Ausgewählte Kapitel der Logik: klassische Resultate

Wintersemester 2024/2025

Übungsblatt 12

Zu bearbeiten bis 5. Februar 2025

Aufgabe 1: (30 Punkte)

Arbeiten Sie den Beweis zu Satz 4.15 (Der Satz von Tarski über die Nichtdefinierbarkeit der Wahrheit) im Detail aus.

Aufgabe 2: (35 Punkte)

Sei σ eine Signatur, die mindestens ein 2-stelliges Relationssymbol enthält, seien $r, s \in \mathbb{N}$ und sei R ein r-stelliges Relationssymbol mit $R \notin \sigma$.

Eine FO[$\sigma \dot{\cup} \{R\}$]-Formel $\varphi(x_1, \ldots, x_s)$ heißt im Endlichen monoton in R, wenn für alle endlichen σ -Strukturen \mathcal{A} und alle Relationen $R_1^{\mathcal{A}}, R_2^{\mathcal{A}} \subseteq A^r$ gilt:

Falls
$$R_1^{\mathcal{A}} \subseteq R_2^{\mathcal{A}}$$
, so $\varphi(\mathcal{A}, R_1^{\mathcal{A}}) \subseteq \varphi(\mathcal{A}, R_2^{\mathcal{A}})$,

wobei $\varphi(\mathcal{A}, R_i^{\mathcal{A}}) := \{\bar{a} \in A^s : (\mathcal{A}, R_i^{\mathcal{A}}) \models \varphi[\bar{a}]\}.$

Beweisen Sie, dass das folgende Problem unentscheidbar ist.

MONOTONIE IM ENDLICHEN:

Eingabe: Eine FO[$\sigma \dot{\cup} \{R\}$]-Formel $\varphi(x_1, \dots, x_s)$.

Frage: Ist $\varphi(x_1,\ldots,x_s)$ im Endlichen monoton in R?

Hinweis: Benutzen Sie den Satz von Trakhtenbrot.

Aufgabe 3: (20 + 15 = 35 Punkte)

Sei $\sigma = \{R_1, \dots, R_k\}$ eine relationale Signatur mit $\operatorname{ar}(R_i) = 1$ für alle $i \in [k]$.

- (a) Zeigen Sie zunächst, dass für jeden FO[σ]-Satz φ mit Quantorenrang qr(φ) = q gilt: Wenn φ erfüllbar ist, so hat φ ein Modell $\mathcal B$ mit $|B| \leqslant (k+1) \cdot 2^{k+1} \cdot q$.
 - Mögliches Vorgehen: Erweitern Sie ein Modell \mathcal{A} von φ um eine Relation $R_{k+1}^{\mathcal{A}} = A \setminus \bigcup_{i \in [k]} R_i^{\mathcal{A}}$. Zeigen Sie dann (beispielsweise mittels Ehrenfeucht-Fraissé-Spielen), dass es eine $\sigma \cup \{R_{k+1}\}$ -Struktur \mathcal{B} mit $|B| \leq (k+1) \cdot 2^{k+1} \cdot q$ gibt, sodass $\mathcal{B} \models \varphi$.
- (b) Beweisen Sie Satz 3.24 aus der Vorlesung, d.h. zeigen Sie, dass gilt: Das endliche Erfüllbarkeitsproblem für $FO[\sigma]$ ist entscheidbar.