
Chapter 3

MORE OPERATIONS ON RELATIONS

In this chapter we shall study some relational operators that are less elemen-
tary than those in Chapter 2. Some of the operators are generalizations of
those in Chapter 2; others can be shown equivalent to a series of those oper-
ators. These operators, along with a set of relations and constants, will form
a relational algebra. We shall see that we can restrict the set of operators and
still retain the expressive power of relational algebra. Finally, we examine
two operators that, while not part of the algebra, are sometimes useful in
database implementations.

3.1 THE DIVIDE OPERATOR

The divide operator has a rather complex definition, but it does have some
applications in natural situations.

Definition 3.1 Let r(R) and s(S) be relations, with S E R. Let R ’ = R - S.
Then r divided by s, written r + s, is the relation

I ‘(R ‘) = { t(for every tuple t, E s there is a tuple t, E r with
t,(R ‘) = t and t,(S) = ts}.

Relation Y ’ is the quotient of r divided by s. Another way to state the defini-
tion is that I + s is the maximal subset r ’ of TRl (I) such that r ’ W s is con-
tained in r. The join in this case is a Cartesian product. An example should
clarify the definition.

Example 3.1 Table 3.1 is another instance of the relation cer@ed(PILOT
EQUIPMENT) given in Table 2.3. Suppose we want to find those pilots who
can fly all the types of aircraft in some set. Let q (EQUIPMENT) and
s(EQUIPMENT) be as follows:

q (EQUIPMENT) s (EQUIPMENT)
707 707
727
747

25

26 More Operations on Relations

Table 3.1 An instance of the relation
cer.#$eed(PILOT EQUIPMENT).

certified (PILOT EQUIPMENT)
Desmond 707
Desmond 727
Desmond 747
Doyle 707
Doyle 727
Davis 707
Davis 727
Davis 747
Davis 1011
Dow 727

Division can then be used to garner information on what pilots can fly the
types of aircraft in q, or to find what pilots can fly the aircraft in s.

certified + q = q ’ (PILOT) certij?ed f s = s ’ (PILOT)
Desmond Desmond
Davis Doyle

Davis

Division can be expressed in terms of the operators from Chapter 2 (see Exer-
cise 3.3).

3.2 CONSTANT RELATIONS

In discussing join in the last chapter, we showed that the effect of select can
be obtained by join with a constant relation. We have a notation for repre-
senting constant relations directly in expressions. If A1,A2, - - -, A, are dis-
tinct attributes, and ci is a constant from dom(Ai) for 1 I i s 12, then

(cl:Al c2:A2 --- c,:A,)

represents the constant tuple cc1 c2 s s . c,) over scheme Al A2 - - - A,. We
represent a constant relation over scheme Al A2 - . . A, as a set of tuples. Let
cij be a constant in dom(A;) for 1 II i 5 n and 1 I j s k. Then

Renaming Attributes 27

represents the relation we would normally write as

(AI A2 --- A,)
Cl1 c21 --* Cnl

Cl2 c22 *** cn2
.
. .
. .

Clk c2k **’ CiZk

In the case of a single-tuple constant relation, we shall sometimes omit the
set brackets. For a single-attribute tuple, we shall sometimes omit the
wickets (“(*’ and “>“).

A constant relation of any number of tuples and any number of attributes
can be built up from single-tuple, single-attribute constant relations through
join and union.

Example 3.2 The relation shown below

(PILOT EQUIPMENT)
Desmond 707
Davis 707

can be represented as

((Desmond:PILOT) w (707:EQUIPMENT)) U
(<Davis:PILOT) w (707:EQUIPMENT)).

3.3 RENAMING ATTRIBUTES

Consider the relation usedfor in Table 3.2, which tells what plane will be
used for a given flight on a given day. Suppose we want to know all the pairs
of flights that are scheduled to use the same plane on the same day. What we
need is a join of usedfor with itself, but ignoring connections on the FLIGHT
column. We can accomplish this join with a copy of usedfor where FLIGHT
is renamed to, say, FLIGHT2.

To specify such a relation, we introduce a renaming operator 6. Let r be a
relation on scheme R, where A is an attribute in R and B is an attribute not
in R - A. Let R ’ = (R - A)B. Then r with A renamed to B, denoted S,,,
(r), is the relation

r’(R’)=(t’IthereisatupletErwitht’(R -A) =t(R -A)
and t’(B) = t(A)}.

We require that A and B have the same domain.

28 More Operations on Relations

Table 3.2 The relation usedfor, telling what
plane will be used for a given flight.

usedfor(FLIGHT
12
12
13
26
26
27
27

DATE
6 Jan
7 Jan
6 Jan
6 Jan
7 Jan
6 Jan
7 Jan
6 Jan
7 Jan

PLANENUM)
707-82
707-82
707-82
747-16
747-18
747-16
747-2
707-82
727-6

Example 3.3 An expression that denotes the relation with the desired pairs
of flights is

The value for s using usedfor as in Table 3.2 is given in Table 3.3. In Section
3.5.1 we shall see a generalization of the select operator that can be used to
remove the redundancy in relation s (see Exercise 3.7).

Table 3.3 Relation S, showing what
pairs of flights use the same plane.

s(FLIGHT F‘LIGHTZ)
12 13
13 12
12 60
60 12
13 60
60 13
12 12

ii
13
60

26 27
27 26
26 26
27 27

Let r be a relation on R. Let A,) A2, . . . , Ak be distinct attributes in R and
let &, B2, . . . , Bk be distinct attributes not in R - (A1 A2 - - - Ak), where

The Equ&ii Operator 29

dom(Ai) = dom(B;) for 1 5 i I k. We denote the simultaneous renaming of
the attributes Al, AZ, . . . , Ak to Br, Bz, . . . , Bk, respectively, in r by

6 AI,&, . . ., Ak--Bl,&, . ., &(d-

Note that a simultaneous renaming sometimes cannot be written as a se-
quence of single-attribute renamings without introducing another attribute
symbol. The renaming a,,,,,, is an example.

3.4 THE EQUIJOIN OPERATOR

As the join operator was defined in Chapter 2, relations may only be com-
bined on identically named columns and must be combined on all such col-
umns. In the last section we saw how to join on a subset of those columns.
Refations can aIs0 be combined on columns with different attribute names
but equal domains.

Example 3.4 Consider the relations routes and baseci in Table 3.4 and
Table 3.5.

Table 3.4 The relation routes.

routes (NUMBER FROM TO 1
84 O’Hare JFK

109 JFK Los Angeles
117 Atlanta Boston
213 JFK Boston
214 Boston JFK

Table 3.5 The relation bused.

based (PILOT
Terhune

AIRPORT)
JFK

Temple
Taylor
Tarbell
Todd
Truman

Atlanta
Atlanta
Boston
Los Angeles
O’Hare

30 More Operations on Relations

Routes is a projection of the relation sched in Table 2.1. Based gives the
home base for each pilot. Suppose we want to assign pilots to flights that
originate at the pilots’ home bases. We need a relation showing which pilots
are based in the origin city of each flight. Table 3.6 shows such a relation.

Table 3.6 The relation can&, showing which pilots live in the origin city
of each flight.

canfly(NUMBER FROM TO PILOT AIRPORT)
84 O’Hare JFK Truman O’Hare

109 JFK
117 Atlanta
117 Atlanta
213 JFK
214 Boston

Los Angeles
Boston
Boston
Boston
JFK

Terhune
Temple
Taylor
Terhune
Tarbell

JFK
Atlanta
Atlanta
JFK
Boston

We have taken an equijoin on the columns corresponding to attribute names
FROM and AIRPORT.

We give a general description of equijoin. Let r(R) and s(S) be relations
withAt E R, Bi E S, and dom(AJ = dom(Bi), 1 I i 5 m. TheAis need not
be distinct, nor need the Bis. The equijoin of r and s on Al, AZ, . . . , A,,, and
B,, B2, . . . , B,,writtenr[Al=B1,A2=B2,A.=B,]s,istherelation

q(RS) = { tlthere exists t, E r and t, f s with t(R) = tr and t(s) = t, and
t(Ai) = t(Bi), 1 5 i I m}.

Example 3.5 The relation can& in Table 3.6 is

routes [FROM= AIRPORT] based.

This definition needs a little refinement. There could be an attribute A
such that A E R and A E S. In the equijoin of I and s, we want a column for
each occurrence of A. We require that R n S = 8 in the definition. This is
not a great restriction, since if R and S do have a non-empty intersection, we
can rename attributes in r or s to make the intersection of schemes empty.
Note that there need not be any comparisons in the equijoin; m can be 0 in
the definition. The equijoin r[]s is simply the Cartesian product of r and s.

To emphasize the distinction between join as defined in Chapter 2 and
equijoin, we sometimes call the former natural join. Equijoin is mainly a con-

Extensions for Other Comparisons on Domains 31

venience, for it can be expressed in terms of renaming and natural join (see
Exercise 3.5). Natural join can also be expressed using equijoin. For ex-
ample, given relations r(ABC) and s(BCD) and attributes B ’ and C ’ with
dam(B) = dom(B ‘) and dam(C) = dom(C’),

f w s = 7rABC&[B = B’, c = C’] 6~B.c-~‘,$‘(s)).

The main difference between natural join and equijoin is that natural join
does not repeat the connected columns.

3.5 EXTENSIONS FOR OTHER COMPARISONS ON DOMAINS

Up to this point, the only comparison between domain values we have been
making is one for equality. We could also compare domain values using in-
equality. Often, domains are ordered, and in those cases, the comparisons
<, 5,1, and > also make sense. For a general treatment of such com-
parisons, we posit a set 8 of comparators: binary relations (in the mathe-
matical sense) over pairs of domains. If 8 is a comparator in 8, and A and B
are attributes, we say A is &comparable with B if 6 is over dam(A) X
dam(B). We write “A is &comparable” to mean A is &comparable with it-
self. We assume every attribute A is equality-comparable and inequality-
comparable.

We generally will only be concerned with the comparators = , # , < , I,
2, and > over a single domain. However, we use these symbols in a generic
sense; for example, ‘I=” actually represents different equality comparators
for different domains. We shall use comparators to generalize selection and
join to comparisons other than equality.

It is a somewhat artificial restriction to require that our comparators be
binary relations. There are reasonable tests we might like to make that are
represented by mathematical relations of degree other than two. For ex-
ample, we might want the unary relation m, on the domain of times, where
h E m means h is a morning time; or the ternary relation w on integers, where
w(i, j, k) means i I j I k. Any unary relation t9 can be represented by a
binary relation 8 ‘, where 0(a) if and only if 8 ‘(a, a), and for no a, b where
a f b does 8 ‘(a, b) hold. Some ternary and higher order relations, such as w,
can be represented as the conjunction of binary relations, while others cannot
(see Exercise 3.9). While the extension to comparisons based on relations
other than binary is straightforward, the notation is messy, and we wish to
keep our theorems neat.

32 More Operations on Relations

3.5.1 Extending Selection

We extend our notation for the select operator to be o,&’ where 0 is a com-
parator in 8. If r is a relation on scheme R, and A an attribute of R, and a
is a constant in dam(B), where A and B are O-comparable, then uAe,(r) =
{t E r+(A) 8 a 1. We use infii notation for comparators: t(A)Ba means
WA), a).

Example 3.6 A relation times, which is a projection of the relation sched in
Table 2.1, is shown below.

times(NUMBER DEPARTS ARRIVES)
a4 3:oop 5:ssp

109 9:4op 2:42a
117 1o:osp 12:43a
213 11:43a 12:45p
214 2:2op 3:12p

Relation s = ~AR~VES~l:~~(times), assuming 5 orders the hours of the day
from 12:Ola to midnight, is as follows:

uARRIVES~l:COp(times) = s (NUMBER DEPARTS ARRIVES)
109 9:49p 2:42a
117 10:05p 12:43a
213 11:43a 12:45p

It is a list of all flights and times that arrive at or before 1:OOp.

Besides comparisons between an attribute and a constant, we also allow
comparisons between two attributes. Let r be a relation on R, where A and B
are attributes in R. Let 0 E 8 be a comparator such that A and B are
B-comparable. Then DA@(r) = (t E r-It(A) 8 t(B)}.

Example 3.7 Let I‘ CK ” be the comparator on times of day meaning
“precedes by at least 2 hours.” Then, for times as given in Example 3.6,
S = UDEPARTS<<ARRIVES(~~~~S) iS given below.

s(NUMBER DEPARTS ARRIVES)
84 3:OQp 5:ssp

109 9:4op 2:42a
117 1o:osp 12: 43a

We let times of day wrap around midnight for << .

Extensions for Other Comparisons on Domains 33

As before, we can abbreviate a series of selections. For example,
a;lz&l?,DbC=c(d)) becomes ~As&>D.C=c(d*

To give ourselves even more convenience, we allow the logical connec-
tives A, V, 1 (and, or, not), and parentheses. For example,
u((A=a)“(A>c))l\(Bzb)(‘).

The commas we used before were actually implicit ands. The logical con-
nectives, while convenient, do not add any expressive power to our set of rela-
tional operators (see Exercise 3.10).

3.5.2 The Theta-Join Operator

The equijoin extends the join operator to handle comparisons between col-
umns with different attribute names. With other comparators, we need not
restrict ourselves merely to comparing for equality.

Example 3.8 Suppose we have a list of flights and times from city a to city
b, and a similar list of flights and times from city b to city c. Table 3.7 and
Table 3.8 show these lists, represented by two relations, timesab and timesbc.

Table 3.7 Flights between city a and city b.

timesab (NUMBER

El
112
306
420

DEPARTS
9:40a

12:sop
4:05p
8:3Op
9:lSp

ARRIVES)
11:45a
2:47p
6: 15~

10:25p
1l:llp

Table 3.8 Flights between city b and city c.

timesbc (NUMBER
11

DEPARTS
8:30a

ARRIVES)
952a

60 12:25p
156 4:2Op
158 7:lOp

1:43p
5:4Op
8335~

We want to know which flights from a to b connect with flights from b to c.
We combine tuples from timesab and timesbc when the flight from a to b ar-
rives at b before the flight from b to c departs from b. Table 3.9 shows the
result, relation connectuc. Note that we must first rename attributes in
timesbc, and that we are not looking for connections over midnight.

34 More Operations on Relations

Table 3.9 Flight connections between city a and city c at city b.

connectac (NUMBER DEPARTS ARRIVES NUMBER ’ DEPARTS ’ ARRIVES ’)
60 9:40a 11:45a 60 12:2sp 1:43p
60 9:40a
60 9:40a
91 12:sOp
91 12:Wp

112 4:osp

11:45a 156
11:45a 158
2147~ 156
2:47p 158
6:lSp 158

4:20;
7:lOp
4:2Op
7: lop
7:lOp

5:4op
8:35p
5:4op
8:35p
8:35p

Let r(R) and s(S) be two relations we want to combine, where R 13 S = 8.
Let A E R and B E S be &comparable for 19 in 9. Then r[AOB]s is the relation

q(RS) = {tlfo P some t, E r and some t, E s such that t,(A) 8 t,(B),
t(R) = t, and t(S) = t,}.

Example 3.9 For the relation in Table 3.9,

connectac = timesab [ARRIVES < DEPARTS ‘1 timesbc ‘,

where

timesbc ’ = ~NUMBER,ARRIVES,DEPARTS-NUMBER’,ARRIVES’,DEPARTS’(timesbc).

When we want a number of comparisons to take place, we write them all be-
tween the brackets. For example, r[Al < B1, A2 = B2, A3 1 II&. We call
any such join a theta-join. Equijoin is a special case of theta-join.

3.6 RELATIONAL ALGEBRA

We refer to the operators union, intersection, difference, active complement,
select, project, natural join, division, renaming, and theta-join, along with con-
stant relations and regular relations, as the relational algebra. Any expression
legally formed using these operators and relations is an algebraic expression.
Given an algebraic expressionE, and the current values of all the relations inE,
we can evaluateE to yield a single relation. E represents a mapping from sets of
relations to single relations.

Actually, the set of attributes, the domains, and the set of comparators we
use limit the mappings we may define. In Chapter 10, where we compare the ex-
pressive power of relational algebra to other systems for operating on relations,
these parameters will make a difference. In such cases, we must be a bit more
formal.

Deflnltion 3.2 Let U be a set of attributes, called the universe. Let a> be a
set of domains, and let dom be a total function from U to ZQ. Let R = {RI,

Relational Mgebra 35

R2t . . . , RP) be a set of distinct relation schemes, where Ri c U for 1 5 i 5 p.
Let d = (q, r2, . .., rP} be a set of relations, such that ri is a relation on
Ri, 1 zs i I p. Let 8 be a set of comparators over domains in 9, including at
least the equality and inequality comparators for every domain. The rela-
tional algebra over U, 9, dom, R, d, and 8 is the 7-tuple Gt = (W, XI, dom,
R, d, 8, 0), where 0 is the set of operators union, intersect, difference, ac-
tive complement, project, natural join, and divide, and renaming using at-
tributes in U, select using comparators in 9, and logical connectives and
theta-join using comparators in 9. An algebraic expression over @ is any ex-
pression formed legally (according to the restrictions on the operators) from
the relations in d and constant relations over schemes in U, using the
operators in 0.

We allow parentheses in algebraic expressions, and assume no precedence
of the binary operators, except for the usual precedence of n over U. We
also may omit parentheses for strings of relations connected by the same
operator, if the operation is associative. Note that we do not allow two rela-
tions with the same scheme. We discuss this restriction again in Chapter 12.

The relation names rl, r2, . . . , rP are analogous to program variables,
where ri ranges over relations on scheme Ri. Our notation is a bit ambiguous,
in that we use rj both as a relation name and to denote the current state of a
relation. The same ambiguity arises when discussing variables in programs;
this is the problem denotational semantics tries to address. The ambiguity
only gets clumsy when we view an algebraic expression as a mapping.

3.6.1 Algebraic Expressions as Mappings

Since the result of every relational operation we use is a single relation, every
algebraic expression defines a function that maps a set of relations to a single
relation. The scheme of the single relation depends only on the schemes for
the set of relations. Let the scheme of an ’ algebraic expression E, denoted
&z(E), be the relation scheme of the relation.

We can define &z(E) recursively according to the following rules.

1. If E is r, then sch(E) is the relation scheme for ri.
2. If E is a constant relation, sch(E) is the scheme for the constant rela-

tion.
3. If E = El U E2, El f7 E2, El - E2, El, or u&El), where C is some set

of conditions, then sch (E) = sch(E,).
4. If E = rrX(El), then sch(E) = X.
5. If E = El + Ez, then sch (E) = sch (El) - sch (Ez).

36 More Operations on Relations

6. If E = El w E2 orEI[C]E2, for some set of conditions C, then sch(E)
= sch(EJ U sch(E*).

7. If E = h~w~z,.. .,~k-~l,~z,. . . s,(El), then sch(E) = (sch(El) - AIA2
. ..Ak)B1B2 ..a &.

If E is an algebraic expression involving relation names sl, ~2, . . . , sq, cor-
responding to schemes Si, S2, . . . , S,, then E is a mapping

E: ReZ(S1) X ReZ(S2) X . . . X Rel(S$ - Ref(sch(E)),

where Rel(R) is the set of all relations with scheme R. We shall sometimes
use E(sl, s2, . . . , sJ to denote the value of E on the set of relations named by
81, Sit * * *, sq.

Sometimes we shall want to use the complement operator in expressions. If
we add complement to our set of operators, we get a relational algebra with
complement. An algebraic expression E involving complement potentially
maps a set of relations to an infinite relation. We shall not use complement after
this chapter until Chapter 10.

3.6.2 Restricting the Set of Operators

As we have seen numerous times, the relational operators are in no sense in-
dependent. There are restricted sets of operators that have all the power of
the full set. One such set is given by the next theorem.

Theorem 3.1 Let E be an expression over relational algebra 6l that uses
relation names sl, ~2, . . . , sg. There is an expression E ’ over Gl that defines
the same function of sl, ~2, . . . , sq and uses only single-attribute, single-tuple
constant relations, select with a single comparison, natural join, project,
union, difference, and renaming.

Proof By what we noted in Section 3.2, we can replace every constant rela-
tion in E by an expression involving union, join, and single-attribute, single-
tuple constant relations. Exercise 3.13 shows that theta-join can be replaced
by natural join and selection. Exercise 3.10 shows how to replace any gen-
eralized selection with an expression involving single-comparison selections
and other relational operators, not including theta-join. Exercise 3.3a shows
how to express division in terms of operators from Chapter 2.

In Section 2.1 we saw that intersection can be replaced by difference. The
only operator left to replace in E to get E ’ is active complement. Active com-
plement can be expressed with project, join, and difference. For example,
suppose El is an algebraic expression where sch (El) = ABC. Then E;1 is

The Split Operator 37

Note that the joins are Cartesian products.

Corollary Let E be an expression over relational algebra CR with comple-
ment that uses relation names q, s2, . . . , sq. There is an expression E ’ over
R that defines the same function of sl, s2, . . . , sq and uses only single-attri-
bute, single-tuple constant relations, select with a single comparison, natural
join, project, union, complement, and renaming.

Proof By Theorem 3.1, the only operator that must be removed from E is dif-
ference. Note thatE1 - EZ = El U E2.

3.7 THE SPLIT OPERATOR

The split operator takes one relation as an argument and returns a pair of
relations. We do not include it in relational algebra since we want the value
of every expression in the algebra to be a single relation. Let r be a relation on
scheme R and let fi(t) be a Boolean predicate on tuples over R. Then r split
on p, written SPLIT,(v), is the pair of relations (x, s ‘), both with scheme R,
wheres = {t E rlP(t)} ands ’ = (t E r)not P(t)). Clearly, s’ = r - s. We put
no restrictions on what the predicate @ may be, except that its value may only
depend on tuple t and not on the state of Y.

Example 3.10 The predicate, P(t) = there exists t ’ in r with t(A) # t ‘(A)
would not be permissible, since it depends on other tuples in 1.

Example 3.11 Consider the relation ce@ed in Table 3.3. Let P(t) =
@(EQUIPMENT)= 707 or t(EQUIPMENT) = 727). The relations s and s ‘,
where SPLIT~(certz#ed) = (s, s ‘), are shown below.

s (PILOT EQUIPMENT) s ’ (PILOT EQUIPMENT)
Desmond 707 Desmond 747
Desmond 727 Davis 747
Doyle 707 Davis 1011
Doyle 727
Davis 707
Davis 727
Dow 727

38 More Operations on Relations

3.8 THE FACTOR OPERATOR

Thefactor operator takes one relation as an argument and generates two re-
lations. The two relations, when joined, yield the original relation with an
added column. We shall first demonstrate the factor operator by example.

Example 3.12 Consider a flight roster showing all the passengers booked on
a flight, what class they are flying, and whether they are in the smoking or
non-smoking section. We represent the flight roster as a relation roster on
the scheme {PASSENGER, CLASS, SMOKING} as shown.

roster(PASSENGER
S alazar
Schick
Shockley
Stewart
Sayers
Sands
Sachs

CLASS
first
first
coach
fist
coach
coach
coach

SMOKING)

yes
no
no
yes
no
no
yes

There are only four possible {CLASS, SMOKING}-values. We can represent
the same information in less space by splitting off the CLASS and SMOK-
ING columns, and creating a new column, LINK, as shown below.

rosterl(PASSENGER LINK) roster2(LINK CLASS SMOKING)
Salazar 1 1 first Yes
Schick 2 2 first no
Shockley 4 3 coach yes
Stewart 1 4 coach no
Sayers 4
Sands 4
Sachs 3

It is easy to check that roster = R{PA~~ENGER,CLA~~,~M~KING l(rosterl w roster2).

If r is a relation on scheme R and B1, &, . . . , B, are attributes of R, and L
is an attribute not in R, we use the notation

FACTOR(r; B1, &, . , , , B,; L)

to denote the operation of removing the columns corresponding to Bi, B2,

Exercises 39

. . ., B, from r to form a new relation, and adding an extra column labeled L
to r and the new relation on which to join. The relations roster2 and roster2
are the result of FACTOR(roster; CLASS, SMOKING; LINK).

We shall not specify the factor operator more formally. It main use is as a
conceptual tool for finding efficient ways to store a relation. Again, we do not
include this operator in the relational algebra, because it does not yield a
single relation as its result.

3.9

3.1

3.2

3.3*

3.4

3.5

3.6

EXERCISES

Let r(R) and s(S) be relations where R n S = cb. Prove

(r w s) + s = r.

Let r be a relation on scheme R and let s and s ’ be relations on scheme
S, where R 2 S. Show that if s s s ‘, then

Show that the converse is false.

Let r(R) and s(S) be relations with R 3 S and let R ’ = R - S. Prove
the identities

a) r f s = rR’(r) - rR’((?TR’(r) bd s) - r).
b) r + s = n rR’(o+t(r)).

tcs

For relation r with the scheme shown in Table 3.2, give an expression
that, for a given flight f, evaluates to a relation on scheme FLIGHT giv-
ing all the flights that use the same plane as flight f on every date for
flight f listed in r.

Show that any equijoin can be specified in terms of natural join and re-
naming, given sufficient extra attributes with the correct domains.

It is sometimes meaningful to equijoin a relation with itself. Compute
relation r = routes [TO = FROM ‘Iroutes ’ where routes is the relation
in Table 3.4, and routes’ is routes with all attributes renamed to
primed versions. Using r, compute the relation s = ?r~FROM,TO~)(r).
What meaning can be assigned to the tuples in s? Find an operation
that will remove tuples such as (JFK JFK) from s.

40

3.7

3.8

3.9

More Operations on Relations

In Example 3.3, let the domain of FLIGHT (and FJLIGHTZ) be
< -comparable. Use selection as extended in Section 3.5.1 to give an ex-
pression that denotes s without the redundant information. That is,
each pair should occur once, and pairs such as (12 12) should be re-
moved.

Compute

for the relation times in Example 3.6.

Give a ternary relation (in the mathematical sense) that cannot be
represented as the conjunction of binary relations without introducing
new domains.

3.10 Show that the effect of any selection operation can be achieved using
the select operator in the form aAea or ~AOB and the operators from
Chapter 2 except for select. Do not assume the set of comparators 8 is
closed under negation.

3.11 Compute

c~nmvus ~,2:~p(time~[ARRIVES < DEPARTS ‘]times ‘)

where times is the relation in Example 3.6 and times ’ is the same rela-
tion with all attributes renamed to primed versions. Assume time of day
runs from 12:Ola to midnight.

3.12 Compute

sched[TO = FROM ‘, ARRIVES 4 DEPARTS ‘]sched ’

where sched is the relation in Table 2.1, sched ’ is sched with all attri-
butes renamed to primed versions, and c is the comparator “earlier
by up to 3 hours” that wraps around midnight.

3.13 Show that any theta-join can be expressed using natural join and gen-
eralized selection.

3.14 Given relations r(ABC) and @CD), what is sch (E) for

Bibliography and Remarks 41

3.15 Let @ be the relational algebra

(U, D, dom, R, d, 8,O).

(a) Show that if 8 contains arbitrary comparators, then for no proper
subset of the operations in Theorem 3.1 is the theorem true.

(b) Show that if 8 contains only equality and inequality comparators,
then selection can be restricted to the form uAcB.

3.16 Show that if SPLIT&) = (s, s ‘), then r = s U s ‘.

3.17 Let T and r ’ be relations on R. Let s = r U r ‘. Show that there does not
necessarily exist a predicate 0 such that SPLIT&) = (r, r ‘).

3.18 LetrbearelationonschemeR,let(B1,Bz,B.)beasubsetofR,
and let L be an attribute not in R. Let pi = Idom(Bi)l, 1 I i I m, and
assume all the p;s are finite. Suppose every value in a tuple of r requires
one byte of storage and there are k tuples in 1. Give an inequality in-
volving m, R, and pl, p2, . . . , pm that will indicate when the relations
generated by FACTOR(r; B,, RX, . . . , B,; L) will require less space
than r.

3.10 BIBLIOGRAPHY AND COMMENTS

Codd [1972b] defines the relational algebra as given here, with the exception
of renaming. Hall, Hitchcock, and Todd [1975] explore some generalizations
of the algebraic operators. Beck [1978] discusses minimal sets of operators.
The split operation is from Fagin [1980b].

Exercise 3.3b was suggested by Jon Shultis.

