Logik in der Informatik

Wintersemester 2021/2022

Präsenzaufgaben

für die letzte Übungsstunde

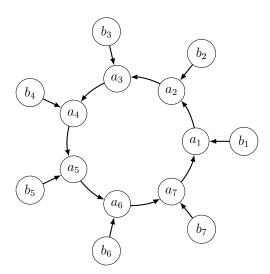
Aufgabe 1: (Endlichkeitssatz)

Sei $\sigma := \{E\}$ die Signatur, die aus dem 2-stelligen Relationssymbol E besteht.

Definition: Für eine σ -Struktur $\mathcal{A} = (A, E^{\mathcal{A}})$ und eine natürliche Zahl $n \geq 2$ sagen wir, dass \mathcal{A} eine Krone der Länge n besitzt, wenn es Elemente $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ mit $|\{a_1, \ldots, a_n, b_1, \ldots, b_n\}| = 2n$ gibt, so dass die Relation $E^{\mathcal{A}}$ die folgenden Kanten enthält:

- (a_i, a_{i+1}) für alle $i \in \{1, \dots, n-1\}$ und (a_n, a_1) und
- (b_i, a_i) für alle $i \in \{1, ..., n\}$.

Eine Krone der Länge 7 sieht zum Beispiel wie folgt aus:



- (a) Geben Sie für jede natürliche Zahl $n \geq 2$ einen $\mathsf{FO}[\sigma]$ -Satz φ_n an, sodass für jede σ -Struktur \mathcal{A} gilt: $\mathcal{A} \models \varphi_n \iff \mathcal{A}$ enthält eine Krone der Länge n.
- (b) Geben Sie eine Menge Ψ von $\mathsf{FO}[\sigma]$ -Sätzen an, die die Klasse aller σ -Strukturen $\mathcal A$ axiomatisiert, für die gilt: Es gibt keine natürliche Zahl $n \geq 2$, so dass $\mathcal A$ eine Krone der Länge n besitzt.
- (c) Verwenden Sie den Endlichkeitssatz der Logik erster Stufe, um Folgendes zu beweisen: Die Klasse aller σ -Strukturen \mathcal{A} , die eine Krone der Länge ≥ 2 besitzen, ist *nicht* erststufig axiomatisierbar. Präzise: Zeigen Sie, dass es keine Menge Φ von $\mathsf{FO}[\sigma]$ -Sätzen gibt, so dass für jede σ -Struktur \mathcal{A} gilt:

$$\mathcal{A} \models \Phi \iff \frac{\text{es gibt ein } n \in \mathbb{N} \text{ mit } n \geq 2, \text{ so dass } \mathcal{A} \text{ eine}}{\text{Krone der Länge } n \text{ besitzt.}}$$

In dieser Aufgabe bezeichnet AL' die Menge aller aussagenlogischen Formeln, die keine Aussagensymbole enthalten. Wir repräsentieren Formeln $\varphi \in \mathsf{AL}'$ wie folgt durch Terme $\mathsf{t}_{\varphi} \in \mathsf{T}_{\mathsf{LP}}$ der Logik-Programmierung:

- Atomare Formeln:

$$t_0 := 0$$
 und $t_1 := 1$

- Rekursive Regeln: Für Formeln $\varphi, \psi \in \mathsf{AL}'$ ist

$$egin{array}{lll} \mathtt{t}_{\neg arphi} & \coloneqq & \mathtt{n}(\mathtt{t}_{arphi}), \ \mathtt{t}_{(arphi \lor \psi)} & \coloneqq & \mathtt{o}(\mathtt{t}_{arphi}, \ \mathtt{t}_{\psi}) \ \mathtt{t}_{(arphi \land \psi)} & \coloneqq & \mathtt{u}(\mathtt{t}_{arphi}, \ \mathtt{t}_{\psi}). \end{array}$$

Beispielsweise wird die Formel $((1 \land 0) \lor \neg 0)$ durch den folgenden Term repräsentiert:

Betrachten Sie das folgende Logik-Programm Π :

```
1 true(1).
2 false(0).
3 true(n(F)) :- false(F).
4 false(n(F)) :- true(F).
5 true(o(F, G)) :- true(F).
6 true(o(F, G)) :- true(G).
7 false(o(F, G)) :- false(F), false(G).
8 true(u(F, G)) :- false(F).
9 false(u(F, G)) :- false(F).
10 false(u(F, G)) :- false(G).
```

(a) Geben Sie einen Beweisbaum für den Term

aus Π an.

(b) Ist der folgende Term aus Π ableitbar? Begründen Sie Ihre Antwort.

- (c) Geben Sie die Bedeutung $\mathcal{B}(\Pi)$ von Π an.
- (d) Schreiben Sie ein Logik-Programm Π' , so dass gilt:

$$\mathcal{B}(\Pi') = \{ \operatorname{dual}(\mathsf{t}_{arphi}, \, \mathsf{t}_{ ilde{arphi}}) : \, arphi \in \mathsf{AL'} \}.$$

Erinnerung: Für eine Formel $\varphi \in \mathsf{AL}'$ ist $\tilde{\varphi}$ die zu φ duale Formel, die aus φ entsteht, indem man überall $\mathbf{0}$ durch $\mathbf{1}$, $\mathbf{1}$ durch $\mathbf{0}$, \wedge durch \vee und \vee durch \wedge ersetzt.