14. Juni 2024

Automatentheorie

Sommersemester 2024

Übungsblatt 7

Zu bearbeiten bis: 21. Juni 2024, 13:00 Uhr

Aufgabe 1:

(25 Punkte)

Sei $\Sigma = \Sigma_2 \cup \Sigma_0$ mit $\Sigma_0 = \{a, b\}$ und $\Sigma_2 = \{f\}$.

Betrachten Sie den folgenden DbuTA $\mathcal{A} = (\Sigma, Q, \Delta, F)$, mit:

-
$$Q = \{q_a, q_b, q_{aa}, q_{ab}, q_{ba}, q_{bb}\}, F = \{q_{aa}\}$$
 und

- δ:

$$\delta(a) = q_a \qquad \delta(b) = q_b$$

und für $\delta(x, y, f)$:

$x \setminus y$	q_a	q_b	q_{aa}	q_{ab}	q_{ba}	q_{bb}
$\begin{array}{c} \hline q_a \\ q_b \\ q_{aa} \\ q_{ab} \\ q_{ba} \\ q_{bb} \end{array}$	q_{aa}	q_{ab}	q_{aa}	q_{ab}	q_{aa}	q_{ab}
q_b	q_{ba}	q_{bb}	q_{ba}	q_{bb}	q_{ba}	q_{bb}
q_{aa}	q_{aa}	q_{ab}	q_{aa}	q_{ab}	q_{aa}	q_{ab}
q_{ab}	q_{aa}	q_{ab}	q_{aa}	q_{ab}	q_{aa}	q_{ab}
q_{ba}	q_{ba}	q_{bb}	q_{ba}	q_{bb}	q_{ba}	q_{bb}
q_{bb}	q_{ba}	q_{bb}	q_{ba}	q_{bb}	q_{ba}	q_{bb}

Minimieren Sie \mathcal{A} , analog zum Beispiel der Vorlesung.

Aufgabe 2: (25 Punkte)

Sei $\Sigma = \Sigma_0 \cup \Sigma_2$ mit $\Sigma_0 = \{a, b\}$ und $\Sigma_2 = \{f\}$.

Geben Sie reguläre Ausdrücke für die folgenden Baumsprachen an:

- (a) $T_a = \{t \in T_{\Sigma} \mid \text{, die H\"ohe des Baumes } t \text{ ist mindestens 2 } \}$
- (b) $T_b = \{t \in T_{\Sigma} \mid \text{, alle Blätter des Baumes } t \text{ haben gerade H\"ohe } \}$
- (c) $T_c = \{t \in T_{\Sigma} \mid \text{ die Blattbeschriftung von } t, \text{ von links nach rechts gelesen, hat den Infix } ba \}$

Aufgabe 3: (25 Punkte)

Sei $\Sigma = \Sigma_0 \cup \Sigma_2$ mit $\Sigma_0 = \Sigma_2 = \{0,1\}$. Welche Baumsprachen beschreiben die folgenden regulären Ausdrücke?

(a)
$$\begin{bmatrix} \begin{pmatrix} 0 \\ c_1 & c_0 & c_1 \end{pmatrix}^{*c_0} & .c_0 & 0 \end{bmatrix} .c_1 & 1$$

(b) $\begin{pmatrix} 0 \\ / \\ .c_0 & c_0 \end{pmatrix}^{*c_0} & \begin{bmatrix} 1 & .c_1 & \begin{pmatrix} 0 \\ / \\ .c_0 & c_0 \end{pmatrix}^{*c_0} & .c_0 & 0 \end{bmatrix}$

Aufgabe 4: (25 Punkte)

Sei $\Sigma = \Sigma_0 \cup \Sigma_2$ mit $\Sigma_0 = \{a, b\}$ und $\Sigma_2 = \{f\}$.

Betrachten Sie die Baumsprache T_1 und T_2 :

$$T_1 := \left\{ t \in T_{\Sigma} \,\middle|\, \begin{array}{c} \text{der ganz linke Blattknoten ist mit einem a und} \\ \text{der ganz rechte Blattknoten ist mit einem b beschriftet} \end{array} \right\}$$

$$T_2 := \left\{ t \in T_{\Sigma} \,\middle|\, \begin{array}{c} \text{in der Blattbeschriftung von } t \text{ gibt es, von links} \\ \text{nach rechts gelesen, ein } a \text{ direkt vor eine } b \end{array} \right\}$$

Geben Sie einen MSO-Satz φ_i für $i \in [2]$ über der Signatur σ_{Σ} an, so dass gilt $\varphi_i(T) = T_i$. Erläutern Sie, warum Ihre Sätze die richtige Baumsprache definiert.