Humboldt-Universität zu Berlin Institut für Informatik Lehrstuhl Logik in der Informatik Prof. Dr. Nicole Schweikardt

Logik und Komplexität

Sommersemester 2020

Übungsblatt 2

Zu bearbeiten bis 12. Mai 2020

Aufgabe 1:

Beweisen Sie folgende Verschärfung des Satzes von Trakhtenbrot:

Sei $\sigma_{\text{Graph}} := \{E\}$ die Signatur, die aus einem zweistelligen Relationssymbol E besteht. Das endliche Erfüllbarkeitsproblem für $\text{FO}[\sigma_{\text{Graph}}]$ ist unentscheidbar.

Hinweis: Verwenden Sie dazu Aufgabe 2 auf Blatt 1. Überlegen Sie sich eine geeignete Repräsentation von Strukturen über einer binären Signatur σ durch gerichtete Graphen (d.h. $\{E\}$ -Strukturen).

Aufgabe 2:

Sei σ eine Signatur, die mindestens ein 2-stelliges Relationssymbol enthält, sei $r \in \mathbb{N}_{\geqslant 1}$ und sei R ein r-stelliges Relationssymbol mit $R \notin \sigma$.

Eine FO[$\sigma \dot{\cup} \{R\}$]-Formel $\varphi(\bar{x})$ mit $\bar{x} = (x_1, \dots, x_r)$ heißt im Endlichen monoton in R, wenn für alle endlichen σ -Strukturen \mathcal{A} und alle Relationen $R_1^{\mathcal{A}}, R_2^{\mathcal{A}} \subseteq A^r$ gilt:

Falls
$$R_1^{\mathcal{A}} \subseteq R_2^{\mathcal{A}}$$
, so $[\![\varphi(\bar{x})]\!]^{(\mathcal{A},R_1^{\mathcal{A}})} \subseteq [\![\varphi(\bar{x})]\!]^{(\mathcal{A},R_2^{\mathcal{A}})}$,

wobei $\llbracket \varphi(\bar{x}) \rrbracket^{(\mathcal{A}, R_i^{\mathcal{A}})} := \{ \bar{a} \in A^r : (\mathcal{A}, R_i^{\mathcal{A}}) \models \varphi[\bar{a}] \}.$

Beweisen Sie, dass das folgende Problem unentscheidbar ist.

MONOTONIE IM ENDLICHEN:

Eingabe: Eine FO[$\sigma \dot{\cup} \{R\}$]-Formel $\varphi(\bar{x})$.

Frage: Ist $\varphi(\bar{x})$ im Endlichen monoton in R?

Hinweis: Benutzen Sie die in Aufgabe 1 bewiesene Version des Satzes von Trakhtenbrot.

— auf der nächsten Seite geht's weiter —

Aufgabe 3:

Sei $\sigma_{\text{Graph}} = \{E\}$, wobei E ein 2-stelliges Relationssymbol ist.

(a) Was drückt der folgende Satz in einem ungerichteten Graphen aus?

$$\forall X \left(\left(\exists x X(x) \ \land \ \exists x \, \neg X(x) \right) \rightarrow \ \exists x \exists y \left(X(x) \land E(x,y) \land \neg X(y) \right) \right)$$

- (b) Geben Sie einen $MSO[\sigma_{Graph}]$ -Satz an, der in einem ungerichteten Graphen G ausdrückt, dass G ein Baum ist.
- (c) Geben Sie einen $\mathrm{ESO}[\sigma_{\mathrm{Graph}}]$ -Satz an, der in einem ungerichteten Graphen G ausdrückt, dass G eine gerade Anzahl an Zusammenhangskomponenten enthält.

Aufgabe 4:

Diese Aufgabe ist zur Abgabe vorgesehen

Hinweis: Die für diese Aufgabe nötigen Definitionen zu Baumautomaten und regulären Baumsprachen finden Sie auf der Rückseite von Blatt 1 und am Ende des Blattes.

Sei L die Baumsprache aus Aufgabe 3 von Blatt 1. Zeigen Sie, dass L MSO-definierbar ist.

Begründen Sie, warum der von Ihnen angegebene $MSO[\tau_{\Sigma}]$ -Satz die Baumsprache L beschreibt.

Definitionen

Σ-Bäume und Logik. Zur Repräsentation von Σ-Bäumen durch logische Strukturen nutzen wir die Signatur $\tau_{\Sigma} := \{E_1, E_2\} \cup \{P_a : a \in \Sigma\}$, wobei E_1 und E_2 2-stellige und alle P_a 1-stellige Relationssymbole sind. Ist t ein Σ-Baum mit Knotenmenge V(t), Kantenmengen $E_1(t)$ und $E_2(t)$ und Beschriftungsfunktion λ , so repräsentieren wir t durch die τ_{Σ} -Struktur \mathcal{A}_t mit dem Universum V(t) und den Relationen $E_i^{\mathcal{A}_t} := E_i(t)$ (für jedes $i \in \{1,2\}$) und $P_a^{\mathcal{A}_t} := \{v \in V(t) : \lambda(v) = a\}$ (für jedes $a \in \Sigma$). Ein SO[τ_{Σ}]-Satz φ beschreibt eine Baumsprache L, wenn gilt: $L = \{t \in T_{\Sigma} : \mathcal{A}_t \models \varphi\}$. Eine Baumsprache $L \subseteq T_{\Sigma}$ heißt MSO-definierbar, wenn es einen $MSO[\tau_{\Sigma}]$ -Satz gibt, der L beschreibt.