Logik in der Informatik

Wintersemester 2021/2022

Übungsblatt 10

Abgabe: bis 17. Januar 2022, 13.00 Uhr

Aufgabe 1: (Moodle-Quiz)

Absolvieren Sie das Quiz 10 auf der Moodle-Plattform.

Aufgabe 2: (Präsenzaufgabe)

(a) Sei 2-COL die Klasse aller gerichteten zweifärbbaren Graphen, d.h. aller $\{E/2\}$ -Strukturen $\mathcal{A} = (A, E^{\mathcal{A}})$ für die gilt:

Es gibt eine Funktion $f: A \to \{rot, blau\}$, so dass für jede Kante (a, b) in $E^{\mathcal{A}}$ gilt: $f(a) \neq f(b)$.

Zeigen Sie: Die Klasse 2-COL ist nicht FO-definierbar.

(b) Hunde äußern sich bekanntlich mit Hilfe der Laute "W", "A" und "U". Sei $\Sigma := \{W, A, U\}$ und sei die *Hundesprache H* definiert durch $H := abl_{\mathfrak{K}}$, wobei \mathfrak{K} der folgende Kalkül über der Menge Σ^* ist:

$$\begin{split} \mathfrak{K} &:= & \left\{ \frac{1}{\mathrm{WA}} \right\} \\ & \cup \quad \left\{ \frac{v}{vv} : \text{ für alle } v \in \Sigma^* \right\} \\ & \cup \quad \left\{ \frac{v\mathrm{A}w}{v\mathrm{A}\mathrm{U}w} : \text{ für alle } v, w \in \Sigma^* \right\} \\ & \cup \quad \left\{ \frac{v\mathrm{U}\mathrm{U}w}{v\mathrm{A}\mathrm{A}\mathrm{A}w} : \text{ für alle } v, w \in \Sigma^* \right\} \\ & \cup \quad \left\{ \frac{v\mathrm{A}\mathrm{A}w}{vw} : \text{ für alle } v, w \in \Sigma^* \right\} \end{split}$$

- (i) Geben Sie für jedes der folgenden Worte aus Σ^* an, ob es zur Menge H gehört oder nicht. Begründen Sie jeweils Ihre Antwort!
 - (i) WA
- (ii) UWAA
- (iii) WAWAUU
- (iv) WU
- (ii) Zeigen Sie, dass für jedes Wort $w \in H$ gilt: Die Anzahl $|w|_A$ der Vorkommen des Lauts A in w ist *nicht* durch 3 teilbar (d.h., es gibt eine Zahl $k \in \mathbb{N}$, so dass gilt: $|w|_A = 3k + 1$ oder $|w|_A = 3k + 2$).
- (iii) Kann ein Hund "WAAA" machen? D.h., ist WAAA $\in H$?

Aufgabe 3: (40 Punkte)

(a) Welche der folgenden beiden Aussagen ist für jede Signatur σ und alle $\mathsf{FO}[\sigma]$ -Formeln φ und ψ korrekt, welche nicht? Beweisen Sie, dass ihre Antworten korrekt sind.

(i)
$$\exists x \, \forall y \, \varphi \models \forall y \, \exists x \, \varphi$$
 (ii) $\forall y \, \exists x \, \varphi \models \exists x \, \forall y \, \varphi$

(b) Sei $\sigma = \{E/2\}$. Betrachten Sie die $FO[\sigma]$ -Formel

$$\varphi(x,z) \ := \ \exists y \left(E(z,y) \to \left(\forall y \, E(x,y) \ \land \ \neg \exists x \, E(x,y) \right) \right)$$

- (i) Berechnen Sie eine zu φ äquivalente $\mathsf{FO}[\sigma]$ -Formel in Negationsnormalform.
- (ii) Berechnen Sie eine zu φ äquivalente $\mathsf{FO}[\sigma]$ -Formel in Pränex-Normalform.

Gehen Sie hierbei ähnlich wie in Beispiel 3.71 vor. Machen Sie pro Zwischenschritt nur eine Umformung und kommentieren Sie Ihre Zwischenschritte.

- (c) Beweisen Sie Satz 3.68 aus der Vorlesung, das heißt zeigen Sie:
 - Jede $\mathsf{FO}[\sigma]$ -Formel φ ist äquivalent zu einer Formel in NNF.
- (d) Sei $\Sigma = \{a, b\}$ und $\sigma_{\Sigma} = \{\leqslant, P_a, P_b\}$ die Signatur, die aus dem 2-stelligen Relationssymbol \leqslant , sowie zwei 1-stelligen Relationssymbolen P_a und P_b besteht. Beweisen Sie mittels **logischer Reduktion**, dass es keinen $\mathsf{FO}[\sigma_{\Sigma}]$ -Satz gibt, der die Sprache aller nicht-leeren Worte aus $\{a, b\}^*$ beschreibt, in denen die Anzahl der in ihnen vorkommenden as gerade ist.

Zur Erinnerung: Ein $\mathsf{FO}[\sigma_{\Sigma}]$ -Satz φ beschreibt eine Sprache $L \subseteq \Sigma^*$, falls für jedes nicht-leere Wort $w \in \Sigma^*$ gilt: $w \in L \iff \mathcal{A}_w \models \varphi$.

Aufgabe 4: (20 Punkte)

Lesen Sie Kapitel 12 aus dem Buch "Learn Prolog Now!".

Achtung: Die Bearbeitung der Aufgabe ist unter Beachtung der bekannten Abgabehinweise über Moodle abzugeben! Analog zu früheren Blättern finden Sie die benötigten Dateien auf der Seite zur Prolog-Übung.

- (a) Machen Sie sich mit den Prolog-Modulen al_def, al_literals und al_nf vertraut, welche Sie auf der Seite zur Prolog-Übung finden können. Laden Sie diese Prolog-Module in ein Verzeichnis Ihrer Wahl.
- (b) Erstellen Sie (im selben Verzeichnis) in einer Datei blatt10.pl ein Modul mit dem Namen pure_literal, das die Prädikate knf_shell/0 und pure_literal/2 exportiert.
- (c) Importieren Sie im Modul pure_literal genau die Prädikate aus den Modulen al_def, al_literals und al_nf, die Sie zum Lösen der folgenden beiden Teilaufgaben benötigen.
- (d) Wir kodieren Klauselmengen wie auf Blatt 9 als Listen von Listen von Literalen. Implementieren Sie das Prädikat knf_shell/0, so dass eine Anfrage

```
?- knf shell.
```

eine Eingabeaufforderung zur Konstruktion von Klauselmengen aus aussagenlogischen Formeln startet. D.h., wenn über die Tastatur eine aussagenlogische Formel als Prolog-Term eingegeben wird, dann soll nach Ende der Eingabe (durch . und die Taste "Enter") eine zu der Formel äquivalente Klauselmenge ausgegeben werden. Dies soll so lange wiederholt werden, bis statt einer aussagenlogischen Formel das Atom bye (wieder gefolgt durch . und die Taste "Enter") eingegeben wird.

Hinweise: Definieren Sie sich gegebenenfalls geeignete Hilfsprädikate. Verwenden Sie für die Eingabe das Prädikat read/1 und für die Ausgabe das Prädikat write/1. Beide Prädikate sind in SWI-Prolog vordefiniert. Sie müssen sich nicht um die Behandlung von Eingabefehlern kümmern.

(e) Implementieren Sie ein Prädikat pure_literal/2, so dass eine Anfrage von der Form

```
?- pure literal(KM, KM2).
```

auf die Klauselmenge KM die *Pure Literal Rule* des DPLL-Algorithmus anwendet und die entstehende Klauselmenge in KM2 zurückgibt. Beispielsweise sollte die Anfrage

```
?- pure_literal([[~x1, x2, ~x5], [x1, x2, ~x4, x7], [x3, ~x5, x7], [x3, ~x4, ~x5], [x5,x4,~x8], [x1,x3,x5,x7], [~x7,x8]], KM2).
```

zu der Antwort

$$KM2 = [].$$

führen.

Hinweise: Definieren Sie geeignete Hilfsprädikate. Beispielsweise bietet es sich an, Prädikate is_literal/2 und is_pure_literal/2 einzuführen, so dass das Ziel is_literal(L, KM) für jedes in der Klauselmenge KM vorkommende Literal L erfüllt ist, und so dass das Ziel is_pure_literal(L, KM) für jedes in der Klauselmenge KM vorkommende Literal L erfüllt ist, dessen Negat nicht in KM vorkommt.