Ausgewählte Kapitel der Logik: Lokalität

Sommersemester 2024

Übungsblatt 1

zu bearbeiten bis: 30. April 2024, 09.15 Uhr

Bitte beachten Sie die Hinweise zum Erwerb von Übungspunkten unter hu.berlin/lokalitaet.

Aufgabe 1: (20 + 20 Punkte)

Beweisen Sie Lemma 0.1:

Lemma 0.1. Sei σ eine Signatur und sei $r \in \mathbb{N}$.

(a) Es gibt eine $\mathsf{FO}[\sigma]$ -Formel $\mathsf{dist}_{\leq r}(x,y)$, s.d. f.a. σ -Strukturen \mathcal{A} und alle $a,b\in A$ gilt:

$$\mathcal{A} \models \operatorname{dist}_{\leqslant r}[a, b] \iff \operatorname{dist}^{\mathcal{A}}(a, b) \leqslant r$$
.

(b) Sei $k \in \mathbb{N}_{\geqslant 1}$ und sei τ ein r-Typ mit k Zentren. Für jedes $r' \in \mathbb{N}$ mit $r' \geqslant r$ gibt es eine $\mathsf{FO}[\sigma]$ -Formel $\mathsf{sph}_{\tau,r'}(x_1,\ldots,x_k)$, s.d. f.a. σ -Strukturen \mathcal{A} und alle $a_1,\ldots,a_k \in A$ gilt:

$$\mathcal{A} \models \operatorname{sph}_{\tau,r'}[a_1,\ldots,a_k] \iff \left(\mathcal{N}_{r'}^{\mathcal{A}}(a_1,\ldots,a_k), a_1,\ldots,a_k\right) \cong \tau.$$

Aufgabe 2: (30 Punkte)

Sei σ eine beliebige Signatur, $k \in \mathbb{N}$ mit $k \ge 2$, $\varphi(x_1, \dots, x_k)$ eine $\mathsf{FO+MOD}[\sigma]$ -Formel mit k freien Variablen x_1, \dots, x_k , sei $m \in \mathbb{N}_{\ge 1}$ und $i \in [0, m)$.

Konstruieren Sie einen $\mathsf{FO+MOD}[\sigma]$ -Satz ψ , s.d. f.a. σ -Strukturen \mathcal{A} gilt:

$$\mathcal{A} \models \psi \iff |\{(a_1, \dots, a_k) \in A^k : \mathcal{A} \models \varphi[a_1, \dots, a_k]\}| \equiv i \mod m$$
.

Aufgabe 3: (30 Punkte)

Beweisen Sie Lemma 0.3(e):

Lemma 0.3. Sei $d \in \mathbb{N}$ mit $d \ge 2$. Sei \mathcal{A} eine σ -Struktur von Grad $\leqslant d$. Sei $r \in \mathbb{N}$, $k \in \mathbb{N}_{\ge 1}$, $\bar{a} = (a_1, \ldots, a_k) \in A^k$. Dann gilt:

(e) Sei \mathcal{B} eine σ -Struktur von Grad $\leq d$ und sei $\bar{b} = (b_1, \dots, b_k) \in B^k$. Bei Eingabe von $\mathcal{A}, \bar{a}, \mathcal{B}, \bar{b}$ können wir in Zeit

$$\left(k \cdot \mathbf{v}_d(r)\right)^{\mathcal{O}(\|\sigma\| + k \cdot \mathbf{v}_d(r))} \leqslant 2^{\mathcal{O}\left(\|\sigma\| k^2 \mathbf{v}_d(r)^2\right)} \leqslant 2^{\mathcal{O}\left(\|\sigma\| k^2 d^{2r+2}\right)}$$

testen, ob $\left(\mathcal{N}_r^{\mathcal{A}}(\bar{a}), a_1, \dots, a_k\right) \cong \left(\mathcal{N}_r^{\mathcal{B}}(\bar{b}), b_1, \dots, b_k\right)$ gilt.