Humboldt-Universitat zu Berlin 2. Januar 2026
Lehrstuhl Logik in der Informatik
Prof. Dr. Nicole Schweikardt

Logik in der Informatik

Wintersemester 2025/2026

Ubungsblatt 10

Abgabe: bis 12. Januar 2026, 13.00 Uhr

Aufgabe 1: (Moodle-Quiz)
Absolvieren Sie das Quiz 10 auf der Moodle-Plattform.

Aufgabe 2: (Prasenzaufgabe)
(a) Sei o eine beliebige Signatur. Zeigen Sie, dass es Formeln ¢, ¢ € FO[o] gibt, fir die gilt:

(¢ A Vo) # V(e AY)

(b) Katzen duflern sich bekanntlich mithilfe der Laute ,M*“, |1 und ,,U*

Die Katzensprache K ist eine Menge von Worten iiber dem Alphabet A := {M,I,U}, die
durch die folgenden Regeln rekursiv definiert ist:

Basisregel: (B) MI € K.

Rekursive Regeln: Fir alle v,w € A* gilt:

(R1) ist vI € K, soist auch vIU € K;;

(R2) ist Mv € K, so ist auch Mov € K;

(R3) ist vIIIw € K, ist auch vUw € K; und

(R4) ist vUUw € K, ist auch vw € K.

(i) Beweisen Sie durch Induktion iiber den Aufbau der Menge K, dass fir jedes Wort
w e K gilt:

Die Anzahl |w|; der Vorkommen des Lauts I in w ist nicht durch 3 teilbar
(d. h. es gibt eine Zahl k € N, sodass gilt: |w|; = 3k+ 1 oder |w|; = 3k+2).

(ii) Geben Sie einen Kalkiil £ tiber der Menge A* an, der die Sprache K definiert, d. h.
es soll gelten: ablg = K.

(iii) Geben Sie fiir jedes der folgenden Worte entweder eine Ableitung des Wortes in K
an oder beweisen Sie, dass es nicht in der Menge ablg liegt.

(i) MIU (ii) MUTI (iii) MUUU

— auf der ndchsten Seite geht’s weiter —

Aufgabe 3: (40 Punkte)

(a) Welche der folgenden beiden Aussagen ist fir jede Signatur ¢ und jede FO[o]|-Formel ¢
korrekt, welche nicht? Beweisen Sie, dass ihre Antworten korrekt sind.

(i) dxVye E Vydzep (i) Vy3dze E JzVye

(b) Sei ¢ := { E'} die Signatur mit dem 2-stelligen Relationssymbol E. Betrachten Sie die
FO[o]-Formel

o(r,z) = Ty (E(z,y) — (VyE(x,y) A —Eia:E(x,y)))

(i) Berechnen Sie eine zu ¢ dquivalente FO[o]|-Formel in Negationsnormalform.

(ii) Berechnen Sie eine zu ¢ adquivalente FO[o]-Formel in Pranex-Normalform.

Gehen Sie hierbei dhnlich wie in Beispiel 3.70 vor. Machen Sie pro Zwischenschritt nur
eine Umformung und kommentieren Sie IThre Zwischenschritte.

(c) Beweisen Sie Satz 3.67 aus der Vorlesung:

Jede FO[o]-Formel ¢ ist d4quivalent zu einer Formel in NNF.

(d) Sei E ein 2-stelliges Relationssymbol und sei 2-COL die Klasse aller gerichteten, 2-farbbaren
Graphen, d. h. aller { E }-Strukturen A = (A, E4) fiir die gilt:

Es gibt eine Funktion f: A — {rot, blau} mit f(a)# f(b) fiir alle (a,b) € E4.

Zeigen Sie mittels logischer Reduktion (dhnlich wie im Beweis von Satz 3.58), dass die
Klasse 2-COL nicht FO-definierbar ist.

Aufgabe 4: (20 Punkte)
Lesen Sie Kapitel 12 aus dem Buch ,Learn Prolog Now!*.

Achtung: Die Bearbeitung der Aufgabe ist unter Beachtung der bekannten Abgabehinweise tiber
Moodle abzugeben! Analog zu friiheren Bldattern finden Sie die bendtigten Dateien auf der Seite
zur Veranstaltung.

(a) Machen Sie sich mit den Prolog-Modulen al_def}, al literals/ und al_nf vertraut und
laden Sie diese Prolog-Module in ein Verzeichnis Threr Wahl.

(b) Erstellen Sie (im selben Verzeichnis) in einer Datei blatt10.pl ein Modul mit dem Namen
pure_literal, das die Pradikate knf shell/0 und pure_literal/2 exportiert.

(c) Importieren Sie im Modul pure_literal genau die Pradikate aus den Modulen al_def,
al literals und al_nf, die Sie zum Losen der folgenden beiden Teilaufgaben benétigen.

(d) Wir kodieren Klauselmengen wie auf Blatt 9 als Listen von Listen von Literalen.
Implementieren Sie das Pridikat knf _shell/0, so dass eine Anfrage

?7- knf_ shell.

— auf der ndchsten Seite geht’s weiter —

https://www2.informatik.hu-berlin.de/~frochaua/prolog-uebung/getFile.php?file=al_def.pl
https://www2.informatik.hu-berlin.de/~frochaua/prolog-uebung/getFile.php?file=al_literals.pl
https://www2.informatik.hu-berlin.de/~frochaua/prolog-uebung/getFile.php?file=al_nf.pl

eine Eingabeaufforderung zur Konstruktion von Klauselmengen aus aussagenlogischen
Formeln startet.

Das heifit, wenn iiber die Tastatur eine aussagenlogische Formel als Prolog-Term eingegeben
wird, dann soll nach Ende der Eingabe (durch . und die Taste ,Enter“) eine zu der Formel
aquivalente Klauselmenge ausgegeben werden. Dies soll so lange wiederholt werden, bis
statt einer aussagenlogischen Formel das Atom bye (wieder gefolgt durch . und die Taste
,Enter) eingegeben wird.

Hinweise: Definieren Sie sich gegebenenfalls geeignete Hilfspréadikate. Verwenden Sie fiir
die Eingabe das Préadikat read/1 und fir die Ausgabe das Pradikat write/1. Beide
Prédikate sind in SWI-Prolog vordefiniert. Sie miissen sich nicht um die Behandlung von
Eingabefehlern kiimmern.

Zur Erinnerung: Pure Literal Rule

Literale)\, deren Negat A nirgendwo in der Klauselmenge auftaucht, konnen auf
1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr
und konnen gestrichen werden. Wiederhole dies, so lange es Literale gibt, deren
Negat nirgendwo in der Klauselmenge auftaucht.

Implementieren Sie ein Prédikat pure_literal/2, so dass eine Anfrage von der Form
7- pure_literal (KM, KM2).

auf die Klauselmenge KM die Pure Literal Rule des DPLL-Algorithmus solange anwen-
det, wie es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht und die
entstehende Klauselmenge in KM2 zuriickgibt. Beispielsweise sollte die Anfrage

7- pure_literal([[~x1, x2, ~x5], [x1, x2, ~x4, x7], [x3, ~x5, x7],
[x3, ~x4, ~x5], [x5,x4,~x8], [x1,x3,x5,x7],
[~x7,x8]], KM2).

zu der Antwort
KM2 = [].
fihren.

Hinweise: Definieren Sie geeignete Hilfspradikate. Beispielsweise bietet es sich an, Pradikate
is_literal/2und is_pure_literal/2 einzufithren, so dass das Ziel is_literal(L, KM)

fiir jedes in der Klauselmenge KM vorkommende Literal L erfiillt ist, und so dass das Ziel
is_pure_literal(L, KM) fiir jedes in der Klauselmenge KM vorkommende Literal L erfiillt

ist, dessen Negat nicht in KM vorkommt.

