9. Mai 2023

Logik und Komplexität

Sommersemester 2023

Übungsblatt 3

Zu bearbeiten bis 16. Mai 2023

Aufgabe 1: (25 Punkte)

Sei Σ ein endliches Alphabet. Ist das folgende Problem entscheidbar? Beweisen Sie, dass Ihre Antwort korrekt ist.

ENDLICHES ERFÜLLBARKEITSPROBLEM FÜR $MSO[\sigma_{\Sigma}]$ AUF WORTEN

Eingabe: Ein MSO[σ_{Σ}]-Satz φ .

Frage: Gibt es ein $w \in \Sigma^+$, so dass $\mathcal{A}_w \models \varphi$?

Aufgabe 2: (13 + 12 = 25 Punkte)

Beweisen Sie die Aussagen (b) und (d) aus Lemma 2.14 der Vorlesung, d.h. konstruieren Sie die gesuchten nichtdeterministischen endlichen Automaten $\mathbb{A}_{le(X_i,X_j)}$ und $\mathbb{A}_{symb_a(X_i)}$.

Aufgabe 3: (25 Punkte)

Betrachten Sie das Alphabet $\Sigma := \{0, 1, a, b, c, d\}$. Beweisen oder widerlegen Sie die folgenden Aussagen:

- (a) Die Sprache $L := \{0(ac)^m (bd)^n 1 \mid m, n \in \mathbb{N}_{\geq 1}\}$ ist MSO-definierbar.
- (b) Die Sprache $M := \{0(ac)^n (bd)^n 1 \mid n \in \mathbb{N}_{\geq 1}\}$ ist MSO-definierbar.
- (c) Die Klasse aller Graphen, die einen Spannbaum mit Maximalgrad ≤ 3 besitzen, ist MSO-definierbar. D.h.: Es gibt einen MSO $[\sigma_{Graph}]$ -Satz φ , sodass für alle endlichen ungerichteten Graphen G und die zu G gehörige σ_{Graph} -Struktur \mathcal{A} gilt: $\mathcal{A} \models \varphi \iff G$ besitzt einen Spannbaum vom Maximalgrad ≤ 3 .

Hinweis: Sie können ähnlich vorgehen wie beim Beweis von Satz 2.17 und als Grundlage hierzu z.B. Teilaufgabe (b) verwenden.

Aufgabe 4: (25 Punkte)

Sei Σ ein (nicht-leeres) endliches Alphabet.

Zeigen Sie: Jede reguläre Baumsprache $L \subseteq T_{\Sigma}$ ist EMSO-definierbar.