Humboldt-Universität zu Berlin Institut für Informatik Lehrstuhl Logik in der Informatik Dr. André Frochaux

Automatentheorie

Sommersemester 2025

Übungsblatt 2

Zu bearbeiten bis: 16. Mai 2025, 12:45 Uhr

Bitte beachten Sie für die Abgabe Ihrer Lösung die Vorgaben auf unserer Webseite https://hu.berlin/at.

Aufgabe 1: (25 Punkte)

Beweisen oder widerlegen Sie die folgende Aussage:

Sei Σ ein Alphabet. Dann existiert ein MSO $[\sigma_{\Sigma}]$ -Satz φ , so dass auf allen σ_{Σ} -Strukturen \mathcal{A} gilt:

 $\mathcal{A} \models \varphi \iff \mathcal{A} \text{ ist eine Wortstruktur.}$

Bemerkung: Falls die Aussage wahr ist, bedeutet dies, dass die Eigenschaft, eine Wortstruktur zu sein, MSO-definierbar ist.

Aufgabe 2: (10+10+10=30 Punkte)

Sei $\Sigma = \{a, b, c\}$. Geben Sie für die folgenden Sprachen \mathcal{L}_a und \mathcal{L}_b jeweils einen MSO $[\sigma_{\Sigma}]$ -Satz an, der sie beschreibt.

- (a) Sei $k \in \mathbb{N}_{\geq 1}$. \mathcal{L}_a ist die Sprache, wobei für jedes Wort $w \in \mathcal{L}_a$ gilt: An der ersten und jeder k-ten Position des Wortes steht der Buchstabe a.
- (b) \mathcal{L}_b ist die Sprache, wobei für jedes Wort $w \in \mathcal{L}_b$ gilt: Die Vorkommen der Buchstaben a und b wechseln sich von Wortanfang bis Wortende ab und dazwischen dürfen beliebig viele c stehen.
- (c) Welche Sprache \mathcal{L}_c wird durch den unten stehenden Satz φ beschrieben?

$$\varphi = \exists X_0 \, \exists X_1 \, \exists X_2 \, \bigg(\exists x \, \Big(P_a(x) \wedge X_1(x) \wedge \forall y \, (y < x \to \neg P_a(y)) \Big)$$

$$\wedge \, \exists x \, \Big(P_a(x) \wedge X_0(x) \wedge \forall y \, (x < y \to \neg P_a(y)) \Big)$$

$$\wedge \, \forall x \, \forall y \, \Big(P_a(x) \wedge P_a(y) \wedge \forall z (x < z \wedge z < y \to \neg P_a(z)) \to$$

$$(X_0(x) \leftrightarrow X_1(y)) \wedge (X_1(x) \leftrightarrow X_2(y)) \wedge (X_2(x) \leftrightarrow X_0(y)) \Big) \bigg)$$

Welche der Sprachen ist auch FO-definierbar?¹

¹Die Aufgaben (a) und (b) stammen von M. Hofmann & M. Lange

Aufgabe 3: (15 + 10 = 25 Punkte)

Sei Σ ein für diese Aufgabe fest gewähltes Alphabet. Betrachten Sie folgende Entscheidungsprobleme:

- (a) Gegeben eine MSO-Formel φ , gilt für alle nicht-leeren Worte w, dass $\mathcal{A}_w \models \varphi$?
- (b) Gegeben eine MSO-Formel φ , gilt für alle nicht-leeren Worte w gerade Länge, dass $\mathcal{A}_w \models \varphi$? Geben Sie je einen Algorithmus an, der das Problem löst.²

Aufgabe 4: (20 Punkte)

Beweisen Sie die Bemerkung nach Definition 2.61. Das heißt, zeigen Sie folgende Aussage:

Die kanonische Kongruenz ist eine Kongruenz.

²Die Aufgabe 3 & 5 stammt n.m.W. von W. Thomas.