
Chapter 3 

MORE OPERATIONS ON RELATIONS 

In this chapter we shall study some relational operators that are less elemen- 
tary than those in Chapter 2. Some of the operators are generalizations of 
those in Chapter 2; others can be shown equivalent to a series of those oper- 
ators. These operators, along with a set of relations and constants, will form 
a relational algebra. We shall see that we can restrict the set of operators and 
still retain the expressive power of relational algebra. Finally, we examine 
two operators that, while not part of the algebra, are sometimes useful in 
database implementations. 

3.1 THE DIVIDE OPERATOR 

The divide operator has a rather complex definition, but it does have some 
applications in natural situations. 

Definition 3.1 Let r(R) and s(S) be relations, with S E R. Let R ’ = R - S. 
Then r divided by s, written r + s, is the relation 

I ‘(R ‘) = { t(for every tuple t, E s there is a tuple t, E r with 
t,(R ‘) = t and t,(S) = ts}. 

Relation Y ’ is the quotient of r divided by s. Another way to state the defini- 
tion is that I + s is the maximal subset r ’ of TRl (I) such that r ’ W s is con- 
tained in r. The join in this case is a Cartesian product. An example should 
clarify the definition. 

Example 3.1 Table 3.1 is another instance of the relation cer@ed(PILOT 
EQUIPMENT) given in Table 2.3. Suppose we want to find those pilots who 
can fly all the types of aircraft in some set. Let q (EQUIPMENT) and 
s(EQUIPMENT) be as follows: 

q ( EQUIPMENT) s ( EQUIPMENT) 
707 707 
727 
747 

25 



26 More Operations on Relations 

Table 3.1 An instance of the relation 
cer.#$eed( PILOT EQUIPMENT). 

certified (PILOT EQUIPMENT) 
Desmond 707 
Desmond 727 
Desmond 747 
Doyle 707 
Doyle 727 
Davis 707 
Davis 727 
Davis 747 
Davis 1011 
Dow 727 

Division can then be used to garner information on what pilots can fly the 
types of aircraft in q, or to find what pilots can fly the aircraft in s. 

certified + q = q ’ (PILOT) certij?ed f s = s ’ ( PILOT ) 
Desmond Desmond 
Davis Doyle 

Davis 

Division can be expressed in terms of the operators from Chapter 2 (see Exer- 
cise 3.3). 

3.2 CONSTANT RELATIONS 

In discussing join in the last chapter, we showed that the effect of select can 
be obtained by join with a constant relation. We have a notation for repre- 
senting constant relations directly in expressions. If A1,A2, - - -, A, are dis- 
tinct attributes, and ci is a constant from dom(Ai) for 1 I i s 12, then 

(cl:Al c2:A2 --- c,:A,) 

represents the constant tuple cc1 c2 s s . c,) over scheme Al A2 - - - A,. We 
represent a constant relation over scheme Al A2 - . . A, as a set of tuples. Let 
cij be a constant in dom(A;) for 1 II i 5 n and 1 I j s k. Then 
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represents the relation we would normally write as 

(AI A2 --- A, ) 
Cl1 c21 --* Cnl 

Cl2 c22 *** cn2 
. 
. . 
. . 

Clk c2k **’ CiZk 

In the case of a single-tuple constant relation, we shall sometimes omit the 
set brackets. For a single-attribute tuple, we shall sometimes omit the 
wickets (“( *’ and “>“). 

A constant relation of any number of tuples and any number of attributes 
can be built up from single-tuple, single-attribute constant relations through 
join and union. 

Example 3.2 The relation shown below 

(PILOT EQUIPMENT) 
Desmond 707 
Davis 707 

can be represented as 

(( Desmond:PILOT) w ( 707:EQUIPMENT)) U 
(<Davis:PILOT) w (707:EQUIPMENT)). 

3.3 RENAMING ATTRIBUTES 

Consider the relation usedfor in Table 3.2, which tells what plane will be 
used for a given flight on a given day. Suppose we want to know all the pairs 
of flights that are scheduled to use the same plane on the same day. What we 
need is a join of usedfor with itself, but ignoring connections on the FLIGHT 
column. We can accomplish this join with a copy of usedfor where FLIGHT 
is renamed to, say, FLIGHT2. 

To specify such a relation, we introduce a renaming operator 6. Let r be a 
relation on scheme R, where A is an attribute in R and B is an attribute not 
in R - A. Let R ’ = (R - A)B. Then r with A renamed to B, denoted S,,, 
(r), is the relation 

r’(R’)=(t’IthereisatupletErwitht’(R -A) =t(R -A) 
and t’(B) = t(A)}. 

We require that A and B have the same domain. 
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Table 3.2 The relation usedfor, telling what 
plane will be used for a given flight. 

usedfor( FLIGHT 
12 
12 
13 
26 
26 
27 
27 

DATE 
6 Jan 
7 Jan 
6 Jan 
6 Jan 
7 Jan 
6 Jan 
7 Jan 
6 Jan 
7 Jan 

PLANENUM) 
707-82 
707-82 
707-82 
747-16 
747-18 
747-16 
747-2 
707-82 
727-6 

Example 3.3 An expression that denotes the relation with the desired pairs 
of flights is 

The value for s using usedfor as in Table 3.2 is given in Table 3.3. In Section 
3.5.1 we shall see a generalization of the select operator that can be used to 
remove the redundancy in relation s (see Exercise 3.7). 

Table 3.3 Relation S, showing what 
pairs of flights use the same plane. 

s(FLIGHT F‘LIGHTZ) 
12 13 
13 12 
12 60 
60 12 
13 60 
60 13 
12 12 

ii 
13 
60 

26 27 
27 26 
26 26 
27 27 

Let r be a relation on R. Let A,) A2, . . . , Ak be distinct attributes in R and 
let &, B2, . . . , Bk be distinct attributes not in R - (A1 A2 - - - Ak), where 
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dom(Ai) = dom(B;) for 1 5 i I k. We denote the simultaneous renaming of 
the attributes Al, AZ, . . . , Ak to Br, Bz, . . . , Bk, respectively, in r by 

6 AI,&, . . ., Ak--Bl,&, . ., &(d- 

Note that a simultaneous renaming sometimes cannot be written as a se- 
quence of single-attribute renamings without introducing another attribute 
symbol. The renaming a,,,,,, is an example. 

3.4 THE EQUIJOIN OPERATOR 

As the join operator was defined in Chapter 2, relations may only be com- 
bined on identically named columns and must be combined on all such col- 
umns. In the last section we saw how to join on a subset of those columns. 
Refations can aIs0 be combined on columns with different attribute names 
but equal domains. 

Example 3.4 Consider the relations routes and baseci in Table 3.4 and 
Table 3.5. 

Table 3.4 The relation routes. 

routes (NUMBER FROM TO 1 
84 O’Hare JFK 

109 JFK Los Angeles 
117 Atlanta Boston 
213 JFK Boston 
214 Boston JFK 

Table 3.5 The relation bused. 

based (PILOT 
Terhune 

AIRPORT ) 
JFK 

Temple 
Taylor 
Tarbell 
Todd 
Truman 

Atlanta 
Atlanta 
Boston 
Los Angeles 
O’Hare 
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Routes is a projection of the relation sched in Table 2.1. Based gives the 
home base for each pilot. Suppose we want to assign pilots to flights that 
originate at the pilots’ home bases. We need a relation showing which pilots 
are based in the origin city of each flight. Table 3.6 shows such a relation. 

Table 3.6 The relation can&, showing which pilots live in the origin city 
of each flight. 

canfly(NUMBER FROM TO PILOT AIRPORT) 
84 O’Hare JFK Truman O’Hare 

109 JFK 
117 Atlanta 
117 Atlanta 
213 JFK 
214 Boston 

Los Angeles 
Boston 
Boston 
Boston 
JFK 

Terhune 
Temple 
Taylor 
Terhune 
Tarbell 

JFK 
Atlanta 
Atlanta 
JFK 
Boston 

We have taken an equijoin on the columns corresponding to attribute names 
FROM and AIRPORT. 

We give a general description of equijoin. Let r(R) and s(S) be relations 
withAt E R, Bi E S, and dom(AJ = dom(Bi), 1 I i 5 m. TheAis need not 
be distinct, nor need the Bis. The equijoin of r and s on Al, AZ, . . . , A,,, and 
B,, B2, . . . , B,,writtenr[Al=B1,A2=B2, . . ..A.=B,]s,istherelation 

q(RS) = { tlthere exists t, E r and t, f s with t(R) = tr and t(s) = t, and 
t(Ai) = t(Bi), 1 5 i I m}. 

Example 3.5 The relation can& in Table 3.6 is 

routes [FROM= AIRPORT] based. 

This definition needs a little refinement. There could be an attribute A 
such that A E R and A E S. In the equijoin of I and s, we want a column for 
each occurrence of A. We require that R n S = 8 in the definition. This is 
not a great restriction, since if R and S do have a non-empty intersection, we 
can rename attributes in r or s to make the intersection of schemes empty. 
Note that there need not be any comparisons in the equijoin; m can be 0 in 
the definition. The equijoin r[]s is simply the Cartesian product of r and s. 

To emphasize the distinction between join as defined in Chapter 2 and 
equijoin, we sometimes call the former natural join. Equijoin is mainly a con- 
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venience, for it can be expressed in terms of renaming and natural join (see 
Exercise 3.5). Natural join can also be expressed using equijoin. For ex- 
ample, given relations r(ABC) and s(BCD) and attributes B ’ and C ’ with 
dam(B) = dom(B ‘) and dam(C) = dom(C’), 

f w s = 7rABC&[B = B’, c = C’] 6~B.c-~‘,$‘(s)). 

The main difference between natural join and equijoin is that natural join 
does not repeat the connected columns. 

3.5 EXTENSIONS FOR OTHER COMPARISONS ON DOMAINS 

Up to this point, the only comparison between domain values we have been 
making is one for equality. We could also compare domain values using in- 
equality. Often, domains are ordered, and in those cases, the comparisons 
<, 5,1, and > also make sense. For a general treatment of such com- 
parisons, we posit a set 8 of comparators: binary relations (in the mathe- 
matical sense) over pairs of domains. If 8 is a comparator in 8, and A and B 
are attributes, we say A is &comparable with B if 6 is over dam(A) X 
dam(B). We write “A is &comparable” to mean A is &comparable with it- 
self. We assume every attribute A is equality-comparable and inequality- 
comparable. 

We generally will only be concerned with the comparators = , # , < , I, 
2, and > over a single domain. However, we use these symbols in a generic 
sense; for example, ‘I=” actually represents different equality comparators 
for different domains. We shall use comparators to generalize selection and 
join to comparisons other than equality. 

It is a somewhat artificial restriction to require that our comparators be 
binary relations. There are reasonable tests we might like to make that are 
represented by mathematical relations of degree other than two. For ex- 
ample, we might want the unary relation m, on the domain of times, where 
h E m means h is a morning time; or the ternary relation w on integers, where 
w(i, j, k) means i I j I k. Any unary relation t9 can be represented by a 
binary relation 8 ‘, where 0(a) if and only if 8 ‘(a, a), and for no a, b where 
a f b does 8 ‘(a, b) hold. Some ternary and higher order relations, such as w, 
can be represented as the conjunction of binary relations, while others cannot 
(see Exercise 3.9). While the extension to comparisons based on relations 
other than binary is straightforward, the notation is messy, and we wish to 
keep our theorems neat. 
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3.5.1 Extending Selection 

We extend our notation for the select operator to be o,&’ where 0 is a com- 
parator in 8. If r is a relation on scheme R, and A an attribute of R, and a 
is a constant in dam(B), where A and B are O-comparable, then uAe,(r) = 
{t E r+(A) 8 a 1. We use infii notation for comparators: t(A)Ba means 
WA), a). 

Example 3.6 A relation times, which is a projection of the relation sched in 
Table 2.1, is shown below. 

times( NUMBER DEPARTS ARRIVES) 
a4 3:oop 5:ssp 

109 9:4op 2:42a 
117 1o:osp 12:43a 
213 11:43a 12:45p 
214 2:2op 3:12p 

Relation s = ~AR~VES~l:~~(times), assuming 5 orders the hours of the day 
from 12:Ola to midnight, is as follows: 

uARRIVES~l:COp( times) = s (NUMBER DEPARTS ARRIVES ) 
109 9:49p 2:42a 
117 10:05p 12:43a 
213 11:43a 12:45p 

It is a list of all flights and times that arrive at or before 1:OOp. 

Besides comparisons between an attribute and a constant, we also allow 
comparisons between two attributes. Let r be a relation on R, where A and B 
are attributes in R. Let 0 E 8 be a comparator such that A and B are 
B-comparable. Then DA@(r) = (t E r-It(A) 8 t(B)}. 

Example 3.7 Let I‘ CK ” be the comparator on times of day meaning 
“precedes by at least 2 hours.” Then, for times as given in Example 3.6, 
S = UDEPARTS<<ARRIVES(~~~~S) iS given below. 

s( NUMBER DEPARTS ARRIVES) 
84 3:OQp 5:ssp 

109 9:4op 2:42a 
117 1o:osp 12: 43a 

We let times of day wrap around midnight for << . 
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As before, we can abbreviate a series of selections. For example, 
a;lz&l?,DbC=c(d)) becomes ~As&>D.C=c(d* 

To give ourselves even more convenience, we allow the logical connec- 
tives A, V, 1 (and, or, not), and parentheses. For example, 
u((A=a)“(A>c))l\(Bzb)(‘). 

The commas we used before were actually implicit ands. The logical con- 
nectives, while convenient, do not add any expressive power to our set of rela- 
tional operators (see Exercise 3.10). 

3.5.2 The Theta-Join Operator 

The equijoin extends the join operator to handle comparisons between col- 
umns with different attribute names. With other comparators, we need not 
restrict ourselves merely to comparing for equality. 

Example 3.8 Suppose we have a list of flights and times from city a to city 
b, and a similar list of flights and times from city b to city c. Table 3.7 and 
Table 3.8 show these lists, represented by two relations, timesab and timesbc. 

Table 3.7 Flights between city a and city b. 

timesab (NUMBER 

El 
112 
306 
420 

DEPARTS 
9:40a 

12:sop 
4:05p 
8:3Op 
9:lSp 

ARRIVES ) 
11:45a 
2:47p 
6: 15~ 

10:25p 
1l:llp 

Table 3.8 Flights between city b and city c. 

timesbc (NUMBER 
11 

DEPARTS 
8:30a 

ARRIVES ) 
952a 

60 12:25p 
156 4:2Op 
158 7:lOp 

1:43p 
5:4Op 
8335~ 

We want to know which flights from a to b connect with flights from b to c. 
We combine tuples from timesab and timesbc when the flight from a to b ar- 
rives at b before the flight from b to c departs from b. Table 3.9 shows the 
result, relation connectuc. Note that we must first rename attributes in 
timesbc, and that we are not looking for connections over midnight. 
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Table 3.9 Flight connections between city a and city c at city b. 

connectac (NUMBER DEPARTS ARRIVES NUMBER ’ DEPARTS ’ ARRIVES ’ ) 
60 9:40a 11:45a 60 12:2sp 1:43p 
60 9:40a 
60 9:40a 
91 12:sOp 
91 12:Wp 

112 4:osp 

11:45a 156 
11:45a 158 
2147~ 156 
2:47p 158 
6:lSp 158 

4:20; 
7:lOp 
4:2Op 
7: lop 
7:lOp 

5:4op 
8:35p 
5:4op 
8:35p 
8:35p 

Let r(R) and s(S) be two relations we want to combine, where R 13 S = 8. 
Let A E R and B E S be &comparable for 19 in 9. Then r[AOB]s is the relation 

q(RS) = {tlfo P some t, E r and some t, E s such that t,(A) 8 t,(B), 
t(R) = t, and t(S) = t,}. 

Example 3.9 For the relation in Table 3.9, 

connectac = timesab [ARRIVES < DEPARTS ‘1 timesbc ‘, 

where 

timesbc ’ = ~NUMBER,ARRIVES,DEPARTS-NUMBER’,ARRIVES’,DEPARTS’(timesbc). 

When we want a number of comparisons to take place, we write them all be- 
tween the brackets. For example, r[Al < B1, A2 = B2, A3 1 II&. We call 
any such join a theta-join. Equijoin is a special case of theta-join. 

3.6 RELATIONAL ALGEBRA 

We refer to the operators union, intersection, difference, active complement, 
select, project, natural join, division, renaming, and theta-join, along with con- 
stant relations and regular relations, as the relational algebra. Any expression 
legally formed using these operators and relations is an algebraic expression. 
Given an algebraic expressionE, and the current values of all the relations inE, 
we can evaluateE to yield a single relation. E represents a mapping from sets of 
relations to single relations. 

Actually, the set of attributes, the domains, and the set of comparators we 
use limit the mappings we may define. In Chapter 10, where we compare the ex- 
pressive power of relational algebra to other systems for operating on relations, 
these parameters will make a difference. In such cases, we must be a bit more 
formal. 

Deflnltion 3.2 Let U be a set of attributes, called the universe. Let a> be a 
set of domains, and let dom be a total function from U to ZQ. Let R = {RI, 
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R2t . . . , RP) be a set of distinct relation schemes, where Ri c U for 1 5 i 5 p. 
Let d = (q, r2, . .., rP} be a set of relations, such that ri is a relation on 
Ri, 1 zs i I p. Let 8 be a set of comparators over domains in 9, including at 
least the equality and inequality comparators for every domain. The rela- 
tional algebra over U, 9, dom, R, d, and 8 is the 7-tuple Gt = (W, XI, dom, 
R, d, 8, 0), where 0 is the set of operators union, intersect, difference, ac- 
tive complement, project, natural join, and divide, and renaming using at- 
tributes in U, select using comparators in 9, and logical connectives and 
theta-join using comparators in 9. An algebraic expression over @ is any ex- 
pression formed legally (according to the restrictions on the operators) from 
the relations in d and constant relations over schemes in U, using the 
operators in 0. 

We allow parentheses in algebraic expressions, and assume no precedence 
of the binary operators, except for the usual precedence of n over U. We 
also may omit parentheses for strings of relations connected by the same 
operator, if the operation is associative. Note that we do not allow two rela- 
tions with the same scheme. We discuss this restriction again in Chapter 12. 

The relation names rl, r2, . . . , rP are analogous to program variables, 
where ri ranges over relations on scheme Ri. Our notation is a bit ambiguous, 
in that we use rj both as a relation name and to denote the current state of a 
relation. The same ambiguity arises when discussing variables in programs; 
this is the problem denotational semantics tries to address. The ambiguity 
only gets clumsy when we view an algebraic expression as a mapping. 

3.6.1 Algebraic Expressions as Mappings 

Since the result of every relational operation we use is a single relation, every 
algebraic expression defines a function that maps a set of relations to a single 
relation. The scheme of the single relation depends only on the schemes for 
the set of relations. Let the scheme of an ’ algebraic expression E, denoted 
&z(E), be the relation scheme of the relation. 

We can define &z(E) recursively according to the following rules. 

1. If E is r, then sch(E) is the relation scheme for ri. 
2. If E is a constant relation, sch(E) is the scheme for the constant rela- 

tion. 
3. If E = El U E2, El f7 E2, El - E2, El, or u&El), where C is some set 

of conditions, then sch (E) = sch(E,). 
4. If E = rrX(El), then sch(E) = X. 
5. If E = El + Ez, then sch (E) = sch (El) - sch (Ez). 
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6. If E = El w E2 orEI[C]E2, for some set of conditions C, then sch(E) 
= sch(EJ U sch(E*). 

7. If E = h~w~z,.. .,~k-~l,~z,. . . s,(El), then sch(E) = (sch(El) - AIA2 
. ..Ak)B1B2 ..a &. 

If E is an algebraic expression involving relation names sl, ~2, . . . , sq, cor- 
responding to schemes Si, S2, . . . , S,, then E is a mapping 

E: ReZ(S1) X ReZ(S2) X . . . X Rel(S$ - Ref(sch(E)), 

where Rel(R) is the set of all relations with scheme R. We shall sometimes 
use E(sl, s2, . . . , sJ to denote the value of E on the set of relations named by 
81, Sit * * *, sq. 

Sometimes we shall want to use the complement operator in expressions. If 
we add complement to our set of operators, we get a relational algebra with 
complement. An algebraic expression E involving complement potentially 
maps a set of relations to an infinite relation. We shall not use complement after 
this chapter until Chapter 10. 

3.6.2 Restricting the Set of Operators 

As we have seen numerous times, the relational operators are in no sense in- 
dependent. There are restricted sets of operators that have all the power of 
the full set. One such set is given by the next theorem. 

Theorem 3.1 Let E be an expression over relational algebra 6l that uses 
relation names sl, ~2, . . . , sg. There is an expression E ’ over Gl that defines 
the same function of sl, ~2, . . . , sq and uses only single-attribute, single-tuple 
constant relations, select with a single comparison, natural join, project, 
union, difference, and renaming. 

Proof By what we noted in Section 3.2, we can replace every constant rela- 
tion in E by an expression involving union, join, and single-attribute, single- 
tuple constant relations. Exercise 3.13 shows that theta-join can be replaced 
by natural join and selection. Exercise 3.10 shows how to replace any gen- 
eralized selection with an expression involving single-comparison selections 
and other relational operators, not including theta-join. Exercise 3.3a shows 
how to express division in terms of operators from Chapter 2. 

In Section 2.1 we saw that intersection can be replaced by difference. The 
only operator left to replace in E to get E ’ is active complement. Active com- 
plement can be expressed with project, join, and difference. For example, 
suppose El is an algebraic expression where sch (El) = ABC. Then E;1 is 
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Note that the joins are Cartesian products. 

Corollary Let E be an expression over relational algebra CR with comple- 
ment that uses relation names q, s2, . . . , sq. There is an expression E ’ over 
R that defines the same function of sl, s2, . . . , sq and uses only single-attri- 
bute, single-tuple constant relations, select with a single comparison, natural 
join, project, union, complement, and renaming. 

Proof By Theorem 3.1, the only operator that must be removed from E is dif- 
ference. Note thatE1 - EZ = El U E2. 

3.7 THE SPLIT OPERATOR 

The split operator takes one relation as an argument and returns a pair of 
relations. We do not include it in relational algebra since we want the value 
of every expression in the algebra to be a single relation. Let r be a relation on 
scheme R and let fi( t) be a Boolean predicate on tuples over R. Then r split 
on p, written SPLIT,(v), is the pair of relations (x, s ‘), both with scheme R, 
wheres = {t E rlP(t)} ands ’ = (t E r)not P(t)). Clearly, s’ = r - s. We put 
no restrictions on what the predicate @ may be, except that its value may only 
depend on tuple t and not on the state of Y. 

Example 3.10 The predicate, P(t) = there exists t ’ in r with t(A) # t ‘(A) 
would not be permissible, since it depends on other tuples in 1. 

Example 3.11 Consider the relation ce@ed in Table 3.3. Let P(t) = 
@(EQUIPMENT)= 707 or t(EQUIPMENT) = 727). The relations s and s ‘, 
where SPLIT~(certz#ed) = (s, s ‘), are shown below. 

s (PILOT EQUIPMENT) s ’ (PILOT EQUIPMENT) 
Desmond 707 Desmond 747 
Desmond 727 Davis 747 
Doyle 707 Davis 1011 
Doyle 727 
Davis 707 
Davis 727 
Dow 727 
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3.8 THE FACTOR OPERATOR 

Thefactor operator takes one relation as an argument and generates two re- 
lations. The two relations, when joined, yield the original relation with an 
added column. We shall first demonstrate the factor operator by example. 

Example 3.12 Consider a flight roster showing all the passengers booked on 
a flight, what class they are flying, and whether they are in the smoking or 
non-smoking section. We represent the flight roster as a relation roster on 
the scheme {PASSENGER, CLASS, SMOKING} as shown. 

roster(PASSENGER 
S alazar 
Schick 
Shockley 
Stewart 
Sayers 
Sands 
Sachs 

CLASS 
first 
first 
coach 
fist 
coach 
coach 
coach 

SMOKING) 

yes 
no 
no 
yes 
no 
no 
yes 

There are only four possible {CLASS, SMOKING}-values. We can represent 
the same information in less space by splitting off the CLASS and SMOK- 
ING columns, and creating a new column, LINK, as shown below. 

rosterl( PASSENGER LINK) roster2( LINK CLASS SMOKING) 
Salazar 1 1 first Yes 
Schick 2 2 first no 
Shockley 4 3 coach yes 
Stewart 1 4 coach no 
Sayers 4 
Sands 4 
Sachs 3 

It is easy to check that roster = R{PA~~ENGER,CLA~~,~M~KING l(rosterl w roster2). 

If r is a relation on scheme R and B1, &, . . . , B, are attributes of R, and L 
is an attribute not in R, we use the notation 

FACTOR(r; B1, &, . , , , B,; L) 

to denote the operation of removing the columns corresponding to Bi, B2, 



Exercises 39 

. . ., B, from r to form a new relation, and adding an extra column labeled L 
to r and the new relation on which to join. The relations roster2 and roster2 
are the result of FACTOR(roster; CLASS, SMOKING; LINK). 

We shall not specify the factor operator more formally. It main use is as a 
conceptual tool for finding efficient ways to store a relation. Again, we do not 
include this operator in the relational algebra, because it does not yield a 
single relation as its result. 

3.9 

3.1 

3.2 

3.3* 

3.4 

3.5 

3.6 

EXERCISES 

Let r(R) and s(S) be relations where R n S = cb. Prove 

(r w s) + s = r. 

Let r be a relation on scheme R and let s and s ’ be relations on scheme 
S, where R 2 S. Show that if s s s ‘, then 

Show that the converse is false. 

Let r(R) and s(S) be relations with R 3 S and let R ’ = R - S. Prove 
the identities 

a) r f s = rR’(r) - rR’((?TR’(r) bd s) - r). 
b) r + s = n rR’(o+t(r)). 

tcs 

For relation r with the scheme shown in Table 3.2, give an expression 
that, for a given flight f, evaluates to a relation on scheme FLIGHT giv- 
ing all the flights that use the same plane as flight f on every date for 
flight f listed in r. 

Show that any equijoin can be specified in terms of natural join and re- 
naming, given sufficient extra attributes with the correct domains. 

It is sometimes meaningful to equijoin a relation with itself. Compute 
relation r = routes [TO = FROM ‘Iroutes ’ where routes is the relation 
in Table 3.4, and routes’ is routes with all attributes renamed to 
primed versions. Using r, compute the relation s = ?r~FROM,TO~)(r). 
What meaning can be assigned to the tuples in s? Find an operation 
that will remove tuples such as (JFK JFK) from s. 
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3.7 

3.8 

3.9 

More Operations on Relations 

In Example 3.3, let the domain of FLIGHT (and FJLIGHTZ) be 
< -comparable. Use selection as extended in Section 3.5.1 to give an ex- 
pression that denotes s without the redundant information. That is, 
each pair should occur once, and pairs such as (12 12) should be re- 
moved. 

Compute 

for the relation times in Example 3.6. 

Give a ternary relation (in the mathematical sense) that cannot be 
represented as the conjunction of binary relations without introducing 
new domains. 

3.10 Show that the effect of any selection operation can be achieved using 
the select operator in the form aAea or ~AOB and the operators from 
Chapter 2 except for select. Do not assume the set of comparators 8 is 
closed under negation. 

3.11 Compute 

c~nmvus ~,2:~p(time~[ARRIVES < DEPARTS ‘]times ‘) 

where times is the relation in Example 3.6 and times ’ is the same rela- 
tion with all attributes renamed to primed versions. Assume time of day 
runs from 12:Ola to midnight. 

3.12 Compute 

sched[TO = FROM ‘, ARRIVES 4 DEPARTS ‘]sched ’ 

where sched is the relation in Table 2.1, sched ’ is sched with all attri- 
butes renamed to primed versions, and c is the comparator “earlier 
by up to 3 hours” that wraps around midnight. 

3.13 Show that any theta-join can be expressed using natural join and gen- 
eralized selection. 

3.14 Given relations r(ABC) and @CD), what is sch (E) for 
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3.15 Let @ be the relational algebra 

(U, D, dom, R, d, 8,O). 

(a) Show that if 8 contains arbitrary comparators, then for no proper 
subset of the operations in Theorem 3.1 is the theorem true. 

(b) Show that if 8 contains only equality and inequality comparators, 
then selection can be restricted to the form uAcB. 

3.16 Show that if SPLIT&) = (s, s ‘), then r = s U s ‘. 

3.17 Let T and r ’ be relations on R. Let s = r U r ‘. Show that there does not 
necessarily exist a predicate 0 such that SPLIT&) = (r, r ‘). 

3.18 LetrbearelationonschemeR,let(B1,Bz, . . ..B.)beasubsetofR, 
and let L be an attribute not in R. Let pi = Idom(Bi)l, 1 I i I m, and 
assume all the p;s are finite. Suppose every value in a tuple of r requires 
one byte of storage and there are k tuples in 1. Give an inequality in- 
volving m, R, and pl, p2, . . . , pm that will indicate when the relations 
generated by FACTOR(r; B,, RX, . . . , B,; L) will require less space 
than r. 

3.10 BIBLIOGRAPHY AND COMMENTS 

Codd [1972b] defines the relational algebra as given here, with the exception 
of renaming. Hall, Hitchcock, and Todd [1975] explore some generalizations 
of the algebraic operators. Beck [1978] discusses minimal sets of operators. 
The split operation is from Fagin [1980b]. 

Exercise 3.3b was suggested by Jon Shultis. 


