31. Mai 2024

Automatentheorie

Sommersemester 2024

Übungsblatt 5

Zu bearbeiten bis: 7. Juni 2024, 13:00 Uhr

Aufgabe 1: (33 $\frac{1}{3}$ Punkte) Sei $\mathcal{L} = \mathcal{L}(b(a^*bb)^*)$.

- (a) Geben Sie den kanonischen Automaten $\mathfrak{A}_{\mathcal{L}}$ an.
- (b) Berechnen Sie das syntaktischen Monoid $T^{\mathfrak{A}_{\mathcal{L}}}$.
- (c) Entscheiden Sie, anhand Ihrer Lösung aus (b), ob die Sprache sternfrei regulär ist.

Begründen Sie in jeder Teilaufgabe, dass Ihre Aussagen richtig sind.

Aufgabe 2: $(33\frac{1}{3} \text{ Punkte})$

Seien $\mathfrak A$ und $\mathfrak B$ zwei AFA. Geben Sie eine Konstruktion, für einen AFA $\mathfrak C$ mit $\mathcal L(\mathfrak C) = \mathcal L(\mathfrak A)\mathcal L(\mathfrak B)$ an. Begründen Sie, dass Ihre Konstruktion korrekt ist und schätzen Sie die Anzahl der Zustände von $\mathfrak C$ in Abhängigkeit der Anzahl der Zustände von $\mathfrak A$ und $\mathfrak B$ ab.

Aufgabe 3: $\operatorname{Sei} \Sigma := \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}.$ (33\frac{1}{3} Punkte)

Ziel der Aufgabe ist es zwei Binärzahlen $x=0x_n\dots x_0$ und $y=0y_n\dots y_0$ zu addieren.

(a) Geben Sie einen Mealy Automaten \mathfrak{A} an, der unter der Eingabe $w = \begin{bmatrix} x_0 & x_1 \\ y_0 & y_1 \end{bmatrix} \dots \begin{bmatrix} x_n & 0 \\ y_n & 0 \end{bmatrix}$ die Ausgabe $z_0 z_1 \dots z_{n+1}$ erzeugt, so dass gilt:

$$\begin{array}{r}
0x_n \cdot x_0 \\
+ 0y_n \cdot y_0 \\
\hline
z_{n+1}z_n \cdot z_0
\end{array}$$

(b) Konstruieren Sie, analog zum Beweis aus der Vorlesung, einen Moore Automaten \mathfrak{B} , so dass \mathfrak{A} und \mathfrak{B} äquivalent sind.

Beachten Sie: Im Gegensatz zur Aufgabe 1 von Blatt 1, beginnen Ein- und Ausgabe mit den letzten Zeichen der Dualzahlen.