KAPITEL 3 BERUHT AUF EINEM AUSZUG AUS DEM FOLGENDEN VORTRAG:

A tutorial on Database Theory and a talk on database query answering under updates

Nicole Schweikardt

Humboldt-Universität zu Berlin

24th Workshop on Logic, Language, Information and Computation (WoLLIC 2017)

London, July 19 \& 20, 2017

Example database and two queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	\vdots

Programme				Movietitle	Time
Cinema	Casablanca	$17: 30$			
Babylon	Gravity	$20: 15$			
Babylon	Blade Runner	$15: 30$			
Casablanca	Alien	$18: 15$			
Casablanca	Blade Runner	$20: 30$			
Casablanca	Resident Evil	$20: 30$			
Casablanca	Kino International	Casablanca			
Kino International	Brazil	$20: 00$			
Kino International	Brazil	$22: 00$			
Moviemento	Gravity	$17: 00$			
Moviemento	Gravity	$19: 30$			
Moviemento	Alien	$22: 00$			
Urania	Resident Evil	$20: 00$			
Urania	Resident Evil	$21: 30$			
Urania	Resident Evil	$23: 00$			

Example database and two queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	\vdots

Programme				Movietitle			Time
Cinema	Casablanca	$17: 30$					
Babylon	Gravity	$20: 15$					
Babylon	Blade Runner	$15: 30$					
Casablanca	Alien	$18: 15$					
Casablanca	Blade Runner	$20: 30$					
Casablanca	Resident Evil	$20: 30$					
Casablanca	Kino International	Casablanca					
Kino	$18: 00$						
Kino International	Brazil	$20: 00$					
Kino International	Brazil	$22: 00$					
Moviemento	Gravity	$17: 00$					
Moviemento	Gravity	$19: 30$					
Moviemento	Alien	$22: 00$					
Urania	Resident Evil	$20: 00$					
Urania	Resident Evil	$21: 30$					
Urania	Resident Evil	$23: 00$					

Return all titles of movies y in which Sigourney Weaver stars: $\varphi_{1}(y):=$ Movie(y, "Sigourney Weaver")

Example database and two queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	\vdots

Programme			
Cinema	Movietitle	Time	
Babylon	Casablanca	$17: 30$	
Babylon	Gravity	$20: 15$	
Casablanca	Blade Runner	$15: 30$	
Casablanca	Alien	$18: 15$	
Casablanca	Blade Runner	$20: 30$	
Casablanca	Resident Evil	$20: 30$	
Kino International	Casablanca	$18: 00$	
Kino International	Brazil	$20: 00$	
Kino International	Brazil	$22: 00$	
Moviemento	Gravity	$17: 00$	
Moviemento	Gravity	$19: 30$	
Moviemento	Alien	$22: 00$	
Urania	Resident Evil	$20: 00$	
Urania	Resident Evil	$21: 30$	
Urania	Resident Evil	$23: 00$	

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=\text { Movie(y, "Sigourney Weaver") }
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:

$$
\varphi_{2}(x, y):=\exists z(\text { Programme }(x, y, z) \wedge \operatorname{Movie}(y, \text { "Sigourney Weaver") })
$$

Example database and two queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	
	\vdots

Programme			
Cinema	Movietitle	Time	
Babylon	Casablanca	$17: 30$	
Babylon	Gravity	$20: 15$	
Casablanca	Blade Runner	$15: 30$	
Casablanca	Alien	$18: 15$	
Casablanca	Blade Runner	$20: 30$	
Casablanca	Resident Evil	$20: 30$	
Kino International	Casablanca	$18: 00$	
Kino International	Brazil	$20: 00$	
Kino International	Brazil	$22: 00$	
Moviemento	Gravity	$17: 00$	
Moviemento	Gravity	$19: 30$	
Moviemento	Alien	$22: 00$	
Urania	Resident Evil	$20: 00$	
Urania	Resident Evil	$21: 30$	
Urania	Resident Evil	$23: 00$	

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=\text { Movie(y, "Sigourney Weaver") }
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:
$\varphi_{2}(x, y):=\exists z($ Programme $(x, y, z) \wedge \operatorname{Movie}(y$, "Sigourney Weaver" $))$
Conjunctive queries!

Example database and two queries

A logician's point of view:

Movie : a 2 -ary relation symbol M
Programme : a 3-ary relation symbol P

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=\text { Movie(y, "Sigourney Weaver") }
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:
$\varphi_{2}(x, y):=\exists z($ Programme $(x, y, z) \wedge \operatorname{Movie}(y$, "Sigourney Weaver") $)$
Conjunctive queries!

Example database and two queries

A logician's point of view:

$$
\begin{aligned}
\text { Movie } & : \text { a 2-ary relation symbol } M \\
\text { Programme } & : \text { a 3-ary relation symbol } P \\
\text { database schema } & : \text { relational signature } \sigma:=\{M, D\}
\end{aligned}
$$

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=\operatorname{Movie}(y, \text { "Sigourney Weaver") }
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:
$\varphi_{2}(x, y):=\exists z(\operatorname{Programme}(x, y, z) \wedge \operatorname{Movie}(y$, "Sigourney Weaver" $))$
Conjunctive queries!

Example database and two queries

A logician's point of view:

Movie	$:$	a 2 -ary relation symbol M
Programme	$:$	a 3 -ary relation symbol P
database schema	$:$	relational signature $\sigma:=\{M, D\}$
adb	$:$	$D=\left(M^{D}, P^{D}\right)$, where
M^{D}	$:$	a finite subset of dom ${ }^{2}$
P^{D}	$:$	a finite subset of dom
dom	$:$ a fixed, infinite domain of potential db entries	

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=\text { Movie(y, "Sigourney Weaver") }
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:
$\varphi_{2}(x, y):=\exists z(\operatorname{Programme}(x, y, z) \wedge \operatorname{Movie}(y$, "Sigourney Weaver" $))$
Conjunctive queries!

Example database and two queries

A logician's point of view:
Movie : a 2-ary relation symbol M
Programme : a 3-ary relation symbol P
database schema : relational signature $\sigma:=\{M, D\}$
a db : $D=\left(M^{D}, P^{D}\right)$, where
M^{D} : a finite subset of dom 2
P^{D} : a finite subset of dom ${ }^{3}$
dom : a fixed, infinite domain of potential db entries $\operatorname{adom}(D)$: the set of all $d \in \mathbf{d o m}$ that occur in M^{D} or P^{D}

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=\operatorname{Movie}(y, \text { "Sigourney Weaver") }
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:
$\varphi_{2}(x, y):=\exists z($ Programme $(x, y, z) \wedge \operatorname{Movie}(y$, "Sigourney Weaver" $))$
Conjunctive queries!

Example database and two queries

A logician's point of view:
Movie : a 2-ary relation symbol M
Programme : a 3-ary relation symbol P
database schema : relational signature $\sigma:=\{M, D\}$
a db : $D=\left(M^{D}, P^{D}\right)$, where
M^{D} : a finite subset of $\mathbf{d o m}^{2}$
P^{D} : a finite subset of dom ${ }^{3}$
dom : a fixed, infinite domain of potential db entries $\operatorname{adom}(D) \quad$: the set of all $d \in \mathbf{d o m}$ that occur in M^{D} or P^{D}
View D as a finite σ-structure with universe $\operatorname{adom}(D)$!

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=\operatorname{Movie}(y, \text { "Sigourney Weaver") }
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:
$\varphi_{2}(x, y):=\exists z(\operatorname{Programme}(x, y, z) \wedge \operatorname{Movie}(y$, "Sigourney Weaver" $))$
Conjunctive queries!

Example database and two queries

A logician's point of view:
Movie : a 2-ary relation symbol M
Programme : a 3-ary relation symbol P
database schema : relational signature $\sigma:=\{M, D\}$
a db : $D=\left(M^{D}, P^{D}\right)$, where
M^{D} : a finite subset of dom 2
P^{D} : a finite subset of dom ${ }^{3}$
dom : a fixed, infinite domain of potential db entries $\operatorname{adom}(D) \quad$: the set of all $d \in \mathbf{d o m}$ that occur in M^{D} or P^{D}
View D as a finite σ-structure with universe $\operatorname{adom}(D)$!

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=M(y, \text { "Sigourney Weaver" })
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:

$$
\varphi_{2}(x, y):=\exists z(\operatorname{Programme}(x, y, z) \wedge \operatorname{Movie}(y, \text { "Sigourney Weaver" }))
$$

Conjunctive queries!

Example database and two queries

A logician's point of view:
Movie : a 2-ary relation symbol M
Programme : a 3-ary relation symbol P
database schema : relational signature $\sigma:=\{M, D\}$
a db : $D=\left(M^{D}, P^{D}\right)$, where
M^{D} : a finite subset of dom 2
P^{D} : a finite subset of dom ${ }^{3}$
dom : a fixed, infinite domain of potential db entries $\operatorname{adom}(D) \quad$: the set of all $d \in \mathbf{d o m}$ that occur in M^{D} or P^{D}
View D as a finite σ-structure with universe $\operatorname{adom}(D)$!

Return all titles of movies y in which Sigourney Weaver stars:

$$
\varphi_{1}(y):=M(y, \text { "Sigourney Weaver" })
$$

Return all tuples (x, y) of cinemas x and movie titles y such that x plays movie y in which Sigourney Weaver stars:

$$
\varphi_{2}(x, y):=\exists z(P(x, y, z) \wedge M(y, \text { "Sigourney Weaver" }))
$$

Conjunctive queries!

Query evaluation

Consider a query language L (e.g., SQL, conjunctive queries CQ, first-order logic FO).

Let $\varphi\left(x_{1}, \ldots, x_{k}\right)$ be a query of signature σ, formulated in L.
Let D be a database of signature σ.
Task:
Evaluate $\varphi\left(x_{1}, \ldots, x_{k}\right)$ on D

Query evaluation

Consider a query language L (e.g., SQL, conjunctive queries CQ, first-order logic FO).

Let $\varphi\left(x_{1}, \ldots, x_{k}\right)$ be a query of signature σ, formulated in L.
Let D be a database of signature σ.
Task:
Evaluate $\varphi\left(x_{1}, \ldots, x_{k}\right)$ on D, i.e., compute the set
$\varphi(D):=\llbracket \varphi\left(x_{1}, \ldots, x_{k}\right) \rrbracket(D):=$

$$
\left\{\left(a_{1}, \ldots, a_{k}\right) \in \operatorname{adom}(D)^{k}:(\operatorname{adom}(D), D) \models \varphi\left[\frac{a_{1} \cdots a_{k}}{x_{1} \cdots x_{k}}\right]\right\}
$$

Query evaluation

Consider a query language L (e.g., SQL, conjunctive queries CQ, first-order logic FO).

Let $\varphi\left(x_{1}, \ldots, x_{k}\right)$ be a query of signature σ, formulated in L.
Let D be a database of signature σ.
Task:
Evaluate $\varphi\left(x_{1}, \ldots, x_{k}\right)$ on D, i.e., compute the set
$\varphi(D):=\llbracket \varphi\left(x_{1}, \ldots, x_{k}\right) \rrbracket(D):=$

$$
\left\{\left(a_{1}, \ldots, a_{k}\right) \in \operatorname{adom}(D)^{k}:(\operatorname{adom}(D), D) \models \varphi\left[\frac{a_{1} \cdots a_{k}}{x_{1} \cdots x_{k}}\right]\right\}
$$

Special case $k=0$: Boolean queries:
Evaluate $\varphi()$ on $D \quad$ means \quad Decide if $(\operatorname{adom}(D), D) \models \varphi$

Complexity of query evaluation

In his STOC'82 paper, Moshe Vardi introduced the notions combined complexity

and data complexity

Complexity of query evaluation

In his STOC'82 paper, Moshe Vardi introduced the notions
combined complexity: Measure the complexity of evaluating φ on D in terms of the sizes of φ and D.
and data complexity

Complexity of query evaluation

In his STOC'82 paper, Moshe Vardi introduced the notions
combined complexity: Measure the complexity of evaluating φ on D in terms of the sizes of φ and D.
and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Complexity of query evaluation

In his STOC'82 paper, Moshe Vardi introduced the notions
combined complexity: Measure the complexity of evaluating φ on D in terms of the sizes of φ and D.
and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Typical results obtained in database theory:

- Boolean Conjunctive Queries: data complexity is in AC^{0}, combined complexity is NP-complete [Chandra \& Merlin '77]

Complexity of query evaluation

In his STOC'82 paper, Moshe Vardi introduced the notions
combined complexity: Measure the complexity of evaluating φ on D in terms of the sizes of φ and D.
and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Typical results obtained in database theory:

- Boolean Conjunctive Queries: data complexity is in AC^{0}, combined complexity is NP-complete [Chandra \& Merlin '77]
- Boolean First-Order Queries: data complexity is in AC^{0}, combined complexity is PSPACE-complete [Stockmeyer '74, Vardi '82]

Complexity of query evaluation

In his STOC'82 paper, Moshe Vardi introduced the notions
combined complexity: Measure the complexity of evaluating φ on D in terms of the sizes of φ and D.
and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Typical results obtained in database theory:

- Boolean Conjunctive Queries: data complexity is in AC^{0}, combined complexity is NP-complete [Chandra \& Merlin '77]
- Boolean First-Order Queries: data complexity is in AC^{0}, combined complexity is PSPACE-complete [Stockmeyer '74, Vardi '82]
- Boolean Least-Fixed Point Queries: data complexity is PTIME-complete, combined complexity is EXPTIME-complete [Immerman '82, Vardi '82].

Complexity of query evaluation

In his STOC'82 paper, Moshe Vardi introduced the notions
combined complexity: Measure the complexity of evaluating φ on D in terms of the sizes of φ and D.
and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Typical results obtained in database theory:

- Boolean Conjunctive Queries: data complexity is in AC^{0}, combined complexity is NP-complete [Chandra \& Merlin '77]
- Boolean First-Order Queries: data complexity is in AC^{0}, combined complexity is PSPACE-complete [Stockmeyer '74, Vardi '82]
- Boolean Least-Fixed Point Queries: data complexity is PTIME-complete, combined complexity is EXPTIME-complete [Immerman '82, Vardi '82].
CAVEAT: These notions \& results cannot handle updates of the db !

A typical scenario for DB-systems

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$

A typical scenario for DB-systems

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

A typical scenario for DB-systems

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

A typical scenario for DB-systems

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

A typical scenario for DB-systems

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$

A typical scenario for DB-systems

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$

A typical scenario for DB-systems

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$

A typical scenario for DB-systems

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D

Overview

Introduction

Conjunctive Queries on Arbitrary Databases

First-Order Queries on Bounded Degree Databases

Overview

Introduction

Conjunctive Queries on Arbitrary Databases

First-Order Queries on Bounded Degree Databases

Conjunctive queries (CQs)

Conjunctive queries:

$$
\varphi\left(x_{1}, \ldots, x_{\ell}\right):=\exists x_{\ell+1} \cdots \exists x_{m}\left(R_{1}(\bar{x}) \wedge \cdots \wedge R_{s}(\bar{x})\right)
$$

Conjunctive queries (CQs)

Conjunctive queries:

$$
\varphi\left(x_{1}, \ldots, x_{\ell}\right):=\exists x_{\ell+1} \cdots \exists x_{m}\left(R_{1}(\bar{x}) \wedge \cdots \wedge R_{s}(\bar{x})\right)
$$

Complexity of query evaluation:
Obvious: static time \leqslant update time • $\|D\|$

Conjunctive queries (CQs)

Conjunctive queries:

$$
\varphi\left(x_{1}, \ldots, x_{\ell}\right):=\exists x_{\ell+1} \cdots \exists x_{m}\left(R_{1}(\bar{x}) \wedge \cdots \wedge R_{s}(\bar{x})\right)
$$

Complexity of query evaluation:
Obvious: static time \leqslant update time • $\|D\|$
Thus:

- constant update time \Longrightarrow static setting has linear data complexity

Conjunctive queries (CQs)

Conjunctive queries:

$$
\varphi\left(x_{1}, \ldots, x_{\ell}\right):=\exists x_{\ell+1} \cdots \exists x_{m}\left(R_{1}(\bar{x}) \wedge \cdots \wedge R_{s}(\bar{x})\right)
$$

Complexity of query evaluation:
Obvious: static time \leqslant update time • $\|D\|$
Thus:

- constant update time \Longrightarrow static setting has linear data complexity
- $n^{O(1)}$ update time $\Longleftrightarrow n^{O(1)}$ static time

Conjunctive queries (CQs)

Conjunctive queries:

$$
\varphi\left(x_{1}, \ldots, x_{\ell}\right):=\exists x_{\ell+1} \cdots \exists x_{m}\left(R_{1}(\bar{x}) \wedge \cdots \wedge R_{s}(\bar{x})\right)
$$

Complexity of query evaluation:

Obvious: static time \leqslant update time • $\|D\|$
Thus:

- constant update time \Longrightarrow static setting has linear data complexity
- $n^{O(1)}$ update time $\Longleftrightarrow n^{O(1)}$ static time

For the static setting: tight characterisation of the tractable CQs:
Boolean: [Grohe, Schwentick, Segoufin 2001], [Grohe 2007], [Marx 2010], [Marx 2013]
counting: [Dalmau, Jonsson 2004], [Chen, Mengel 2015], [Greco, Scarcello 2015]
enumeration: [Bulatov et al. 2012], [Bagan, Durand, Grandjean 2007]
I.e.: Update time $n^{O(1)}$ is well-understood!

Conjunctive queries (CQs)

Conjunctive queries:

$$
\varphi\left(x_{1}, \ldots, x_{\ell}\right):=\exists x_{\ell+1} \cdots \exists x_{m}\left(R_{1}(\bar{x}) \wedge \cdots \wedge R_{s}(\bar{x})\right)
$$

Complexity of query evaluation:

Obvious: static time \leqslant update time • $\|D\|$
Thus:

- constant update time \Longrightarrow static setting has linear data complexity
- $n^{O(1)}$ update time $\Longleftrightarrow n^{O(1)}$ static time

For the static setting: tight characterisation of the tractable CQs:
Boolean: [Grohe, Schwentick, Segoufin 2001], [Grohe 2007], [Marx 2010], [Marx 2013]
counting: [Dalmau, Jonsson 2004], [Chen, Mengel 2015], [Greco, Scarcello 2015]
enumeration: [Bulatov et al. 2012], [Bagan, Durand, Grandjean 2007]
I.e.: Update time $n^{O(1)}$ is well-understood!

Interesting: Sub-linear update time

Scenario

- Input:
[Berkholz, Keppeler, S., PODS'17]
- Database D arbitrary
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$.

Scenario

- Input:
[Berkholz, Keppeler, S., PODS'17]
- Database D
data complexity
arbitrary
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$

```
CQ
```

- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

q-hierarchical CQs

Dalvi \& Suciu (PODS'07) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.

q-hierarchical CQs

Dalvi \& Suciu (PODS'07) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs. q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

q-hierarchical CQs

Dalvi \& Suciu (PODS'07) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.
q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Definition: A CQ $\varphi\left(z_{1}, \ldots, z_{k}\right)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:
(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or $\operatorname{atoms}(x) \cap \operatorname{atoms}(y)=\emptyset, \quad$ and
(ii) if $\operatorname{atoms}(x) \subsetneq \operatorname{atoms}(y)$ and $x \in$ free (φ), then $y \in$ free (φ).

q-hierarchical CQs

Dalvi \& Suciu (PODS'07) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs. q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Definition: A CQ $\varphi\left(z_{1}, \ldots, z_{k}\right)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:
(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or $\operatorname{atoms}(x) \cap \operatorname{atoms}(y)=\emptyset, \quad$ and
(ii) if $\operatorname{atoms}(x) \subsetneq \operatorname{atoms}(y)$ and $x \in$ free (φ), then $y \in \operatorname{free}(\varphi)$.

Queries that are not \mathbf{q}-hierarchical:

$$
\psi_{S-E-T}():=\exists x \exists y(S(x) \wedge E(x, y) \wedge T(y))
$$

q-hierarchical CQs

Dalvi \& Suciu (PODS'07) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs. q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.
Definition: A CQ $\varphi\left(z_{1}, \ldots, z_{k}\right)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:
(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or

$$
\operatorname{atoms}(x) \cap \operatorname{atoms}(y)=\emptyset, \quad \text { and }
$$

(ii) if $\operatorname{atoms}(x) \subsetneq \operatorname{atoms}(y)$ and $x \in$ free (φ), then $y \in$ free (φ).

Queries that are not q-hierarchical:

$$
\begin{aligned}
\psi_{S-E-T}() & :=\exists x \exists y(S(x) \wedge E(x, y) \wedge T(y)) \\
\varphi_{S-E-T}(x, y) & :=S(x) \wedge E(x, y) \wedge T(y)
\end{aligned}
$$

q-hierarchical CQs

Dalvi \& Suciu (PODS'07) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs. q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.
Definition: A CQ $\varphi\left(z_{1}, \ldots, z_{k}\right)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:
(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or

$$
\operatorname{atoms}(x) \cap \operatorname{atoms}(y)=\emptyset, \quad \text { and }
$$

(ii) if atoms $(x) \subsetneq \operatorname{atoms}(y)$ and $x \in$ free (φ), then $y \in$ free (φ).

Queries that are not q-hierarchical:

$$
\begin{aligned}
\psi_{S-E-T}() & :=\exists x \exists y(S(x) \wedge E(x, y) \wedge T(y)) \\
\varphi_{S-E-T}(x, y) & :=S(x) \wedge E(x, y) \wedge T(y) \\
\varphi_{E-T}(x) & :=\exists y(E(x, y) \wedge T(y))
\end{aligned}
$$

q-hierarchical CQs

Dalvi \& Suciu (PODS'07) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.
q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Definition: A CQ $\varphi\left(z_{1}, \ldots, z_{k}\right)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:
(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or

$$
\operatorname{atoms}(x) \cap \operatorname{atoms}(y)=\emptyset, \quad \text { and }
$$

(ii) if $\operatorname{atoms}(x) \subsetneq \operatorname{atoms}(y)$ and $x \in$ free (φ), then $y \in$ free (φ).

Queries that are not q-hierarchical:

$$
\begin{aligned}
\psi_{S-E-T}() & :=\exists x \exists y(S(x) \wedge E(x, y) \wedge T(y)) \\
\varphi_{S-E-T}(x, y) & :=S(x) \wedge E(x, y) \wedge T(y) \\
\varphi_{E-T}(x) & :=\exists y(E(x, y) \wedge T(y))
\end{aligned}
$$

A q-hierarchical query:

$$
\theta_{E-T}(y):=\exists x(E(x, y) \wedge T(y))
$$

Scenario

- Input:
[Berkholz, Keppeler, S., PODS'17]
- Database D
data complexity arbitrary
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$

```
CQ
```

- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Intractability result for enumerating CQs that are not q-hierarchical . . . is subject to suitable algorithmic conjecture

Intractability result for enumerating CQs that are not q-hierarchical
. . . is subject to suitable algorithmic conjecture
The OMv-problem:
Input: a Boolean $n \times n$-matrix M and
a stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors
Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$

Intractability result for enumerating CQs that are not q-hierarchical
. . . is subject to suitable algorithmic conjecture
The OMv-problem:
[Henzinger et al., STOC'15] Input: a Boolean $n \times n$-matrix M and
a stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors
Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
OMv -Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OMv-problem in total time $O\left(n^{3-\epsilon}\right)$

Intractability result for enumerating CQs that are not q-hierarchical
. . . is subject to suitable algorithmic conjecture
The OMv-problem:
[Henzinger et al., STOC'15] Input: a Boolean $n \times n$-matrix M and
a stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors
Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
OMv -Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OMv -problem in total time $O\left(n^{3-\epsilon}\right)$
Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Intractability result for enumerating CQs that are not q-hierarchical is subject to suitable algorithmic conjecture
The OMv-problem:
[Henzinger et al., STOC'15]
Input: a Boolean $n \times n$-matrix M and
a stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors
Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
OMv-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OMv-problem in total time $O\left(n^{3-\epsilon}\right)$
Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!
Theorem (Enumeration):
[Berkholz, Keppeler, S., PODS'17] Let $\epsilon>0$ and let $\varphi(\bar{x})$ be a self-join free CQ that is not q-hierarchical.
Then, there is no algorithm with arbitrary preprocessing time and $t_{u}=O\left(n^{1-\epsilon}\right)$ update time that enumerates $\varphi(D)$ with $t_{d}=O\left(n^{1-\epsilon}\right)$ delay, unless the OMv-conjecture fails.

Intractability result for enumerating CQs that are not q-hierarchical is subject to suitable algorithmic conjecture
The OMv-problem:
[Henzinger et al., STOC'15]
Input: a Boolean $n \times n$-matrix M and
a stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors
Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
OMv-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OMv-problem in total time $O\left(n^{3-\epsilon}\right)$
Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!
Theorem (Enumeration):
[Berkholz, Keppeler, S., PODS'17] Let $\epsilon>0$ and let $\varphi(\bar{x})$ be a self-join free CQ that is not q-hierarchical.
Then, there is no algorithm with arbitrary preprocessing time and $t_{u}=O\left(n^{1-\epsilon}\right)$ update time that enumerates $\varphi(D)$ with $t_{d}=O\left(n^{1-\epsilon}\right)$ delay, unless the OMv-conjecture fails.

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for enumerating via OMv
Input: Boolean $n \times n$ matrix M and stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors.

Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for enumerating via OMv
Input: Boolean $n \times n$ matrix M and stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors.

Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
Given $n \times n$ matrix M, let

- $E^{D_{0}}:=\left\{(i, j) \in[n]^{2}: M(i, j)=1\right\}, \quad T^{D_{0}}:=\emptyset$

Create data structure for D_{0} in time $n^{2} \cdot n^{1-\epsilon}$.

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for enumerating via OMv
Input: Boolean $n \times n$ matrix M and stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors.

Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
Given $n \times n$ matrix M, let

- $E^{D_{0}}:=\left\{(i, j) \in[n]^{2}: M(i, j)=1\right\}, \quad T^{D_{0}}:=\emptyset$

Create data structure for D_{0} in time $n^{2} \cdot n^{1-\epsilon}$.
Given n-dim vector v_{ℓ}, update

- $T^{D_{\ell}}:=\left\{i \in[n]: v_{\ell}(i)=1\right\}$.
in time $n \cdot n^{1-\varepsilon}$.

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for enumerating via OMv
Input: Boolean $n \times n$ matrix M and stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors.

Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
Given $n \times n$ matrix M, let

- $E^{D_{0}}:=\left\{(i, j) \in[n]^{2}: M(i, j)=1\right\}, \quad T^{D_{0}}:=\emptyset$

Create data structure for D_{0} in time $n^{2} \cdot n^{1-\epsilon}$.
Given n-dim vector v_{ℓ}, update

- $T^{D_{\ell}}:=\left\{i \in[n]: v_{\ell}(i)=1\right\}$.
in time $n \cdot n^{1-\varepsilon}$. For $u_{\ell}:=M v_{\ell}$ we have:
- $\varphi_{E-T}\left(D_{\ell}\right)=\left\{i \in[n]: u_{\ell}(i)=1\right\}$

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for enumerating via OMv
Input: Boolean $n \times n$ matrix M and stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors.

Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
Given $n \times n$ matrix M, let

- $E^{D_{0}}:=\left\{(i, j) \in[n]^{2}: M(i, j)=1\right\}, \quad T^{D_{0}}:=\emptyset$

Create data structure for D_{0} in time $n^{2} \cdot n^{1-\epsilon}$.
Given n-dim vector v_{ℓ}, update

- $T^{D_{\ell}}:=\left\{i \in[n]: v_{\ell}(i)=1\right\}$.
in time $n \cdot n^{1-\varepsilon}$. For $u_{\ell}:=M v_{\ell}$ we have:
- $\varphi_{E-T}\left(D_{\ell}\right)=\left\{i \in[n]: u_{\ell}(i)=1\right\}$
and can output u_{ℓ} after enumerating $\varphi_{E-T}\left(D_{\ell}\right)$ in time $n \cdot n^{1-\varepsilon}$.

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for enumerating via OMv
Input: Boolean $n \times n$ matrix M and stream v_{1}, \ldots, v_{n} of n-dimensional Boolean vectors.

Task: output $M v_{\ell}$ before accessing $v_{\ell+1}$
Given $n \times n$ matrix M, let

- $E^{D_{0}}:=\left\{(i, j) \in[n]^{2}: M(i, j)=1\right\}, \quad T^{D_{0}}:=\emptyset$

Create data structure for D_{0} in time $n^{2} \cdot n^{1-\epsilon}$.
Given n-dim vector v_{ℓ}, update

- $T^{D_{\ell}}:=\left\{i \in[n]: v_{\ell}(i)=1\right\}$.
in time $n \cdot n^{1-\varepsilon}$. For $u_{\ell}:=M v_{\ell}$ we have:
- $\varphi_{E-T}\left(D_{\ell}\right)=\left\{i \in[n]: u_{\ell}(i)=1\right\}$
and can output u_{ℓ} after enumerating $\varphi_{E-T}\left(D_{\ell}\right)$ in time $n \cdot n^{1-\varepsilon}$.
This solves OMv in total time $O\left(n^{3-\varepsilon}\right)$ \&

Intractability result for Boolean CQs that are not q-hierarchical
The OuMv-problem:
[Henzinger et al., STOC'15] Input: a Boolean $n \times n$-matrix M and
a stream $u_{1}, v_{1}, \ldots, u_{n}, v_{n}$ of n-dimensional Boolean vectors
Task: output $\left(u_{\ell}\right)^{\top} M v_{\ell}$ before accessing $u_{\ell+1}, v_{\ell+1}$
OuMv-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OuMv -problem in total time $O\left(n^{3-\epsilon}\right)$

Intractability result for Boolean CQs that are not q-hierarchical
The OuMv-problem:
[Henzinger et al., STOC'15]
Input: a Boolean $n \times n$-matrix M and
a stream $u_{1}, v_{1}, \ldots, u_{n}, v_{n}$ of n-dimensional Boolean vectors
Task: output $\left(u_{\ell}\right)^{\top} M v_{\ell}$ before accessing $u_{\ell+1}, v_{\ell+1}$
OuMv-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OuMv-problem in total time $O\left(n^{3-\epsilon}\right)$
Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Intractability result for Boolean CQs that are not q-hierarchical

The OuMv-problem:
Input: a Boolean $n \times n$-matrix M and
a stream $u_{1}, v_{1}, \ldots, u_{n}, v_{n}$ of n-dimensional Boolean vectors
Task: output $\left(u_{\ell}\right)^{\top} M v_{\ell}$ before accessing $u_{\ell+1}, v_{\ell+1}$
OuMv-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OuMv-problem in total time $O\left(n^{3-\epsilon}\right)$
Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Theorem (Boolean):

[Berkholz, Keppeler, S., PODS'17]
Fix an $\epsilon>0$ and let φ be a Boolean CQ whose homomorphic core is not q-hierarchical.
Then, there is no algorithm with arbitrary preprocessing time and $t_{u}=O\left(n^{1-\epsilon}\right)$ update time that answers $\varphi(D)$ in time
$t_{a}=O\left(n^{2-\epsilon}\right)$, unless the OuMv-conjecture fails.

Intractability result for Boolean CQs that are not q-hierarchical
The OuMv-problem:
[Henzinger et al., STOC'15]
Input: a Boolean $n \times n$-matrix M and
a stream $u_{1}, v_{1}, \ldots, u_{n}, v_{n}$ of n-dimensional Boolean vectors
Task: output $\left(u_{\ell}\right)^{\top} M v_{\ell}$ before accessing $u_{\ell+1}, v_{\ell+1}$
OuMv-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OuMv-problem in total time $O\left(n^{3-\epsilon}\right)$
Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Theorem (Boolean):

[Berkholz, Keppeler, S., PODS'17]
Fix an $\epsilon>0$ and let φ be a Boolean CQ whose homomorphic core is not q-hierarchical.
Then, there is no algorithm with arbitrary preprocessing time and $t_{u}=O\left(n^{1-\epsilon}\right)$ update time that answers $\varphi(D)$ in time $t_{a}=O\left(n^{2-\epsilon}\right)$, unless the OuMv-conjecture fails.

Proof idea for $\psi_{S-E-T}:=\exists x \exists y(S(x) \wedge E(x, y) \wedge T(y))$

Intractability result for counting CQs that are not q-hierarchical

The OV-problem:
[cf. R. Williams, 2005]
Input: two sets U and V of n Boolean vectors of dimension $d:=\left\lceil\log ^{2} n\right\rceil$
Task: decide if there exist $u \in U$ and $v \in V$ with $u^{\top} v=0$
OV-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OV-problem in time $O\left(n^{2-\epsilon}\right)$

Intractability result for counting CQs that are not q-hierarchical

The OV-problem:
[cf. R. Williams, 2005]
Input: two sets U and V of n Boolean vectors of dimension $d:=\left\lceil\log ^{2} n\right\rceil$
Task: decide if there exist $u \in U$ and $v \in V$ with $u^{\top} v=0$
OV-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OV-problem in time $O\left(n^{2-\epsilon}\right)$

Theorem (Counting): [Berkholz, Keppeler, S., PODS'17] Let $\epsilon>0$ and let $\varphi(\bar{x})$ be a CQ whose homomorphic core is not q-hierarchical.
Then, there is no algorithm with arbitrary preprocessing time and $t_{u}=O\left(n^{1-\epsilon}\right)$ update time that computes $|\varphi(D)|$ in time $t_{c}=O\left(n^{1-\epsilon}\right)$, unless the OV-conjecture or the OuMv-conjecture fails.

Intractability result for counting CQs that are not q-hierarchical

The OV-problem:
[cf. R. Williams, 2005]
Input: two sets U and V of n Boolean vectors of dimension $d:=\left\lceil\log ^{2} n\right\rceil$
Task: decide if there exist $u \in U$ and $v \in V$ with $u^{\top} v=0$
OV-Conjecture: For every $\epsilon>0$, there is no algorithm that solves the OV-problem in time $O\left(n^{2-\epsilon}\right)$

Theorem (Counting):
 [Berkholz, Keppeler, S., PODS'17]

 Let $\epsilon>0$ and let $\varphi(\bar{x})$ be a CQ whose homomorphic core is not q-hierarchical.Then, there is no algorithm with arbitrary preprocessing time and $t_{u}=O\left(n^{1-\epsilon}\right)$ update time that computes $|\varphi(D)|$ in time $t_{c}=O\left(n^{1-\epsilon}\right)$, unless the OV-conjecture or the OuMv-conjecture fails.

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for counting via OV
Left: n vertices for the n vectors $u \in U$
Right: $d:=\left\lceil\log ^{2} n\right\rceil$ vertices for vector-coordinates

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for counting via OV
Left: n vertices for the n vectors $u \in U$
Right: $d:=\left\lceil\log ^{2} n\right\rceil$ vertices for vector-coordinates

- for each $v_{\ell} \in V$: update $T^{D_{\ell}}$ in time $d \cdot n^{1-\epsilon}=\left\lceil\log ^{2} n\right\rceil n^{1-\varepsilon}$

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for counting via OV
Left: n vertices for the n vectors $u \in U$
Right: $d:=\left\lceil\log ^{2} n\right\rceil$ vertices for vector-coordinates

- for each $v_{\ell} \in V$: update $T^{D_{\ell}}$ in time $d \cdot n^{1-\epsilon}=\left\lceil\log ^{2} n\right\rceil n^{1-\varepsilon}$
- there is $u_{i} \in U$ with $u_{i}^{\top} v_{\ell}=0 \Longleftrightarrow\left|\varphi_{E-T}\left(D_{\ell}\right)\right|<n$.

Proof idea for $\varphi_{E-T}(x):=\exists y(E(x, y) \wedge T(y))$

A lower bound for counting via OV
Left: n vertices for the n vectors $u \in U$
Right: $d:=\left\lceil\log ^{2} n\right\rceil$ vertices for vector-coordinates

- for each $v_{\ell} \in V$: update $T^{D_{\ell}}$ in time $d \cdot n^{1-\epsilon}=\left\lceil\log ^{2} n\right\rceil n^{1-\varepsilon}$
- there is $u_{i} \in U$ with $u_{i}^{\top} v_{\ell}=0 \Longleftrightarrow\left|\varphi_{E-T}\left(D_{\ell}\right)\right|<n$.
- finished for all $v_{\ell} \in V$ within time $n \cdot\left\lceil\log ^{2} n\right\rceil n^{1-\varepsilon}=n^{2-\varepsilon^{\prime}}$ \&

Scenario

- Input:
[Berkholz, Keppeler, S., PODS'17]
- Database D
data complexity arbitrary
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$

```
CQ
```

- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
[Berkholz, Keppeler, S., PODS'17]
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ q-hierarchical CQ
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right) \quad$ q-hierarchical CQ
- Preprocessing:
[Berkholz, Keppeler, S., PODS'17]
arbitrary
data complexity

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right) \quad$ q-hierarchical CQ
- Preprocessing:
[Berkholz, Keppeler, S., PODS'17] arbitrary
q-hierarchical CQ data complexity

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
[Berkholz, Keppeler, S., PODS'17]
data complexity
arbitrary
q-hierarchical CQ
- Preprocessing: Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
[Berkholz, Keppeler, S., PODS'17]
data complexity
arbitrary
q-hierarchical CQ
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:
[Berkholz, Keppeler, S., PODS'17]
data complexity
arbitrary
q-hierarchical CQ
Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting:

Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
[Berkholz, Keppeler, S., PODS'17]
data complexity
arbitrary
q-hierarchical CQ
- Preprocessing:
in time $O(\|D\|)$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in constant time Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
arbitrary
[Berkholz, Keppeler, S., PODS'17]
q-hierarchical CQ
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing: $\operatorname{poly}(\varphi):=\|\varphi\|^{O(1)}$

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D) \quad$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in constant time Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
arbitrary
[Berkholz, Keppeler, S., PODS'17]
q-hierarchical CQ
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in time poly (φ) Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
arbitrary
[Berkholz, Keppeler, S., PODS'17]
q-hierarchical CQ
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in time poly (φ) Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
arbitrary
[Berkholz, Keppeler, S., PODS'17]
q-hierarchical CQ
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time poly (φ) Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
arbitrary
[Berkholz, Keppeler, S., PODS'17]
q-hierarchical CQ
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in time poly (φ)
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in time poly (φ) Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Scenario

- Input:
- Database D
arbitrary
combined complexity
Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:
q-hierarchical CQ
$\operatorname{poly}(\varphi):=\|\varphi\|^{O(1)}$
in time poly $(\varphi)\|D\|$
Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$ with delay $\operatorname{poly}(\varphi)$
- Dynamic setting: update data structure in time poly (φ) Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Efficient evaluation of a fragment of CQs

Theorem (Upper bound):
For every CQ that is q-hierarchical, there is a dynamic data structure that has constant update time and allows to

Efficient evaluation of a fragment of CQs

Theorem (Upper bound):
For every CQ that is q-hierarchical, there is a dynamic data structure that has constant update time and allows to

- answer a Boolean CQ,
- count the number of result tuples,
- enumerate the result relation with constant delay.

q-hierarchical queries

$$
\varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z)
$$

q-hierarchical queries

$$
\begin{aligned}
& \varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z) \\
& |\varphi(D)|=\sum_{v \in R^{D}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|
\end{aligned}
$$

q-hierarchical queries

$$
\begin{aligned}
& \varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z) \\
& |\varphi(D)|=\sum_{v \in R^{0}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|
\end{aligned}
$$

- COUNT: store $\left|N_{E}^{+}(v)\right|,\left|N_{F}^{+}(v)\right|, \sum_{v \in R^{0}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|$

q-hierarchical queries

$$
\begin{aligned}
& \varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z) \\
& |\varphi(D)|=\sum_{v \in R^{0}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|
\end{aligned}
$$

- COUNT: store $\left|N_{E}^{+}(v)\right|,\left|N_{F}^{+}(v)\right|, \sum_{v \in R^{0}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|$
- ENUM: store $N_{E}^{+}(v), N_{F}^{+}(v)$ as lists with constant access, for $v \in R^{D}$ report $\{v\} \times N_{E}^{+}(v) \times N_{F}^{+}(v)$

q-hierarchical queries

$$
\begin{aligned}
& \varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z) \\
& |\varphi(D)|=\sum_{v \in R^{D}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|
\end{aligned}
$$

- COUNT: store $\left|N_{E}^{+}(v)\right|,\left|N_{F}^{+}(v)\right|, \sum_{v \in R^{D}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|$
- ENUM: store $N_{E}^{+}(v), N_{F}^{+}(v)$ as lists with constant access, for $v \in R^{D}$ report $\{v\} \times N_{E}^{+}(v) \times N_{F}^{+}(v)$

q-hierarchical queries

$$
\begin{aligned}
& \varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z) \\
& |\varphi(D)|=\sum_{v \in R^{0}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|
\end{aligned}
$$

- COUNT: store $\left|N_{E}^{+}(v)\right|,\left|N_{F}^{+}(v)\right|, \sum_{v \in R^{D}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|$
- ENUM: store $N_{E}^{+}(v), N_{F}^{+}(v)$ as lists with constant access, for $v \in R^{D}$ report $\{v\} \times N_{E}^{+}(v) \times N_{F}^{+}(v)$

Definition (q-tree):

A q-tree T for a CQ $\varphi\left(x_{1}, \ldots, x_{\ell}\right)$ is a rooted tree with $V(T)=\operatorname{vars}(\varphi)$ and

q-hierarchical queries

$$
\begin{aligned}
& \varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z) \\
& |\varphi(D)|=\sum_{v \in R^{0}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|
\end{aligned}
$$

- COUNT: store $\left|N_{E}^{+}(v)\right|,\left|N_{F}^{+}(v)\right|, \sum_{v \in R^{D}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|$
- ENUM: store $N_{E}^{+}(v), N_{F}^{+}(v)$ as lists with constant access, for $v \in R^{D}$ report $\{v\} \times N_{E}^{+}(v) \times N_{F}^{+}(v)$

Definition (q-tree):

A q-tree T for a CQ $\varphi\left(x_{1}, \ldots, x_{\ell}\right)$ is a rooted tree with $V(T)=\operatorname{vars}(\varphi)$ and

1. for every $R\left(y_{1}, \ldots, y_{r}\right)$ in $\varphi:\left\{y_{1}, \ldots, y_{r}\right\}$ forms a path in T that starts at the root

q-hierarchical queries

$$
\begin{aligned}
& \varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z) \\
& |\varphi(D)|=\sum_{v \in R^{D}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|
\end{aligned}
$$

- COUNT: store $\left|N_{E}^{+}(v)\right|,\left|N_{F}^{+}(v)\right|, \sum_{v \in R^{0}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|$
- ENUM: store $N_{E}^{+}(v), N_{F}^{+}(v)$ as lists with constant access, for $v \in R^{D}$ report $\{v\} \times N_{E}^{+}(v) \times N_{F}^{+}(v)$

Definition (q-tree):

A q-tree T for a CQ $\varphi\left(x_{1}, \ldots, x_{\ell}\right)$ is a rooted tree with $V(T)=\operatorname{vars}(\varphi)$ and

1. for every $R\left(y_{1}, \ldots, y_{r}\right)$ in $\varphi:\left\{y_{1}, \ldots, y_{r}\right\}$ forms a path in T that starts at the root
2. the free variables $\left\{x_{1}, \ldots, x_{\ell}\right\}$ form a connected subtree that contains the root

q-hierarchical queries

$$
\begin{aligned}
& \varphi(x, y, z):=R(x) \wedge E(x, y) \wedge F(x, z) \\
& |\varphi(D)|=\sum_{v \in R^{0}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|
\end{aligned}
$$

- COUNT: store $\left|N_{E}^{+}(v)\right|,\left|N_{F}^{+}(v)\right|, \sum_{v \in R^{D}}\left|N_{E}^{+}(v)\right| \cdot\left|N_{F}^{+}(v)\right|$
- ENUM: store $N_{E}^{+}(v), N_{F}^{+}(v)$ as lists with constant access, for $v \in R^{D}$ report $\{v\} \times N_{E}^{+}(v) \times N_{F}^{+}(v)$

Definition (q-tree):

A q-tree T for a CQ $\varphi\left(x_{1}, \ldots, x_{\ell}\right)$ is a rooted tree with $V(T)=\operatorname{vars}(\varphi)$ and

1. for every $R\left(y_{1}, \ldots, y_{r}\right)$ in $\varphi:\left\{y_{1}, \ldots, y_{r}\right\}$ forms a path in T that starts at the root
2. the free variables $\left\{x_{1}, \ldots, x_{\ell}\right\}$ form a connected subtree that contains the root

Lemma: A CQ $\varphi(\bar{x})$ is q-hierarchical \Longleftrightarrow every connected component of $\varphi(\bar{x})$ has a q-tree.

Data structure for q-hierarchical queries

$\varphi\left(x, y, z, y^{\prime}, z^{\prime}\right)=\left(R x y z \wedge R x y z^{\prime} \wedge E x y \wedge E x y^{\prime} \wedge S x y z\right)$

Data structure for q-hierarchical queries

$$
\varphi\left(x, y, z, y^{\prime}, z^{\prime}\right)=\left(R x y z \wedge R x y z^{\prime} \wedge E x y \wedge E x y^{\prime} \wedge S x y z\right)
$$

- $S(b, p, a), R(b, p, a), R(b, p, b), R(b, p, c) \in D, E(b, p) \notin D$

Data structure for q-hierarchical queries

$$
\varphi\left(x, y, z, y^{\prime}, z^{\prime}\right)=\left(R x y z \wedge R x y z^{\prime} \wedge E x y \wedge E x y^{\prime} \wedge S x y z\right)
$$

- $S(b, p, a), R(b, p, a), R(b, p, b), R(b, p, c) \in D, E(b, p) \notin D$
- INSERT $E(b, p)$

Summary

- Input:
- Database D
arbitrary
[Berkholz, Keppeler, S., PODS'17]
q-hierarchical CQ
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing: $\operatorname{poly}(\varphi):=\|\varphi\|^{O(1)}$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D) \quad$ in time $\operatorname{poly}(\varphi)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time poly (φ) Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical.

Summary

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:
[Berkholz, Keppeler, S., PODS'17]
arbitrary
combined complexity
q-hierarchical CQ
$\operatorname{poly}(\varphi):=\|\varphi\|^{O(1)}$
in time poly $(\varphi)\|D\|$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$ with delay poly (φ)
- Dynamic setting: update data structure in time poly (φ) Tuples may be inserted into or deleted from D
After every update we want to update the data structure and report the new query result quickly: in time constant or polylog $(\|D\|)$. Main result: This is possible $\Longleftrightarrow \varphi$ is q-hierarchical. Ongoing work: Similar results for UCQs \& FDs.

Summary

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:
arbitrary
[Berkholz, Keppeler, S., PODS'17]
q-hierarchical CQ
combined complexity $\operatorname{poly}(\varphi):=\|\varphi\|^{O(1)}$

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time poly (φ) Tuples may be inserted into or deleted from D

Related work: [Idris, Ugarte, Vansummeren, SIGMOD'17]: q-hierarchical queries are also efficient in practice!

Overview

Introduction

Conjunctive Queries on Arbitrary Databases

First-Order Queries on Bounded Degree Databases

FO+MOD queries and $\mathrm{FOC}(\mathbb{P})$ queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	\vdots

Is the number of movies with Sigourney Weaver even?
 In FO+MOD:
 $\exists^{0 \bmod 2} y \operatorname{Movie}(y$, "Sigourney Weaver")

FO+MOD queries and $\mathrm{FOC}(\mathbb{P})$ queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	\vdots

Is the number of movies with

Sigourney Weaver even?

In FO+MOD:
$\exists^{0 \bmod 2}$ y $\operatorname{Movie}(y$, "Sigourney Weaver")

FO+MOD $=$ extension of first-order logic with modulo-counting quantifiers $\exists^{i \bmod m}$ y $\psi(y, \bar{z})$

FO+MOD queries and $\mathrm{FOC}(\mathbb{P})$ queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	\vdots

Is the number of movies with

Sigourney Weaver even?

In FO+MOD:

$\exists^{0 \bmod 2}$ y Movie (y, "Sigourney Weaver")
In $\operatorname{FOC}(\mathbb{P})$:
$P_{\text {even }}(\#(y) . M o v i e(y$, "Sigourney Weaver"))

FO+MOD $=$ extension of first-order logic with modulo-counting quantifiers $\exists^{i \bmod m}$ y $\psi(y, \bar{z})$

$\mathrm{FO}+\mathrm{MOD}$ queries and $\mathrm{FOC}(\mathbb{P})$ queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	\vdots

Is the number of movies with

Sigourney Weaver even?

In FO+MOD:
$\exists^{0 \bmod 2} y \operatorname{Movie}(y$, "Sigourney Weaver")
In $\operatorname{FOC}(\mathbb{P})$:
$P_{\text {even }}(\#(y) . M o v i e(y$, "Sigourney Weaver"))

FO+MOD $=$ extension of first-order logic with modulo-counting quantifiers $\exists^{i \bmod m}$ y $\psi(y, \bar{z})$

Let \mathbb{P} be a collection of numerical predicates. E.g., \mathbb{P} may contain the predicates $\llbracket P_{\text {even }} \rrbracket=\{i \in \mathbb{Z}: i$ is even $\}$ and $\llbracket P_{\leqslant \rrbracket} \rrbracket=\left\{(i, j) \in \mathbb{Z}^{2}: i \leqslant j\right\}$.

$\mathrm{FO}+\mathrm{MOD}$ queries and $\mathrm{FOC}(\mathbb{P})$ queries

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
\vdots	\vdots

Is the number of movies with Sigourney Weaver even?

In FO+MOD:
$\exists^{0 \bmod 2}$ y $\operatorname{Movie}(y$, "Sigourney Weaver")
In $\operatorname{FOC}(\mathbb{P})$:
$P_{\text {even }}(\#(y) . M o v i e(y$, "Sigourney Weaver"))

FO+MOD $=$ extension of first-order logic with modulo-counting quantifiers $\exists^{i \bmod m}$ y $\psi(y, \bar{z})$

Let \mathbb{P} be a collection of numerical predicates. E.g., \mathbb{P} may contain the predicates $\llbracket P_{\text {even }} \rrbracket=\{i \in \mathbb{Z}: i$ is even $\}$ and $\llbracket P_{\leqslant} \rrbracket=\left\{(i, j) \in \mathbb{Z}^{2}: i \leqslant j\right\}$.
FOC $(\mathbb{P})=$ extension of first-order logic with formulas of the form
$P\left(t_{1}, \ldots, t_{r}\right)$ for $P \in \mathbb{P}$ of arity r, and where each t_{i} is a counting term built using integers,,$+ \cdot$, and basic counting terms $t(\bar{x})$ of the form $\# \bar{y} \cdot \psi(\bar{x}, \bar{y})$

Bounded degree databases

Graph $G=(V, E)$:
degree of a node v : the number of neighbours of v in G degree of $G: \max \{\operatorname{degree}(v): v \in V\}$

Database D : degree of D : degree of the Gaifman graph of D

Gaifman graph of D :
the graph $G=(V, E)$ with $V=\operatorname{adom}(D)$ and an edge between two distinct nodes $a, b \in V$ iff some tuple in some relation of D contains a and b

Known results for the static setting (i.e., without updates)

FO query evaluation on dbs of degree $\leqslant d$ Boolean queries:

- evaluation in linear time

Known results for the static setting (i.e., without updates) FO query evaluation on $d b s$ of degree $\leqslant d$

Boolean queries:

- evaluation in linear time
- evaluation in time $f(\varphi, d)\|D\|$, for

$$
f(\varphi, d)=2^{d^{2 O(\|\varphi\|)}}=3-\exp (\|\varphi\|+\lg \lg d)
$$

and the 3-fold exponential blow-up is unavoidable assuming FPT $\neq \mathrm{AW}[*]$.

Known results for the static setting (i.e., without updates) FO query evaluation on $d b s$ of degree $\leqslant d$

Boolean queries:

- evaluation in linear time
- evaluation in time $f(\varphi, d)\|D\|$, for

$$
f(\varphi, d)=2^{d^{2 O(\|\varphi\|)}}=3-\exp (\|\varphi\|+\lg \lg d)
$$

and the 3 -fold exponential blow-up is unavoidable assuming FPT $\neq \mathrm{AW}[*]$.
Non-Boolean queries:

- enumeration with constant delay and linear-time preprocessing (Durand, Grandjean 2007)

Known results for the static setting (i.e., without updates)
FO query evaluation on dbs of degree $\leqslant d$
Boolean queries:

- evaluation in linear time
(Seese 1996)
- evaluation in time $f(\varphi, d)\|D\|$, for

$$
f(\varphi, d)=2^{d^{d^{O(\|\varphi\|)}}}=3-\exp (\|\varphi\|+\lg \lg d)
$$

and the 3-fold exponential blow-up is unavoidable assuming FPT $\neq \mathrm{AW}[*]$.
Non-Boolean queries:

- enumeration with constant delay and linear-time preprocessing
(Durand, Grandjean 2007)
- delay $f(\varphi, d)$ and preprocessing $f(\varphi, d)\|D\|$, where $f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d) \quad$ (Kazana, Segoufin 2011)

Known results for the static setting (i.e., without updates)
FO query evaluation on $d b s$ of degree $\leqslant d$
Boolean queries:

- evaluation in linear time
(Seese 1996)
- evaluation in time $f(\varphi, d)\|D\|$, for

$$
f(\varphi, d)=2^{d^{d^{O(\|\varphi\|)}}}=3-\exp (\|\varphi\|+\lg \lg d)
$$

and the 3-fold exponential blow-up is unavoidable assuming FPT $\neq \mathrm{AW}[*]$.
Non-Boolean queries:

- enumeration with constant delay and linear-time preprocessing
(Durand, Grandjean 2007)
- delay $f(\varphi, d)$ and preprocessing $f(\varphi, d)\|D\|$, where $f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d) \quad$ (Kazana, Segoufin 2011)

Similar results for other classes of databases

Known results for the static setting (i.e., without updates)
FO query evaluation on $d b s$ of degree $\leqslant d$

Boolean queries:

- evaluation in linear time
- evaluation in time $f(\varphi, d)\|D\|$, for

$$
f(\varphi, d)=2^{d^{2}(\|\varphi\|)}=3-\exp (\|\varphi\|+\lg \lg d)
$$

and the 3-fold exponential blow-up is unavoidable assuming FPT $\neq \mathrm{AW}[*]$.
Non-Boolean queries:

- enumeration with constant delay and linear-time preprocessing (Durand, Grandjean 2007)
- delay $f(\varphi, d)$ and preprocessing $f(\varphi, d)\|D\|$, where $f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d) \quad$ (Kazana, Segoufin 2011)

New: Generalisation to the dynamic setting and FO+MOD [Berkholz, Keppeler, S., ICDT'17] and FOC(P) [Kuske, S., LICS'17]

Scenario

- Input:
- Database D
of degree $\leqslant d$
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in $\operatorname{FOC}(\mathbb{P})[\sigma]$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
of degree $\leqslant d$
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
in $\operatorname{FOC}(\mathbb{P})[\sigma]$
data complexity
in time $O(\|D\|)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
of degree $\leqslant d$
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
in $\operatorname{FOC}(\mathbb{P})[\sigma]$
- Preprocessing:
D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
of degree $\leqslant d$
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
in $\operatorname{FOC}(\mathbb{P})[\sigma]$
- Preprocessing:
D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
of degree $\leqslant d$
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:
in time $O(\|D\|)$
Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
of degree $\leqslant d$
- query $\varphi\left(x_{1}, \ldots, x_{k}\right) \quad$ in $\operatorname{FOC}(\mathbb{P})[\sigma]$
- Preprocessing:
in time $O(\|D\|)$
Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting:

Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
of degree $\leqslant d$
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$
- Preprocessing:
in time $O(\|D\|)$
Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in constant time Tuples may be inserted into or deleted from D

Scenario

 [Berkholz, Keppeler, S., ICDT'17]- Input:
- Database D
of degree $\leqslant d$
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing: $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$

Build a suitable data structure that represents D and $\varphi(D)$

- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in constant time Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing:
combined complexity $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in constant time
For k-ary queries:
- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing:
combined complexity $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D) \quad$ in constant time
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$ in constant time
- Enumerate the tuples in $\varphi(D)$ with constant delay
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing:
combined complexity $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D) \quad$ in constant time
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing:
combined complexity $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing:
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
in time $O\left(k^{2}\right)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D

Scenario

- Input:
- Database D
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD $[\sigma]$
- Preprocessing:
combined complexity $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
in time $O\left(k^{2}\right)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D
Proof method: use Hanf normal form for FO+MOD

Hanf normal form for FO+MOD

- A type τ with k centres and radius r :

Example type with $k=4$ centres and radius $r=1$

Hanf normal form for FO+MOD

- A type τ with k centres and radius r :

Example type with $k=4$ centres and radius $r=1$

- $\mathcal{N}_{r}^{D}(\bar{b})$ is the induced substructure of D on

$$
N_{r}^{D}(\bar{b})=N_{r}^{D}\left(b_{1}\right) \cup \cdots \cup N_{r}^{D}\left(b_{k}\right)
$$

where

$$
N_{r}^{D}\left(b_{i}\right)=\left\{a \in \operatorname{adom}(D): \operatorname{dist}^{D}\left(b_{i}, a\right) \leqslant r\right\}
$$

Hanf normal form for FO+MOD

- A type τ with k centres and radius r :

Example type with $k=4$ centres and radius $r=1$

- $\mathcal{N}_{r}^{D}(\bar{b})$ is the induced substructure of D on

$$
N_{r}^{D}(\bar{b})=N_{r}^{D}\left(b_{1}\right) \cup \cdots \cup N_{r}^{D}\left(b_{k}\right)
$$

where

$$
N_{r}^{D}\left(b_{i}\right)=\left\{a \in \operatorname{adom}(D): \operatorname{dist}^{D}\left(b_{i}, a\right) \leqslant r\right\}
$$

- Sphere-formula $\operatorname{sph}_{\tau}(\bar{x})$:

$$
(D, \bar{a}) \models \operatorname{sph}_{\tau}(\bar{x}) \quad \Longleftrightarrow \quad\left(\mathcal{N}_{r}^{D}(\bar{a}), \bar{a}\right) \cong \tau
$$

Hanf normal form for FO+MOD

A Hanf normal form $\psi(\bar{x})$ is a Boolean combination of

- sphere-formulas $\operatorname{sph}_{\rho}(\bar{x})$ and
- Hanf-sentences $\exists^{\geqslant m} y \operatorname{sph}_{\tau}(y)$ and $\exists^{i \bmod m} y \operatorname{sph}_{\tau}(y)$ where τ is a type with 1 centre and radius r.

Hanf normal form for FO+MOD

A Hanf normal form $\psi(\bar{x})$ is a Boolean combination of

- sphere-formulas $\operatorname{sph}_{\rho}(\bar{x})$ and
- Hanf-sentences $\exists^{\geqslant m} y \operatorname{sph}_{\tau}(y)$ and $\exists^{i \bmod m} y \operatorname{sph}_{\tau}(y)$ where τ is a type with 1 centre and radius r.

Two queries $\varphi(\bar{x})$ and $\psi(\bar{x})$ are d-equivalent iff

$$
(D, \bar{a}) \models \varphi \quad \Longleftrightarrow \quad(D, \bar{a}) \models \psi
$$

for all dbs D of degree $\leqslant d$.

Hanf normal form for $\mathrm{FO}+\mathrm{MOD}$

A Hanf normal form $\psi(\bar{x})$ is a Boolean combination of

- sphere-formulas $\operatorname{sph}_{\rho}(\bar{x})$ and
- Hanf-sentences $\exists^{\geqslant m} y \operatorname{sph}_{\tau}(y)$ and $\exists^{i \bmod m} y \operatorname{sph}_{\tau}(y)$ where τ is a type with 1 centre and radius r.

Two queries $\varphi(\bar{x})$ and $\psi(\bar{x})$ are d-equivalent iff

$$
(D, \bar{a}) \models \varphi \quad \Longleftrightarrow \quad(D, \bar{a}) \models \psi
$$

for all dbs D of degree $\leqslant d$.

Theorem (Heimberg, Kuske, S., LICS'16)
There is an algorithm which receives as input a degree bound $d \geqslant 2$ and a $\mathrm{FO}+\mathrm{MOD}[\sigma]$-formula $\varphi(\bar{x})$, and constructs a d-equivalent formula $\psi(\bar{x})$ in Hanf normal form.
The algorithm's runtime is $f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)$.

Main result for Boolean queries

Theorem
There is a dynamic algorithm that receives as input

- a degree bound $d \geqslant 2$,
- a Boolean FO+MOD[σ]-query φ, and
- a db D of degree $\leqslant d$,
and computes
- within $f(\varphi, d)\|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$ and allows to return the query result $\varphi(D)$ with answer time $O(1)$.

$$
f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)
$$

Main result for Boolean queries

Theorem
There is a dynamic algorithm that receives as input

- a degree bound $d \geqslant 2$,
- a Boolean FO+MOD[σ]-query φ, and
- a db D of degree $\leqslant d$,
and computes
- within $f(\varphi, d)\|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$
and allows to return the query result $\varphi(D)$ with answer time $O(1)$.

$$
f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)
$$

Proof Idea: Step 1: Transform φ into Hanf normal form ψ.

Proof idea (by example)

$$
\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)
$$

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=0, \quad \mathrm{~A}[\rho]=0$

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=0, \quad \mathrm{~A}[\rho]=0$
Database:

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=1 \quad, \mathrm{~A}[\rho]=0$
Database:

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=1 \quad, \quad \mathrm{~A}[\rho]=1$
Database:

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=1 \quad, \quad \mathrm{~A}[\rho]=1$
Database:

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=0 \quad, \quad \mathrm{~A}[\rho]=1$
Database:

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=1 \quad, \quad \mathrm{~A}[\rho]=1$
Database:

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=1 \quad, \quad \mathrm{~A}[\rho]=1$
Database:

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=0 \quad, \quad \mathrm{~A}[\rho]=1$
Database:

Proof idea (by example)

$\psi=\exists^{0 \bmod 2} y \operatorname{sph}_{\tau}(y) \wedge \exists^{0 \bmod 2} y \operatorname{sph}_{\rho}(y)$
Let τ be the type with 1 center and radius 2 :

Let ρ be the type with 1 center and radius 2 :

Data structure: $\quad \mathrm{A}[\tau]=0, \quad \mathrm{~A}[\rho]=2$
Database:

Main result for Boolean queries

Theorem
There is a dynamic algorithm that receives as input

- a degree bound $d \geqslant 2$,
- a Boolean FO+MOD[σ]-query φ, and
- a db D of degree $\leqslant d$,
and computes
- within $f(\varphi, d)\|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$ and allows to return the query result $\varphi(D)$ with answer time $O(1)$.

$$
f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)
$$

Main result for enumeration

Theorem
There is a dynamic algorithm that receives as input

- a degree bound $d \geqslant 2$,
- a k-ary FO+MOD[σ-query $\varphi(\bar{x})$, and
- a db D of degree $\leqslant d$,
and computes
- within $f(\varphi, d)\|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$ and allows to enumerate $\varphi(D)$ with delay $O\left(k^{3}\right)$.

$$
f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)
$$

Main result for enumeration

Theorem
There is a dynamic algorithm that receives as input

- a degree bound $d \geqslant 2$,
- a k-ary FO $+\mathrm{MOD}[\sigma]$-query $\varphi(\bar{x})$, and
- a db D of degree $\leqslant d$, and computes
- within $f(\varphi, d)\|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$ and allows to enumerate $\varphi(D)$ with delay $O\left(k^{3}\right)$.

$$
f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)
$$

Proof Idea:

Proof idea: Reduction to coloured graphs

```
Input:
Database \(D\)
FO+MOD-query \(\varphi\left(x_{1}, \ldots, x_{k}\right)\)
```

Same approach as in [Durand, S., Segoufin, PODS'14], but now we have to take care of updates!

Proof idea: Reduction to coloured graphs

$$
\begin{gathered}
\text { Input: } \\
\text { Database } D \\
\text { FO }+ \text { MOD-query } \varphi\left(x_{1}, \ldots, x_{k}\right)
\end{gathered} \underbrace{\downarrow} \begin{gathered}
\\
\sigma_{k}:=\left\{E, C_{1}, \ldots, C_{k}\right\} \\
\sigma_{k} \text {-structure } \mathcal{G} \\
\psi_{k}\left(x_{1}, \ldots, x_{k}\right):=\bigwedge_{i=1}^{k} C_{i}\left(x_{i}\right) \wedge \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right)
\end{gathered}
$$

Same approach as in [Durand, S., Segoufin, PODS'14], but now we have to take care of updates!

Proof idea: Reduction to coloured graphs

Same approach as in [Durand, S., Segoufin, PODS'14], but now we have to take care of updates!

Representing Databases by Coloured Graphs

$$
\varphi\left(x_{1}, \ldots, x_{k}\right) \quad \equiv_{d} \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_{i}}\left(x_{1}, \ldots, x_{k}\right) \quad \& \text { sentences }
$$

Representing Databases by Coloured Graphs

$$
\begin{aligned}
\varphi\left(x_{1}, \ldots, x_{k}\right) & \equiv_{d} \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_{i}}\left(x_{1}, \ldots, x_{k}\right) \quad \& \text { sentences } \\
\operatorname{sph}_{\tau}\left(\bar{x}_{1}, \ldots, \bar{x}_{c}\right) & \equiv_{d} \bigwedge_{j \in\{1, \ldots, c\}} \operatorname{sph}_{\tau_{j}}\left(\bar{x}_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg \operatorname{dist}_{\leqslant 2 r+1}\left(\bar{x}_{j}, \bar{x}_{j^{\prime}}\right)
\end{aligned}
$$

Representing Databases by Coloured Graphs

$$
\begin{aligned}
& \varphi\left(x_{1}, \ldots, x_{k}\right) \quad \equiv{ }_{d} \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_{i}}\left(x_{1}, \ldots, x_{k}\right) \quad \text { \& sentences } \\
& \operatorname{sph}_{\tau}\left(\bar{x}_{1}, \ldots, \bar{x}_{c}\right) \quad \equiv_{d} \bigwedge_{j \in\{1, \ldots, c\}} \operatorname{sph}_{\tau_{j}}\left(\bar{x}_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg \operatorname{dist}_{\leqslant 2 r+1}\left(\bar{x}_{j}, \bar{x}_{j^{\prime}}\right) \\
& \downarrow \\
& \varphi_{c}\left(z_{1}, \ldots, z_{c}\right) \quad:=\bigwedge_{j \in\{1, \ldots, c\}} C_{j}\left(z_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg E\left(z_{j}, z_{j^{\prime}}\right)
\end{aligned}
$$

Representing Databases by Coloured Graphs

$$
\begin{aligned}
& \varphi\left(x_{1}, \ldots, x_{k}\right) \quad \equiv_{d} \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_{i}}\left(x_{1}, \ldots, x_{k}\right) \quad \& \text { sentences } \\
& \operatorname{sph}_{\tau}\left(\bar{x}_{1}, \ldots, \bar{x}_{c}\right) \quad \equiv_{d} \bigwedge_{j \in\{1, \ldots, c\}} \operatorname{sph}_{\tau_{j}}\left(\bar{x}_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg \operatorname{dist}_{\leqslant 2 r+1}\left(\bar{x}_{j}, \bar{x}_{j^{\prime}}\right) \\
& \varphi_{c}\left(z_{1}, \ldots, z_{c}\right):=\bigwedge_{j \in\{1, \ldots, c\}} C_{j}\left(z_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg E\left(z_{j}, z_{j^{\prime}}\right) \\
& C_{j}^{\mathcal{G}_{D}}:=\left\{v_{\bar{a}}: \bar{a} \in \operatorname{adom}(D)^{\left|x_{j}\right|},\left(\mathcal{N}_{r}^{D}(\bar{a}), \bar{a}\right) \cong \tau_{j}\right\}
\end{aligned}
$$

Representing Databases by Coloured Graphs

$$
\begin{aligned}
& \varphi\left(x_{1}, \ldots, x_{k}\right) \quad \equiv \equiv_{d} \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_{i}}\left(x_{1}, \ldots, x_{k}\right) \quad \& \text { sentences } \\
& \operatorname{sph}_{\tau}\left(\bar{x}_{1}, \ldots, \bar{x}_{c}\right) \quad \equiv_{d} \bigwedge_{j \in\{1, \ldots, c\}} \operatorname{sph}_{\tau_{j}}\left(\bar{x}_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg \operatorname{dist}_{\leqslant 2 r+1}\left(\bar{x}_{j}, \bar{x}_{j^{\prime}}\right) \\
& \varphi_{c}\left(z_{1}, \ldots, z_{c}\right) \quad:=\bigwedge_{j \in\{1, \ldots, c\}} C_{j}\left(z_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg E\left(z_{j}, z_{j^{\prime}}\right) \\
& C_{j}^{\mathcal{G}_{D}}:=\left\{v_{\bar{a}}: \bar{a} \in \operatorname{adom}(D)^{\left|x_{j}\right|},\left(\mathcal{N}_{r}^{D}(\bar{a}), \bar{a}\right) \cong \tau_{j}\right\} \\
& V:=\bigcup_{j \in\{1, \ldots, c\}} C_{j}^{\mathcal{G}_{D}}
\end{aligned}
$$

Representing Databases by Coloured Graphs

$$
\left.\begin{array}{rl}
\varphi\left(x_{1}, \ldots, x_{k}\right) & \equiv_{d} \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_{i}}\left(x_{1}, \ldots, x_{k}\right) \\
\operatorname{sph}_{\tau}\left(\bar{x}_{1}, \ldots, \bar{x}_{c}\right) & \equiv_{d} \bigwedge_{j \in\{1, \ldots, c\}} \operatorname{sph}_{\tau_{j}}\left(\bar{x}_{j}\right)
\end{array}\right) \bigwedge_{j \neq j^{\prime}} \neg \operatorname{dist}^{2} \leqslant 2 r+1\left(\bar{x}_{j}, \bar{x}_{j^{\prime}}\right) .
$$

Representing Databases by Coloured Graphs

$$
\begin{aligned}
& \varphi\left(x_{1}, \ldots, x_{k}\right) \quad \equiv_{d} \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_{i}}\left(x_{1}, \ldots, x_{k}\right) \quad \text { \& sentences } \\
& \operatorname{sph}_{\tau}\left(\bar{x}_{1}, \ldots, \bar{x}_{c}\right) \quad \equiv_{d} \bigwedge_{j \in\{1, \ldots, c\}} \operatorname{sph}_{\tau_{j}}\left(\bar{x}_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg \operatorname{dist}_{\leqslant 2 r+1}\left(\bar{x}_{j}, \bar{x}_{j^{\prime}}\right) \\
& \varphi_{c}\left(z_{1}, \ldots, z_{c}\right) \quad:=\bigwedge_{j \in\{1, \ldots, c\}} C_{j}\left(z_{j}\right) \wedge \bigwedge_{j \neq j^{\prime}} \neg E\left(z_{j}, z_{j^{\prime}}\right) \\
& C_{j}^{\mathcal{G}_{D}}:=\left\{v_{\bar{a}}: \bar{a} \in \operatorname{adom}(D)^{\left|x_{j}\right|},\left(\mathcal{N}_{r}^{D}(\bar{a}), \bar{a}\right) \cong \tau_{j}\right\} \\
& V:=\bigcup_{j \in\{1, \ldots, c\}} \mathcal{C}_{j}^{\mathcal{G}_{D}} \quad E^{\mathcal{G}_{D}}:=\left\{\left(v_{\bar{a}}, v_{\bar{b}}\right) \in V^{2}: \operatorname{dist}^{D}(\bar{a}, \bar{b}) \leqslant 2 r+1\right\} \\
& \quad\left(\bar{a}_{1}, \ldots, \bar{a}_{c}\right) \in \operatorname{sph}_{\tau}(D) \quad \Longleftrightarrow \\
& \left(v_{\bar{a}_{1}}, \ldots, v_{\bar{a}_{c}}\right) \in \varphi_{c}\left(\mathcal{G}_{D}\right)
\end{aligned}
$$

Updating the graph (1)

Claim
If $D_{\text {new }}$ is obtained from $D_{\text {old }}$ by one update step, then $\mathcal{G}_{D_{\text {new }}}$ can be obtained from $\mathcal{G}_{D_{\text {old }}}$ by $d^{\mathcal{O}\left(k^{2} r+k\|\sigma\|\right)}$ update steps and additional computing time $2^{\mathcal{O}\left(\|\sigma\| k^{2} d^{2 r+2}\right)}$.

Updating the graph (1)

Claim
If $D_{\text {new }}$ is obtained from $D_{\text {old }}$ by one update step, then $\mathcal{G}_{D_{\text {new }}}$ can be obtained from $\mathcal{G}_{D_{\text {old }}}$ by $d^{\mathcal{O}\left(k^{2} r+k\|\sigma\|\right)}$ update steps and additional computing time $2^{\mathcal{O}\left(\|\sigma\| k^{2} d^{2 r+2}\right)}$.

- Assume, an update command update $R(\bar{a})$ is received

Updating the graph (1)

Claim
If $D_{\text {new }}$ is obtained from $D_{\text {old }}$ by one update step, then $\mathcal{G}_{D_{\text {new }}}$ can be obtained from $\mathcal{G}_{D_{\text {old }}}$ by $d^{\mathcal{O}\left(k^{2} r+k\|\sigma\|\right)}$ update steps and additional computing time $2^{\mathcal{O}\left(\|\sigma\| k^{2} d^{2 r+2}\right)}$.

- Assume, an update command update $R(\bar{a})$ is received
- Let $r^{\prime}:=r+(k-1)(2 r+1)$

Updating the graph (1)

Claim
If $D_{\text {new }}$ is obtained from $D_{\text {old }}$ by one update step, then $\mathcal{G}_{D_{\text {new }}}$ can be obtained from $\mathcal{G}_{D_{\text {old }}}$ by $d^{\mathcal{O}\left(k^{2} r+k\|\sigma\|\right)}$ update steps and additional computing time $2^{\mathcal{O}\left(\|\sigma\| k^{2} d^{2 r+2}\right)}$.

- Assume, an update command update $R(\bar{a})$ is received
- Let $r^{\prime}:=r+(k-1)(2 r+1)$
- Let $D^{\prime} \in\left\{D_{\text {old }}, D_{\text {new }}\right\}$ be the database where \bar{a} occurs in R.

Updating the graph (1)

Claim
If $D_{\text {new }}$ is obtained from $D_{\text {old }}$ by one update step, then $\mathcal{G}_{D_{\text {new }}}$ can be obtained from $\mathcal{G}_{D_{\text {old }}}$ by $d^{\mathcal{O}\left(k^{2} r+k\|\sigma\|\right)}$ update steps and additional computing time $2^{\mathcal{O}\left(\|\sigma\| k^{2} d^{2 r+2}\right)}$.

- Assume, an update command update $R(\bar{a})$ is received
- Let $r^{\prime}:=r+(k-1)(2 r+1)$
- Let $D^{\prime} \in\left\{D_{\text {old }}, D_{\text {new }}\right\}$ be the database where \bar{a} occurs in R.
- Let $U:=N_{r^{\prime}}^{D^{\prime}}(\bar{a})$

Updating the graph (1)

Claim
If $D_{\text {new }}$ is obtained from $D_{\text {old }}$ by one update step, then $\mathcal{G}_{D_{\text {new }}}$ can be obtained from $\mathcal{G}_{D_{\text {old }}}$ by $d^{\mathcal{O}\left(k^{2} r+k\|\sigma\|\right)}$ update steps and additional computing time $2^{\mathcal{O}\left(\|\sigma\| k^{2} d^{2 r+2}\right)}$.

- Assume, an update command update $R(\bar{a})$ is received
- Let $r^{\prime}:=r+(k-1)(2 r+1)$
- Let $D^{\prime} \in\left\{D_{\text {old }}, D_{\text {new }}\right\}$ be the database where \bar{a} occurs in R.
- Let $U:=N_{r^{\prime}}^{D^{\prime}}(\bar{a})$
- $C_{j}^{D}:=\left\{v_{b}: \bar{b} \in \operatorname{adom}(D)^{\left|x_{j}\right|}\right.$ with $\left.\left(\mathcal{N}_{r}^{D}(\bar{b}), \bar{b}\right) \cong \tau_{j}\right\}$

Updating the graph (1)

Claim
If $D_{\text {new }}$ is obtained from $D_{\text {old }}$ by one update step, then $\mathcal{G}_{D_{\text {new }}}$ can be obtained from $\mathcal{G}_{D_{\text {old }}}$ by $d^{\mathcal{O}\left(k^{2} r+k\|\sigma\|\right)}$ update steps and additional computing time $2^{\mathcal{O}\left(\|\sigma\| k^{2} d^{2 r+2}\right)}$.

- Assume, an update command update $R(\bar{a})$ is received
- Let $r^{\prime}:=r+(k-1)(2 r+1)$
- Let $D^{\prime} \in\left\{D_{\text {old }}, D_{\text {new }}\right\}$ be the database where \bar{a} occurs in R.
- Let $U:=N_{r^{\prime}}^{D^{\prime}}(\bar{a})$
- $C_{j}^{D}:=\left\{v_{b}: \bar{b} \in \operatorname{adom}(D)^{\left|x_{j}\right|}\right.$ with $\left.\left(\mathcal{N}_{r}^{D}(\bar{b}), \bar{b}\right) \cong \tau_{j}\right\}$
- Updating the colours:

$$
\text { 1: for } j=1 \text { to } c \text { do }
$$

2: \quad for every tuple $\bar{b} \in \bigcup_{\ell=1}^{k} U^{\ell}$ do
3: \quad if $\left(\mathcal{N}_{r}^{D_{\text {new }}}(\bar{b}), \bar{b}\right) \cong \tau_{j}$ then $C_{j} \leftarrow C_{j} \cup\left\{v_{\bar{b}}\right\}$
4: \quad else $\quad C_{j} \leftarrow C_{j} \backslash\left\{v_{\bar{b}}\right\}$

Afterwards: $C_{j}=C_{j}^{\mathcal{G}_{\text {Dew }}}$

Updating the graph (2)

- $E^{G_{D}}:=\left\{\left(v_{\bar{a}}, v_{b}\right) \in V^{2}: \operatorname{dist}^{D}(\bar{a}, \bar{b}) \leqslant 2 r+1\right\}$

Updating the graph (2)

- $E^{G_{D}}:=\left\{\left(v_{\bar{a}}, v_{\bar{b}}\right) \in V^{2}: \operatorname{dist}^{D}(\bar{a}, \bar{b}) \leqslant 2 r+1\right\}$
- Updating the edges: Before: $E=E^{\mathcal{G}_{D_{\text {old }}}}$
1: for every tuple $\bar{b} \in \bigcup_{\ell=1}^{k} U^{\ell}$ do
2: for every tuple $\bar{b}^{\prime} \in \bigcup_{\ell=1}^{k} U^{\ell}$ do
3: if condition (1), (2) and (3) holds then
4:
5:
6 :

$$
E \leftarrow E \cup\left\{\left(v_{\bar{b}}, v_{\bar{b}^{\prime}}\right)\right\}
$$

else

$$
E \leftarrow E \backslash\left\{\left(v_{\bar{b}}, v_{\bar{b}^{\prime}}\right)\right\}
$$

Afterwards: $E=E^{\mathcal{G}_{D_{\text {new }}}}$

Updating the graph (2)

- $E^{\mathcal{G}_{D}}:=\left\{\left(v_{\bar{a}}, v_{\bar{b}}\right) \in V^{2}: \operatorname{dist}^{D}(\bar{a}, \bar{b}) \leqslant 2 r+1\right\}$
- Updating the edges:

$$
\text { Before: } E=E^{\mathcal{G}_{\text {old }}}
$$

1: for every tuple $\bar{b} \in \bigcup_{\ell=1}^{k} U^{\ell}$ do
2: \quad for every tuple $\bar{b}^{\prime} \in \bigcup_{\ell=1}^{k} U^{\ell}$ do
3: if condition (1), (2) and (3) holds then
4: $\quad E \leftarrow E \cup\left\{\left(v_{\bar{b}}, v_{b^{\prime}}\right)\right\}$
5: else
6:

$$
E \leftarrow E \backslash\left\{\left(v_{\bar{b}}, v_{\bar{b}^{\prime}}\right)\right\}
$$

Afterwards: $E=E^{\mathcal{G}_{D_{\text {new }}}}$

- Conditions:
(1) There is a $j \in\{1, \ldots, c\}$ such that $\bar{b} \in C_{j}^{\mathcal{G}}$
(2) There is a $j^{\prime} \in\{1, \ldots, c\}$ such that $\bar{b}^{\prime} \in C_{j^{\prime}}^{\mathcal{G}}$
(3) $\operatorname{dist}^{D_{\text {new }}}\left(\bar{b}, \bar{b}^{\prime}\right) \leqslant 2 r+1$

Enumeration with delay $O\left(k^{3} d\right)$

$$
\psi_{k}\left(x_{1}, \ldots, x_{k}\right):=\bigwedge_{i=1}^{k} C_{i}\left(x_{i}\right) \wedge \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right)
$$

Enumeration with delay $O\left(k^{3} d\right)$

$$
\psi_{k}\left(x_{1}, \ldots, x_{k}\right):=\bigwedge_{i=1}^{k} C_{i}\left(x_{i}\right) \wedge \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right)
$$

for all $u_{1} \in C_{1}^{\mathcal{G}}$ do Enum $\left(u_{1}\right)$.
Output EOE.
function $\operatorname{Enum}\left(u_{1}, \ldots, u_{i}\right)$
if $i=k$ then
Output (u_{1}, \ldots, u_{i})
else

$$
\begin{aligned}
& \text { for all } u_{i+1} \in C_{i+1}^{\mathcal{G}} \text { do } \\
& \quad \text { if } u_{i+1} \notin \bigcup_{j=1}^{i} N^{\mathcal{G}}\left(u_{j}\right) \text { then } \\
& \quad \operatorname{Enum}\left(u_{1}, \ldots, u_{i}, u_{i+1}\right)
\end{aligned}
$$

Enumeration with delay $O\left(k^{3} d\right)$

$$
\psi_{k}\left(x_{1}, \ldots, x_{k}\right):=\bigwedge_{i=1}^{k} C_{i}\left(x_{i}\right) \wedge \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right)
$$

for all $u_{1} \in C_{1}^{\mathcal{G}}$ do Enum $\left(u_{1}\right)$.
Output EOE.
function $\operatorname{Enum}\left(u_{1}, \ldots, u_{i}\right)$
if $i=k$ then Output (u_{1}, \ldots, u_{i}) else

$$
\begin{aligned}
& \text { for all } u_{i+1} \in C_{i+1}^{\mathcal{G}} \text { do } \\
& \quad \text { if } u_{i+1} \notin \bigcup_{j=1}^{i} N^{\mathcal{G}}\left(u_{j}\right) \text { then } \\
& \quad \operatorname{Enum}\left(u_{1}, \ldots, u_{i}, u_{i+1}\right)
\end{aligned}
$$

Enumeration with delay $O\left(k^{3} d\right)$

$$
\begin{gathered}
\psi_{k}\left(x_{1}, \ldots, x_{k}\right) \\
i=1 \\
\text { Por all } u_{1}\left(x_{i}\right) \wedge C_{1}^{\mathcal{G}} \\
\text { Enum }\left(u_{1}\right) .
\end{gathered} \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right)
$$

Handling small colours

A colour $\ell \in\{1, \ldots, k\}$ is small $: \Longleftrightarrow\left|C_{\ell}^{\mathcal{G}}\right| \leqslant d k$

Handling small colours

A colour $\ell \in\{1, \ldots, k\}$ is small $: \Longleftrightarrow\left|C_{\ell}^{\mathcal{G}}\right| \leqslant d k$
W.I.o.g. let $I=\{1, \ldots, s\}$ be the set of small colours (with $s \leqslant k$).

Handling small colours

A colour $\ell \in\{1, \ldots, k\}$ is small $\quad: \Longleftrightarrow\left|C_{\ell}^{\mathcal{G}}\right| \leqslant d k$
W.I.o.g. let $I=\{1, \ldots, s\}$ be the set of small colours (with $s \leqslant k$).

$$
\mathcal{S}:=\left\{\left(u_{1}, \ldots, u_{s}\right) \in C_{1}^{\mathcal{G}} \times \cdots \times C_{s}^{\mathcal{G}}: \begin{array}{c}
\left(u_{j}, u_{j}\right) \notin E^{\mathcal{G}}, \\
\text { for all } j \neq j^{\prime}
\end{array}\right\}
$$

The set \mathcal{S} can be computed in time $O\left((d k)^{k}\right)$.

Handling small colours

A colour $\ell \in\{1, \ldots, k\}$ is small $\quad: \Longleftrightarrow\left|C_{\ell}^{\mathcal{G}}\right| \leqslant d k$
W.I.o.g. let $I=\{1, \ldots, s\}$ be the set of small colours (with $s \leqslant k$).

$$
\mathcal{S}:=\left\{\left(u_{1}, \ldots, u_{s}\right) \in C_{1}^{\mathcal{G}} \times \cdots \times C_{s}^{\mathcal{G}}: \begin{array}{c}
\left(u_{j}, u_{j^{\prime}}\right) \notin E^{\mathcal{G}}, \\
\text { for all } j \neq j^{\prime}
\end{array}\right\}
$$

The set \mathcal{S} can be computed in time $O\left((d k)^{k}\right)$.

$$
\bar{s} \in \mathcal{S} \quad \Longleftrightarrow \quad \text { ex. } \bar{a} \text { such that }(\bar{s}, \bar{a}) \in \varphi(D)
$$

The enumeration procedure

```
1: for all \(\left(u_{1}, \ldots, u_{s}\right) \in \mathcal{S}\) do
2: \(\quad \operatorname{Enum}\left(u_{1}, \ldots, u_{s}\right)\).
3: Output the end-of-enumeration message EOE.
4:
5: function \(\operatorname{Enum}\left(u_{1}, \ldots, u_{i}\right)\)
6: \(\quad\) if \(i=k\) then
7: output the tuple \(\left(u_{1}, \ldots, u_{i}\right)\)
8: else
9: \(\quad\) for all \(u_{i+1} \in C_{i+1}^{\mathcal{G}}\) do
10:
11:
if \(u_{i+1} \notin \bigcup_{j=1}^{i} N^{\mathcal{G}}\left(u_{j}\right)\) then
    Enum \(\left(u_{1}, \ldots, u_{i}, u_{i+1}\right)\)
where \(N^{\mathcal{G}}\left(u_{j}\right):=\left\{v \in V^{\mathcal{G}}:\left(u_{j}, v\right) \in E^{\mathcal{G}}\right\}\).
```

$$
\begin{aligned}
\psi_{k}\left(x_{1}, \ldots, x_{k}\right):= & \bigwedge_{i=1}^{\kappa} c_{i}\left(x_{i}\right) \wedge \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right) \\
\mathcal{S} & \text { large colours }
\end{aligned}
$$

$$
\begin{aligned}
\psi_{k}\left(x_{1}, \ldots, x_{k}\right):= & \bigwedge_{i=1}^{k} C_{i}\left(x_{i}\right) \wedge \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right) \\
\mathcal{S} & \text { large colours }
\end{aligned}
$$

update step: Insert a node into a colour C_{ℓ} with $\left|C_{\ell}^{\mathcal{G}}\right|=d k$

update step: Insert a node into a colour C_{ℓ} with $\left|C_{\ell}^{\mathcal{G}}\right|=d k$

update step: Delete a node from a colour C_{ℓ} with $\left|C_{\ell}^{\mathcal{G}}\right|=d k+1$

$$
\begin{aligned}
\psi_{k}\left(x_{1}, \ldots, x_{k}\right):= & \bigwedge_{i=1}^{k} C_{i}\left(x_{i}\right) \wedge \bigwedge_{i \neq j} \neg E\left(x_{i}, x_{j}\right) \\
\mathcal{S} & \text { large colours }
\end{aligned}
$$

update step: Delete a node from a colour C_{ℓ} with $\left|C_{\ell}^{\mathcal{G}}\right|=d k+1$

Main result for enumeration

Theorem
There is a dynamic algorithm that receives as input

- a degree bound $d \geqslant 2$,
- a k-ary FO $+\mathrm{MOD}[\sigma]$-query $\varphi(\bar{x})$, and
- a db D of degree $\leqslant d$, and computes
- within $f(\varphi, d)\|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$ and allows to enumerate $\varphi(D)$ with delay $O\left(k^{3}\right)$.

$$
f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)
$$

Main result for enumeration

Theorem

There is a dynamic algorithm that receives as input

- a degree bound $d \geqslant 2$,
- a k-ary FO+MOD[σ-query $\varphi(\bar{x})$, and
- a db D of degree $\leqslant d$, and computes
- within $f(\varphi, d)\|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$ and allows to enumerate $\varphi(D)$ with delay $\theta\left(k^{3}\right) f(\varphi, d)$.

$$
f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)
$$

For enumeration with delay $O\left(k^{3}\right)$: Use the skip-pointers that were introduced by [Durand, S., Segoufin, PODS'14] for the static setting and lift the approach to the dynamic setting.

Main result for enumeration

Theorem

There is a dynamic algorithm that receives as input

- a degree bound $d \geqslant 2$,
- a k-ary FO+MOD[σ-query $\varphi(\bar{x})$, and
- a db D of degree $\leqslant d$, and computes
- within $f(\varphi, d)\|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$ and allows to enumerate $\varphi(D)$ with delay $\theta\left(k^{3}\right) f(|\phi| / / d) \mid O\left(k^{3}\right)$.

$$
f(\varphi, d)=3-\exp (\|\varphi\|+\lg \lg d)
$$

For enumeration with delay $O\left(k^{3}\right)$: Use the skip-pointers that were introduced by [Durand, S., Segoufin, PODS'14] for the static setting and lift the approach to the dynamic setting.

Summary

 [Berkholz, Keppeler, S., ICDT'17]- Input:
- Database D
of degree $\leqslant d$
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing: $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ in time $f(\varphi, d)\|D\|$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$
in time $O(1)$
For k-ary queries:
- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
in time $O\left(k^{2}\right)$
- Enumerate the tuples in $\varphi(D)$ with delay $O\left(k^{3}\right)$
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D

Summary

 [Berkholz, Keppeler, S., ICDT'17]- Input:
- Database D
of degree $\leqslant d$
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing: $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ in time $f(\varphi, d)\|D\|$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
in time $O\left(k^{2}\right)$
- Enumerate the tuples in $\varphi(D)$ with delay $O\left(k^{3}\right)$
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D
Similar results for FO with counting FOC(\mathbb{P}) [Kuske, S., LICS'17].

Summary

 [Berkholz, Keppeler, S., ICDT'17]- Input:
- Database D
of degree $\leqslant d$
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing: $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ in time $f(\varphi, d)\|D\|$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
in time $O\left(k^{2}\right)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D
Similar results for FO with counting FOC(\mathbb{P}) [Kuske, S., LICS'17]. Future task: Revisit other results on FO model checking in the dynamic setting!

Summary

 [Berkholz, Keppeler, S., ICDT'17]- Input:
- Database D
of degree $\leqslant d$
combined complexity
- query $\varphi\left(x_{1}, \ldots, x_{k}\right)$ in FO+MOD[$\left.\sigma\right]$
- Preprocessing: $f(\varphi, d)=$ $3-\exp (\|\varphi\|+\lg \lg d)$ in time $f(\varphi, d)\|D\|$ Build a suitable data structure that represents D and $\varphi(D)$
- Output:

For Boolean queries:

- Decide if $D \models \varphi$

For k-ary queries:

- Compute the number of tuples in $\varphi(D)$
in time $O(1)$
- Test for a given tuple \bar{a} whether $\bar{a} \in \varphi(D)$
in time $O\left(k^{2}\right)$
- Enumerate the tuples in $\varphi(D)$
- Dynamic setting: update data structure in time $f(\varphi, d)$ Tuples may be inserted into or deleted from D
Similar results for FO with counting FOC(\mathbb{P}) [Kuske, S., LICS'17]. Future task: Revisit other results on FO model checking in the dynamic setting!
- Thank you! -

