Ausgewählte Kapitel der Logik

Sommersemester 2016

Übungsblatt 6

Zu bearbeiten 23. Juni 2016

Aufgabe 1: (20 Punkte)

Berechnen Sie die Gödelnummern der σ_{Ar} -Terme $\underline{0}, \underline{1}, \underline{2}$ und $\underline{3}$.

Aufgabe 2: (30 Punkte)

Beweisen Sie Lemma 3.8, d.h. zeigen Sie, dass die in den Definitionen 3.6 und 3.7 für die Signatur $\sigma := \sigma_{Ar}$ eingeführte Kodierung alle Eigenschaften aus Annahme 3.1 besitzt.

Aufgabe 3: (25 Punkte)

Beweisen Sie Behauptung 5 aus dem Beweis von Lemma 3.15, d.h. zeigen Sie, dass die Funktion $g: \mathbb{N}^2 \to \mathbb{N}$ mit

$$g(y_1, y_2) := \frac{1}{2}(y_1 + y_2 + 1)(y_1 + y_2) + y_2$$
, für alle $y_1, y_2 \in \mathbb{N}$,

bijektiv ist.

Aufgabe 4: (25 Punkte)

Definition: Die Menge Σ_1 besteht aus allen $FO[\sigma_{Ar}]$ -Formeln der Form $\exists x \varphi$, wobei x eine Variable und φ eine Δ_0 -Formel ist.

Definition: Für zwei FO[σ_{Ar}]-Formeln ψ und ψ' schreiben wir $\psi \equiv_{\leq -\text{ord}} \psi'$, falls für jede σ_{Ar} -Interpretation $\mathcal{I} = (\mathcal{A}, \beta)$, für die $\leq^{\mathcal{A}}$ eine lineare Ordnung ist, gilt: $\mathcal{I} \models \psi \iff \mathcal{I} \models \psi'$.

Seien φ_1 und φ_2 zwei Formeln in Σ_1 .

Zeigen Sie, dass es Σ_1 -Formeln φ_{\wedge} und φ_{\vee} gibt, so dass gilt:

$$\varphi_{\vee} \equiv_{\leq -\text{ord}} (\varphi_1 \vee \varphi_2)$$
 und $\varphi_{\wedge} \equiv_{\leq -\text{ord}} (\varphi_1 \wedge \varphi_2)$