Prof. Dr. Nicole Schweikardt

Einführung in die Datenbanktheorie

Wintersemester 2023/2024

Übungsblatt 4

Zu bearbeiten bis: 22. November 2023, 15:00 Uhr

Aufgabe 1: (8 + (2*10) + 7 Punkte)Betrachten Sie die beiden folgenden Tableauanfragen $Q_1 := (\mathbf{T}', u')$ und $Q_2 := (\mathbf{T}'', u'')$, wobei a und b Konstanten sind, u' = u'' = (), sowie

$\mathbf{T}'(R)$	$ \begin{array}{c} x_1 \\ x_2 \\ a \\ x_2 \end{array} $	$x_2 \\ x_2 \\ x_2 \\ x_6$	$ \begin{array}{c} x_3 \\ x_3 \\ x_4 \\ x_3 \end{array} $		$\mathbf{T}''(R)$	x_2 a	$x_2 \\ x_2$	$x_3 \\ x_4$	-
$\mathbf{T}'(S)$	$x_4 \\ x_4$	x_2 x_2	x_2 x_1	$x_3 \ x_5$	$\mathbf{T}''(S)$	$x_4 \\ x_4$	x_2 b	x_2 x_1	$x_3 \ x_5$

Ziel der Aufgabe ist es zu entscheiden, ob $Q_1 \sqsubseteq Q_2$ bzw. $Q_2 \sqsubseteq Q_1$ gilt.

- (a) Geben Sie die kanonischen Tupel $u_{Q_2}^{Q_1}$ und $u_{Q_1}^{Q_2}$, sowie die kanonischen Datenbanken $\mathbf{I}_{Q_2}^{Q_1}$ und $\mathbf{I}_{Q_1}^{Q_2}$ an.
- (b) Entscheiden Sie, ob $Q_1 \sqsubseteq Q_2$ bzw. $Q_2 \sqsubseteq Q_1$ gilt.
- (c) Gibt es einen Homomorphismus von Q_1 auf Q_2 bzw. einen Homomorphismus von Q_2 auf Q_1 ? Geben Sie je einen Homomorphismus an oder begründen Sie, warum er nicht existiert.

Aufgabe 2:

(15+20 Punkte)

Sei k eine natürliche Zahl ≥ 1 . Das Datenbankschema S bestehe aus zwei Relationsnamen Rund S der Stelligkeit k. Zeigen Sie

(a) dass es eine SPC[S]-Anfrage Q_{\cap} gibt, so dass für alle $\mathbf{I} \in inst(\mathbf{S})$ gilt:

$$[\![Q_\cap]\!](\mathbf{I}) \ = \ \mathbf{I}(R) \cap \mathbf{I}(S)$$

(b) dass es <u>keine</u> SPC[S]-Anfrage Q_{\cup} gibt, so dass für alle $I \in inst(S)$ gilt:

$$\llbracket Q_{\cup} \rrbracket(\mathbf{I}) \ = \ \mathbf{I}(R) \cup \mathbf{I}(S).$$

Aufgabe 3: (15+15 Punkte)

(a) Zeigen Sie, dass jede Teilanfrage einer erfüllbaren SPC-Anfrage erfüllbar ist.

(b) Geben Sie, für das folgende Problem

ERFÜLLBARKEITSPROBLEM FÜR SPC-ANFRAGEN

Eingabe: Datenbankschema S, SPC[S]-Anfrage Q

Frage: Existiert eine Datenbank I vom Schema S, s.d. $[Q](I) \neq \emptyset$?

einen Polynomialzeit-Algorithmus an!