Einführung in die formale Logik für IMP

Sommersemester 2025

Übungsblatt 2

Abgabe: bis 12. Mai 2025, 10.00 Uhr über Moodle

Beachten Sie die Abgabehinweise von Blatt 1

Aufgabe 1: (35 Punkte)

- (a) Geben Sie zu den folgenden Formeln jeweils die dualen Formeln an:
 - (i) A_{23}
 - (ii) $((\mathbf{1} \vee \mathbf{0}) \wedge \neg A_1)$
 - (iii) $\neg (\mathbf{1} \lor A_2) \land ((\neg \mathbf{0} \land A_5) \land (A_3 \land \neg ((A_3 \land \neg \mathbf{1}) \land \neg A_4)))$
- (b) Beweisen Sie, dass für alle Formeln $\varphi \in AL$, in denen keine Implikation vorkommt, gilt:

Wenn $\overset{\sim}{\varphi}$ nicht allgemeingültig ist, dann ist φ erfüllbar.

(c) Geben Sie die Wahrheitstafel für einen zur Implikation dualen Junktor an. D.h. definieren Sie einen 2-stelligen Junktor $\stackrel{\sim}{\to}$, so dass für alle $X,Y\in\mathsf{AS}$ und alle Interpretationen $\mathcal I$ gilt:

$$[\![X \xrightarrow{\sim} Y]\!]^{\mathcal{I}} = 1 - [\![X \to Y]\!]^{\tilde{\mathcal{I}}}.$$

Können Sie nun den Dualitätssatz (Satz 2.27) auch für aussagenlogische Formeln mit Implikationen formulieren? Begründen Sie Ihre Antwort.

Aufgabe 2: (30 Punkte)

(a) Finden Sie für die folgenden Formeln heraus, ob $\varphi_1 \equiv \varphi_2$ bzw. $\varphi_3 \equiv \varphi_4$ gilt.

$$\varphi_1 := (\neg A_0 \vee \neg A_1) \qquad \qquad \varphi_3 := (A_0 \vee (A_1 \wedge \neg A_2))$$

$$\varphi_2 := ((A_0 \wedge A_1) \to \neg (A_0 \vee A_2)) \qquad \qquad \varphi_4 := (\neg (A_0 \to A_1) \wedge (\neg A_2 \vee A_0))$$

Beweisen Sie, dass Ihre Antwort korrekt ist.

(b) Ist die folgende Behauptung korrekt?

Seien I und J beliebige endliche, nicht-leere Mengen und sei für jedes $i \in I$ und $j \in J$ eine aussagenlogische Formel $\varphi_{i,j}$ gegeben. Dann gilt

$$\bigwedge_{i \in I} \bigvee_{j \in J} \varphi_{i,j} \equiv \bigvee_{j \in J} \bigwedge_{i \in I} \varphi_{i,j}$$

Beweisen Sie, dass Ihre Antwort korrekt ist.

Aufgabe 3: (35 Punkte)

Beweisen Sie das Koinzidenzlemma der Aussagenlogik. Gehen Sie dazu wie folgt vor:

- (a) Geben Sie die rekursive Definition einer Funktion as : $AL \to \mathcal{P}(AS)$ an, so dass für jedes $\varphi \in AL$ gilt: $as(\varphi)$ ist genau die Menge aller Aussagensymbole, die in φ vorkommen.
- (b) Beweisen Sie, dass für jedes $\varphi \in AL$ gilt:

Für alle Interpretationen $\mathcal{I}_1: \mathsf{AS} \to \{0,1\}$ und $\mathcal{I}_2: \mathsf{AS} \to \{0,1\}$ mit $\mathcal{I}_1(X) = \mathcal{I}_2(X)$ für alle $X \in \mathrm{as}(\varphi)$ gilt: $\mathcal{I}_1 \models \varphi \iff \mathcal{I}_2 \models \varphi$.