
Humboldt-Universität zu Berlin 2. Januar 2026
Lehrstuhl Logik in der Informatik
Prof. Dr. Nicole Schweikardt

Logik in der Informatik
Wintersemester 2025/2026

Übungsblatt 10
Abgabe: bis 12. Januar 2026, 13.00 Uhr

Aufgabe 1: (Moodle-Quiz)
Absolvieren Sie das Quiz 10 auf der Moodle-Plattform.

Aufgabe 2: (Präsenzaufgabe)

(a) Sei σ eine beliebige Signatur. Zeigen Sie, dass es Formeln φ, ψ ∈ FO[σ] gibt, für die gilt:

(φ ∧ ∀xψ) ̸≡ ∀x (φ ∧ ψ)

(b) Katzen äußern sich bekanntlich mithilfe der Laute „M“, „I“ und „U“.
Die Katzensprache K ist eine Menge von Worten über dem Alphabet A := { M, I, U }, die
durch die folgenden Regeln rekursiv definiert ist:

Basisregel: (B) MI ∈ K.

Rekursive Regeln: Für alle v, w ∈ A∗ gilt:
(R1) ist vI ∈ K, so ist auch vIU ∈ K;
(R2) ist Mv ∈ K, so ist auch Mvv ∈ K;
(R3) ist vIIIw ∈ K, ist auch vUw ∈ K; und
(R4) ist vUUw ∈ K, ist auch vw ∈ K.

(i) Beweisen Sie durch Induktion über den Aufbau der Menge K, dass für jedes Wort
w ∈ K gilt:

Die Anzahl |w|I der Vorkommen des Lauts I in w ist nicht durch 3 teilbar
(d. h. es gibt eine Zahl k ∈ N, sodass gilt: |w|I = 3k+ 1 oder |w|I = 3k+ 2).

(ii) Geben Sie einen Kalkül K über der Menge A∗ an, der die Sprache K definiert, d. h.
es soll gelten: ablK = K.

(iii) Geben Sie für jedes der folgenden Worte entweder eine Ableitung des Wortes in K
an oder beweisen Sie, dass es nicht in der Menge ablK liegt.

(i) MIU (ii) MUII (iii) MUUU

— auf der nächsten Seite geht’s weiter —

Aufgabe 3: (40 Punkte)

(a) Welche der folgenden beiden Aussagen ist für jede Signatur σ und jede FO[σ]-Formel φ
korrekt, welche nicht? Beweisen Sie, dass ihre Antworten korrekt sind.

(i) ∃x∀y φ |= ∀y ∃x φ (ii) ∀y ∃x φ |= ∃x ∀y φ

(b) Sei σ := {E } die Signatur mit dem 2-stelligen Relationssymbol E. Betrachten Sie die
FO[σ]-Formel

φ(x, z) := ∃y
(
E(z, y) →

(
∀y E(x, y) ∧ ¬∃xE(x, y)

))
(i) Berechnen Sie eine zu φ äquivalente FO[σ]-Formel in Negationsnormalform.

(ii) Berechnen Sie eine zu φ äquivalente FO[σ]-Formel in Pränex-Normalform.

Gehen Sie hierbei ähnlich wie in Beispiel 3.70 vor. Machen Sie pro Zwischenschritt nur
eine Umformung und kommentieren Sie Ihre Zwischenschritte.

(c) Beweisen Sie Satz 3.67 aus der Vorlesung:

Jede FO[σ]-Formel φ ist äquivalent zu einer Formel in NNF.

(d) Sei E ein 2-stelliges Relationssymbol und sei 2-COL die Klasse aller gerichteten, 2-färbbaren
Graphen, d. h. aller {E }-Strukturen A = (A,EA) für die gilt:

Es gibt eine Funktion f : A → { rot, blau } mit f(a) ̸= f(b) für alle (a, b) ∈ EA.

Zeigen Sie mittels logischer Reduktion (ähnlich wie im Beweis von Satz 3.58), dass die
Klasse 2-COL nicht FO-definierbar ist.

Aufgabe 4: (20 Punkte)
Lesen Sie Kapitel 12 aus dem Buch „Learn Prolog Now!“.
Achtung: Die Bearbeitung der Aufgabe ist unter Beachtung der bekannten Abgabehinweise über
Moodle abzugeben! Analog zu früheren Blättern finden Sie die benötigten Dateien auf der Seite
zur Veranstaltung.

(a) Machen Sie sich mit den Prolog-Modulen al_def, al_literals und al_nf vertraut und
laden Sie diese Prolog-Module in ein Verzeichnis Ihrer Wahl.

(b) Erstellen Sie (im selben Verzeichnis) in einer Datei blatt10.pl ein Modul mit dem Namen
pure_literal, das die Prädikate knf_shell/0 und pure_literal/2 exportiert.

(c) Importieren Sie im Modul pure_literal genau die Prädikate aus den Modulen al_def,
al_literals und al_nf, die Sie zum Lösen der folgenden beiden Teilaufgaben benötigen.

(d) Wir kodieren Klauselmengen wie auf Blatt 9 als Listen von Listen von Literalen.
Implementieren Sie das Prädikat knf_shell/0, so dass eine Anfrage

?- knf_shell.

— auf der nächsten Seite geht’s weiter —

https://www2.informatik.hu-berlin.de/~frochaua/prolog-uebung/getFile.php?file=al_def.pl
https://www2.informatik.hu-berlin.de/~frochaua/prolog-uebung/getFile.php?file=al_literals.pl
https://www2.informatik.hu-berlin.de/~frochaua/prolog-uebung/getFile.php?file=al_nf.pl

eine Eingabeaufforderung zur Konstruktion von Klauselmengen aus aussagenlogischen
Formeln startet.
Das heißt, wenn über die Tastatur eine aussagenlogische Formel als Prolog-Term eingegeben
wird, dann soll nach Ende der Eingabe (durch . und die Taste „Enter“) eine zu der Formel
äquivalente Klauselmenge ausgegeben werden. Dies soll so lange wiederholt werden, bis
statt einer aussagenlogischen Formel das Atom bye (wieder gefolgt durch . und die Taste
„Enter“) eingegeben wird.
Hinweise: Definieren Sie sich gegebenenfalls geeignete Hilfsprädikate. Verwenden Sie für
die Eingabe das Prädikat read/1 und für die Ausgabe das Prädikat write/1. Beide
Prädikate sind in SWI-Prolog vordefiniert. Sie müssen sich nicht um die Behandlung von
Eingabefehlern kümmern.

(e) Zur Erinnerung: Pure Literal Rule
Literale λ, deren Negat λ nirgendwo in der Klauselmenge auftaucht, können auf
1 gesetzt werden. Alle Klauseln, die ein solches Literal enthalten, sind dann wahr
und können gestrichen werden. Wiederhole dies, so lange es Literale gibt, deren
Negat nirgendwo in der Klauselmenge auftaucht.

Implementieren Sie ein Prädikat pure_literal/2, so dass eine Anfrage von der Form
?- pure_literal(KM, KM2).

auf die Klauselmenge KM die Pure Literal Rule des DPLL-Algorithmus solange anwen-
det, wie es Literale gibt, deren Negat nirgendwo in der Klauselmenge auftaucht und die
entstehende Klauselmenge in KM2 zurückgibt. Beispielsweise sollte die Anfrage

?- pure_literal([[~x1, x2, ~x5], [x1, x2, ~x4, x7], [x3, ~x5, x7],
[x3, ~x4, ~x5], [x5,x4,~x8], [x1,x3,x5,x7],
[~x7,x8]], KM2).

zu der Antwort
KM2 = [].

führen.
Hinweise: Definieren Sie geeignete Hilfsprädikate. Beispielsweise bietet es sich an, Prädikate
is_literal/2 und is_pure_literal/2 einzuführen, so dass das Ziel is_literal(L, KM)
für jedes in der Klauselmenge KM vorkommende Literal L erfüllt ist, und so dass das Ziel
is_pure_literal(L, KM) für jedes in der Klauselmenge KM vorkommende Literal L erfüllt
ist, dessen Negat nicht in KM vorkommt.

