
ever, now LJ fails, since {A+C, B-+C} @ *[AC, BC]. 
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9.3.2 P Specified by Functional aud Multivalued Dependencies 

In the last subsection we saw how to test the join condition when P is deter- 
mined by a set of FDs. We now work on a test for that condition when P = 
SAT(C) for a set C of FDs and MVDs and R is a 4NF database scheme. We 
need to test the LJ and 52 properties. Testing LJ is done by determining 
whether C I= *[RI, using the chase. For 52, we want to determine whether 
w L C P, which is & U {*[RI } I= C in terms of dependencies. We have 
seen there are problems in testing implications by n-C. We shah show that 
when R is in 4NF, it suffices to test FR U {*[RI } I= C, where F is the set of 
FDs implied by C. 

Lemma 9.12 Let R be a 4NF database scheme and let P = SAT(C) for C a 
set of FDs and MVDs. Let F be the set of FDs implied by C, and let X+A be 
an FD in F that is not implied by FR and *[RI. Then X+A is not implied by 
z-C and *[RI. (That is, some instance in w L violates X+A .) 

Proof In this proof, for any set of attributes V c U, Q, is the instance with 
one tuple of all O’s and a second tuple that is all O’s on V and l’s elsewhere 

We may assume that X = X+ under FR and *[RI, since FR and *[RI do 
not imply X+ +A and if instance r in w I, violates Xf +A, it also violates 
X+A. Let rx be defined as above, and let d be the database n(r&. Since d 2 
rx and rx violatesX-+A, so does d. We need to show that w(d) is in wL, so 
we show that d is in L. To do so, we show that every relation in d is the projec- 
tion of an instance in P. 

Let R be any relation scheme in R. Let Y = R n X and let r* = 
chasec(rr). (Treat the O’s as distinguished variables and the l’s as nondis- 
tinguished variables.) The set of columns in r* that are all O’s will be Y+ 
under C. Now Y+ n R = X n R, ,for if B is an attribute of B in Y+ then 
Y-B is in F and hence in FR, so B E X. 

Suppose x&x) # I. There must be tuple t in R* that is 0 exactly on 
W, where W n R z X n R = Y. By Theorem 8.12, C I= Y- W, so Y-R 
fl W holds on R (see Exercise 9.23). Now C g Y+ W r7 R, or else W fl R 
E X. Therefore C v Y-R. We see that R is not in 4NF, a contradiction. 
The projections above must be equal, and hence d E wL. 

Lemma 9.13 Let R be a 4NF database scheme, let P = SAT(C) for C a set 
of FDs and MVDs, and assume property LJ holds. Let F be the set of FDs 
implied by C, and let X - Y be an MVD implied by C that is not implied by 
FR and *[RI. Then X-Y is not implied by xC and *[RI. 
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Proof We shall assume Y is minimal with respect to the hypotheses given. 
That is, for no proper subset Y’ of Y does C I= X-Y and Fn U {*[RI} I# 
X-++ Y’. We also assume that X is maximal with respect to the hypotheses. 
First, X = X+ under FR and *[RI, as in the proof of Lemma 9.12. Second, 
fornoZs U-XYdoesC ~XZ-++YwhileFn U (*[RI} t#XZ*Y. 

Let rx be as defined in the proof of Lemma 9.12. Instance rx clearly 
satisfies FR; we claim it also satisfies *[RI. Suppose not. Chasing rx under Fn 
and *[RI must yield new tuples. Let t be one of these new tuples; say that XW 
is the set of attributes where t is 0 and X is disjoint from W. By Theorem 
8.12, “[RI t= X - W. By property IJ, C I= *[RI, so C I= X- W. Surely Y 
# W. If Y E W, then C ti XZ-++ Y, where Z = U - WXY. Z is nonempty 
because X W # U. Fn and *[R] cannot imply XZ* Y, since XZ++ Y and 
X+ W imply X -Y. (This implication may easily be tested using the 
chase.) So Y C W leads to a contradiction to the maximality of X. If W and 
Y are disjoint, then W ’ = U - WX contains Y and *[R] != X- W ’ , 
leading to the same contradiction. 

The only possibility left is that W partially intersects Y. Let Y’ = Y - W 
and Y” = Y fl W. By projectivity, C b {X-Y’, X-Y”}. Fn and *[RI 
cannot imply both X++ Y’ and X-Y”, since these two MVDs imply 
X-Y by additivity. This situation contradicts the minimality of Y. We see 
that chasing rx under *[RI adds no new tuples, hence rx satisfies Fn and *[RI. 

We now only need to show that the database d = ?F(Q-) is in L, since then 
W(d) = rx will be in W L. Since X = X+ under Fn and *[RI, the proof of 
Lemma 9.12 suffices to show d is in L. 

We now have the tools for testing the join condition for a 4NF database 
scheme R and a set of instances P defined by a set C of FDs and MVDs. First 
we test property LJ, C I= *[RI, using the chase. Then we must find the set P 
of FDs implied by C, or some cover for F. Unfortunately, no methods are 
known for finding F other than straightforward enumeration and testing. We 
next need to find Fn. By Lemmas 9.12 and 9.13, we can then check property 
J2 by testing FR U (*[RI } I= C using the chase. This process is nowhere near 
as efficient as the test in the case that C is only FDs. However, no test at all is 
known for the join condition when C is FDs and JDs and R is arbitrary. 

Example 9.17 Let U = ABCDE, R = {ABC, BCD, DE] and let C = 
{ D+E, BC-A, AD++E }. If F is the set of FDs implied by C, then 
{D-+E) is a cover forF R. We see that C r= *[R] and that FR and *[R] imply 
C, so the join condition is satisfied in this case. 
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Example 9.18 Let U = ABCDE, R = {ABC, BCD, DE} and let C = 
{D-E, BC-wA, A-E}. Again, {D+E} is a cover for FR, but FR and 
*[R] do not imply A *E, so the join condition does not hold here. 

9.3.3 Testing Data-Equivalence 

When P = SAT(C), and R and S are database schemes, in order to test R 
= r S, we must determine whether FIX,(R) = FIXc(S). The equality holds, 
of course, when there is containment in both directions. As previously noted, 
FIXc(R) G FIX&) exactly when FIXc(R) E FIX(S). That containment 
holds if and only if C U {*[RI } I= *[S], which we can test with the chase 
when C is FDs and JDs. 

When R preserves SAT(C), a corollary to Theorem 9.5 tells us that 
FIXc(R> E FIX(S) is equivalent to Ts c c TR. The folIowing lemma can be 
useful for testing that containment. 

Lemma 9.14 Let R and S be database schemes, let C be a set of FDs and 
JDs and let Ti = chasec(TR). Then TR L c Ts if and only if Tg 5 Ts. 

Proof Left to the reader (see Exercise 9.34). 

Lemma 9.14 is useful because Ti c Ts is quite easy to test. We need to 
find a containment mapping from Ts to Tg in order for the containment to 
hold. Since Ts has no duplicated nondistinguished variables, we need only 
check that for each row w in Ts there is a row w ’ in T$ that subsumes w. 

Example 9.19 Let U = ABCDE, let R = (ABC, BCD, DE), let S = 
{ACE, BCD >, and let P = SAT(C) where C = { B+E, D-++B ). Tg = 
chases and Tg = chasec(Ts) are shown in Figures 9.20 and 9.21. There 
is a containment mapping from Ts to Tg, : “n 5 o Ts. However, there is not 
a containment mapping from TR to Tz, so R #c S. Actually, the simplified 
test of Theorem 9.5 for R = c S does not apply here, since neither R nor S 
preserves SAT(C). However, the negative result carries through (see Exercise 
9.35). 

T;(A B C D E ) 

;: :: 
a3 bl a5 

a5 
b5 b6 ;lb: z: a5 

b3 b6 a3 a4 % 
b5 a2 b7 a4 a5 

Figure 9.20 
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T;(A B C D E) 

bl b2 ~5 
ii: a2 IZi a4 b4 

Figure 9.21 

In the case that R and S preserve SAT(C), we know R 2: c S is equivalent 
to TR E c Ts. If C is a set of FDs only, then we can calculate the chases of TR 
and Ts in time polynomial in the space required to represent TR, Ts, and C. 
Let Ti and T,* be those two chases. We can test Tz L Ts and TR I Tt, and 
hence TR = c Ts, in polynomial time, because containment mappings are 
easy to find in these cases, as we stated before. The next result gives us a 
polynomial time test for whether a database scheme R preserves a set of FDsF. 

Definition 9.17 Let T be a tableau. T embeds an FD X + Y if some row w in 
T is distinguished on at least its XY-columns. T embeds a set of FDs F if T 
embeds every FD in F. 

Evidently, a set of FDs F is enforceable on database scheme R if and only if 
TR embeds some cover G of P. 

Exampb 9.20 The tableau T in Figure 9.22 embeds the set of FDs F = 
{C-++AB,E-+B]. 

T(A 23 C D E ) 

al a2 a3 bl bz 

b3 a2 b4 a4 b5 

a1 a2 a3 b6 a5 

Figure 9.22 

Theorem 9.10 Let R be a database scheme and let F be a nonredundant set 
of FDs. R preserves SAT(F) if and only if Tg = chased TR) embeds F. 

Proof Suppose R preserves SAT(F). We show a property of Tg. If w is a 
row of Tg and X is the set of columns where w has a distinguished variable, 
then X = X+ under I;. Suppose X # X+. Let A be an attribute in X+ - X. 
We know I; I= X+A, Also, Tz as an instance is in SAT(F) so mR( Tg) is in 
SAT(F), since R preserves SAT(F). But & Tg) contains both w and wd, 
the row of all distinguished variables. (Why?) Now w(X) = wd(X), but 
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w(A) # w&i), which is a violation of X-A. We conclude from this con- 
tradiction that X+ = X. Furthermore, it can be shown that Ti contains no 
duplicated nondistinguished variables (see Exercise 9.36). 

Let X+Y be an arbitrary FD in F. We want to show that X+Y is embed- 
ded in Tg. Let wx be a row with distinguished variables in exactly the 
X-columns, and nondistinguished variables that do not appear elsewhere in 
T& Let T be the tableau Ti with row wx added. Let T* = chaseF(T) and let 
W: be the row in T* that corresponds to wx in T. Let wg be distinguished in 
exactly the Z-columns. We claim Z = X +. By the argument in the previous 
paragraph, Z = Z+ , soZ 3 X+. By Exercise 9.37, if A E Z, then I; K X+A. 
So Z C X+ and hence Z = X+ . 

Furthermore, we claim that T* is just T with wx changed to w$. That is, 
none of Tg in T changes in the computation of chaseAT). Consider the first 
F-rule applied in computing chaseF( T). Say it is the F-rule for W+B in F. 
Row wx must be involved in the application, since Ti satisfies W-tB. For 
W+B to be applicable to T, W E X and there must be a row w in Tg with 
w( IV) = wxf W). We conclude that w is distinguished on all the W-columns, 
Since the set of distinguished columns of w is closed under P, w is 
distinguished on B as well. Thus the application of the F-rule for W+B to T 
changes w,(B) to a distinguished variable. The rows of Tg in T are un- 
changed. The same argument then applies to the second application of an 
F-rule, the third application, and so forth. Therefore, none of the rows of Tg 
change during the computation of chuseF( T). 

We know that wx ends up as wz in T*, where w$ is distinguished in exactly 
the Xf columns. F is nonredundant, so there is a nonempty subset Y’ of Y 
such that X+ Y’ is not implied by P - {X+ Y}. At some point in computing 
chaseF(T), then, we have to use an F-rule for X-+A, for some A E Y’, in 
order to distinguish wx on Y ‘. By the results of the previous paragraph, there 
is some row w in Tg that is distinguished on its X-columns. Since the set of 
columns where w has distinguished variables is closed under P, w is 
distinguished on its Y-columns as well. Hence Tg embeds X+Y. 

Now suppose Tg embeds F. Let X* Y be an FD in F. Let r be an instance 
in SAT(F). Since r satisfies X+Y, so does T$(r) (see Exercise 9.39). Fur- 
ther, T:(r) = TR(r) = mn(r), so r.q(r) satisfiesX-+Y. We conclude that R 
preserves SAT(F). 

Example 9.21 Let R be the database scheme {ABC, CD, DEI} and let I; = 
{AB+C, C-tD, D-*A, ADE-+I}. F is nonredundant. Tg = chase&TR) is 
shown in Figure 9.23. Tg embeds F, so R perserves SAT(F). Note, however, 
that F is not enforceable on R (D-A is the problem) nor does F t= *[RI. 
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T;(A B C D E I ) 

al ~2 a3 a4 b2 h 
al b5 a3 a4 b6 b7 
al bg blo a4 as a6 

Figure 9.23 

The final result of this chapter relates preservation of a set of FDs to the 
fix-points of a database scheme that naturally arises from the set. 

Definition 9.18 Let P be a set of FDs, and let G be a nonredundant cover 
for F. The intended database scheme of F, which we denote as RF, is 

(X+ 1 X-‘Y E G}. 

The definition does not depend on the choice of G (see Exercise 9.40). 

Example 9.22 Let F = (AB+C, C-+E, D+A, ADE+I} as in Example 
9.21. We have (AB)+ = ABC, C + = ACD, D+ = AD, and (ADI?)+ = 
ADEI, so RF = (ABC, ACD, AD, ADEI}. 

In the case that *[RF] is a full JD (mentions all the attributes of U), we 
have the following result. 

Theorem 9.11 Let R be a database scheme, and let F be a set of FDs. Sup- 
pose *[RF] is a full JD. Then HXAR,) c FIX(R) if and only if R preserves 
SAT(F). 

Proof (if) By Exercise 9.36, chaseF( TR) = Ts for some database scheme S. 
Furthermore, from the proof of Theorem 9.10, for any relation scheme S E S, 
S = S+. Let G be a nonredundant cover for F. Ts embeds G by Theorem 
9.10. For any FD X-+Y in G, there is a relation scheme S in S such that 
XY E S. Since S = S+, X+ E S+. We conclude S L RF. Therefore, 
FIX(S) 2 FIX(RF), and so FIXF(S) 1 FIXF(RF). By the definition of S, 
FIXA = FlX#3). We see that FIXF(RF) c FIX(R). 

(only if) Obviously, RF preserves SAT(F). By the second corollary to 
Theorem 9.5, TR Ed TRF. We know m&J is in SAT(F) for any instance r 
in SAT(F). Also, mZR(r) E mnJr), so by Exercise 9.26, mR(r) is in SAT(F). 
Hence R preserves SAT(F). 
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Example 9.23 Let R = {ABC, CD, DEI) and let F = {AB-+C, C+D, 
D+A, ADE+I}, as in Examples 9.21 and 9.22. We saw in Example 9.22 
that RF = (ABC, ACD, AD, ADEI}. Tableau T in Figure 9.24 is the chase 
of TR under F and *[RF]. T contains the row of all distinguished variables, so 
I; and *[RF] imply *[RI. Hence FIXAR,) c FIX(R) and R preserves I;, as 
we previously determined in Example 9.21. 

T(A B C D E I) 

al a2 a3 a4 b2 b3 
al b5 a3 a4 b6 b7 
ai b9 ho a4 a5 a6 

al a2 a3 a4 a5 a6 

al b5 a3 a4 a5 a6 

al a2 a3 a4 b6 b7 

al b5 a3 a4 b2 b3 

al h ho a4 b6 b7 

al b9 ho a4 b2 b3 

Figure 9.24 

9.4 

9.1 

9.2 

9.3 

9.4 
9.5 
9.4 

9.7 

9.8 
9.9 
9.10 

EXERCISES 

Suppose all domains for attributes in U are finite. Compare the cardi- 
nalities of Q, P, M, aQ, TP, L and wL. 
Prove that nQ is the set of all databases over scheme R where the rela- 
tions join completely. 
Show that for arbitrary n L 3 there is always a set of n relations such 
that any n - 1 join completely, but all n do not. 
Show that the containment L 2 ?rP is proper. 
Prove that condition IC2 is equivalent to ?rP = L. 
Show that database scheme R decomposes P into independent com- 
ponents, where R and P are given in Example 9.6. Describe the in- 
verse mapping to ?TR. 
Give an example of a database scheme R and an infinite set of in- 
stances P such that R satisfies AC1 but not AC2. 
Show that the condition L = rP does not necessitate AC2. 
Show that AC1 and LJ can be inequivalent when AC2 does not hold. 
Let X, Y, and 2 be subsets of U. Show that for an instance I E Q, r 
satisfies X+ Y if and only if ?r xuz(r) satisfies X-, Y. Show that the 
statement is false if X+ Y is replaced by X- Y. 
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9.11 
9.12 
9.13 
9.14 

Show that for any instance r E Q where x(r) = d, wd 1 r. 
Show that the join condition requires w to be the inverse of T on P. 
Prove Lemma 9.5. 
Prove that given condition Jl, FIX(R) n L’ C P implies FIX(R) n 
L’ = P. 

9.15 
9.16 
9.17 

9.18 

Show that ICl and IC2 do not require condition LJ. 
Prove Lemma 9.6. 
Show that conditions LJ and 52 hold if and only if conditions Jl and 52 
hold. 
(a) Show that information preservation is equivalent to property 52 

and FIX(R) 3 I,‘. 
(b) Show that the join condition is equivalent to property J2 and 

9.19 
9.20 

9.21 

9.22 
9.23 

FIX(R) 2 P. 
Prove Lemma 9.9. 
Prove that R = r I is equivalent to TR = r T,, where I is a database 
scheme containing U as the only relation scheme. 
Show that HXr(R) is contained by PRESp(R), and that the contain- 
ment can be proper. 
Prove the first corollary to Theorem 9.5. 
Show that if instance r E P satisfies the MVD X-Y, then an(r) 
satisfies the MVD X- Y n R if X C R. 

9.24* Characterize the join dependencies that must hold in xR(r) when in- 
stance r satisfies some join dependency *[S]. 

9.25 In Example 9.12, find a data dependency that 7rR(r) must satisfy if r is 
in P, but which s violates. 

9.26 Show that if r is an instance violating a set of FDsF, then any instance 
containing r violates F. Show that if r satisfies F, then every relation 
contained in r satisfies F. 

9.27 Let P = SAT(F) for a set of FDs F. Show that L’ - P contains an in- 
stance with two tuples. 

9.28 Show properties LJ and J2 are equivalent to the join condition. 
9.29* Characterize when SAT(FR) = SAT(nF) for a set F of FDs over U. 
9.30 Complete the proof of Lemma 9.10. 
9.31 Compute (AC)+ under FR where U = ABCDEI, R = {ABC, CDE, 

AH), and F = {AB-+D, D-I, E+I, BC-+A, I+B}. 
9.32* Find a polynomial-time algorithm that given R and F produces a cover 

G for FR such that every FD in G applies to some relation scheme R E 
R, provided F = FR. Show that your algorithm fails to produce a 
cover for FR when F f FR. (Flow did I know that would happen?) 

9.33 For Example 9.18, exhibit an instance in WL that is not in SAT(C). 
9.34 Prove Lemma 9.14. 
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9.35 

9.36 

9.37 

9.38 

9.39 

9.40 

9.5 

For database schemes R and S, and a set C of dependencies, show that 
TR gcTsimpliesR ccS. 
Let R be a database scheme that preserves SAT(F) for a set F of FDs. 
Show that chuset;( Tn) is Ts for some database scheme S. Describe S in 
terms of R and F. 
Let R be a database scheme and let F be a set of FDs. Prove the follow- 
ing. Let w be a row of TR and let w* be the corresponding row of 
chaseF( TR). If w is distinguished on exactly X and w* is distinguished 
on Y, then F != X+ Y. 
Let R be a database scheme, let F be a set of FDs and let X C U. Show 
that if R preserves SAT(F), then R U {X] preserves SAT(F). 
Let T be a tableau that embeds the FD X-+ Y. Show that for any in- 
stance Y in SAT(X+Y), T(r) E SAT(X+Y). 
Prove that different choices for G in definition of RF do not yield dif- 
ferent sets of attributes. 
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Rissanen [1977] proposed the IC conditions; the AC conditions are from 
Arora and Carlson [1978]. The algorithm for determining enforceability of a 
set F of FDs is due to Beeri and Honeyman [1981], who also show it is NP- 
complete to test if a set G is a cover for the subset of I;+ enforceable on a 
scheme. Beeri and Rissanen [I9801 and Graham [1981a, 1981b] have also 
dealt with equivalence database schemes under constraints and preserving 
dependencies. 

Ginsburg and Hull [I9801 and Ginsburg and Zaiddan [1981] have studied 
the structure of SAT(F) for a set F of FDs. In particular, Ginsburg and 
Zaiddan noted that n#AT(F)) is not necessarily SAT(F ‘) for any set of 
IDS F’ over R. Sadri [1980a] noted the similar situation for IDS. 


