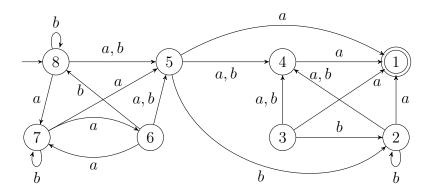
## Automatentheorie


Sommersemester 2024

## Übungsblatt 4

Zu bearbeiten bis: 31. Mai 2024, 13:00 Uhr

Aufgabe 1: (25 Punkte)

Konstruieren Sie den Quotienten-NFA  $\mathfrak{A}_{/_{\approx_{\mathfrak{A}}}}$ zu folgendem Automaten  $\mathfrak{A}:^{1}$ 



Aufgabe 2: (25 Punkte)

Beweisen Sie folgenden Satz aus der Vorlesung (Vgl. Skript S.83):

Die Funktion  $h: \Sigma^* \to T^{\mathfrak{A}}$  mit  $h(w) = w^{\mathfrak{A}}$  f.a.  $w \in \Sigma^*$  ist ein Monoidhomomorphismus.

Aufgabe 3: (25 Punkte)

Sei  $\Sigma = \{a, b\}$ . Für jedes  $n \in \mathbb{N}$  sei  $\mathcal{L}_n = \{ww \mid |w| = n\}$ . Konstruieren Sie AFA  $\mathfrak{A}_n$  mit möglichst wenigen Zuständen, so dass  $\mathcal{L}(\mathfrak{A}_n) = \mathcal{L}_n$ .

*Hinweis:* Es existieren AFA  $\mathfrak{A}_n$  mit  $\mathcal{L}(\mathfrak{A}_n) = \mathcal{L}_n$  und etwa 4n Zuständen.

Aufgabe 4: (25 Punkte)

Beweisen Sie folgenden Satz aus der Vorlesung (Vgl. Skript S.93):

Für jeden AFA  $\mathfrak A$  gilt:  $\mathcal L(\overline{\mathfrak A}) = \overline{\mathcal L(\mathfrak A)}$ .

<sup>&</sup>lt;sup>1</sup>Die Aufgabe stammt n.m.W. von W. Thomas.