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Data Stream Model

I Stream: m elements of some universe of size n

a1, a2, a3, . . . , am ai ∈ {1, . . . , n}
I Goal: gain information about stream

statistical information (median, frequency moments, ...),
longest increasing subsequence,...

I But: algorithms are restricted to

I sequential access to items in stream
I limited memory, sublinear in m and n
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Sampling

General idea:

I sample (= select) items from stream according to some rule

I rule is randomized or deterministic

I use sampled items to get information about whole stream

I only need to store sampled items
⇒ good for streaming
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Easy Starter

Sample out a single item uniformly at random from the stream

I Easy if m is known in advance:

I Pick a random number r ∈ {1, 2, . . . ,m}
I Go over the stream and snatch out sampled item

ar

But what if m is not known in advance?
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Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length
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Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: a1

take as sample
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Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: ar

replace with probability 1/2
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a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: ar

replace with probability 1/3
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Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: ar

replace with probability 1/4
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Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: ar

replace with probability 1/i
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Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: ar

replace with probability 1/m
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Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am
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i
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Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: ai

do not replace

Pr [final sample ai ] = 1
i × (1− 1

i+1 )
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Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: ai

do not replace

Pr [final sample ai ] = 1
i × (1− 1

i+1 )× (1− 1
i+2 )

Mariano Zelke Basic algorithmic techniques for data streams 6/12



Reservoir Sampling [J. Vitter ’85]

Sample out a single item uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , ai+1, ai+2, . . . , am

current sample: ai

do not replace

. . .

Pr [final sample ai ] = 1
i × (1− 1

i+1 )× (1− 1
i+2 )× . . . × (1− 1

m )
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i
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m
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length
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Sample out several items uniformly at random from the stream
without knowing its length
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Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a2 a3 a4

take into sample
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a2 a3 a4
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a2 a3 a4

a5

sample with probability 1/5
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a2 a3 a4

a5

replace a sampled element
uniformly at random 1

4
1
4

1
4

1
4

sample with probability 1/5
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a2 a3 a4

a5

replace a sampled element
uniformly at random

sample with probability 1/5
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a5 a3 a4
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a5 a3 a4
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a5 a3 a4

a6

sample with probability 1/6
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a5 a3 a4

a6
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples a1 a5 a3 a4
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples ar 1 ar 2 ar 3 ar 4
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples ar 1 ar 2 ar 3 ar 4

ai

sample with probability 1/i
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples ar 1 ar 2 ar 3 ar 4

ai

replace a sampled element
uniformly at random 1

4
1
4

1
4

1
4

sample with probability 1/i

Mariano Zelke Basic algorithmic techniques for data streams 6/12



Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples ar 1 ar 2 ar 3 ar 4

ai

replace a sampled element
uniformly at random 1

4
1
4

1
4

1
4

sample with probability 1/i

Memory usage for sampling k items:
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Reservoir Sampling [J. Vitter ’85]

Sample out several items uniformly at random from the stream
without knowing its length

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current samples ar 1 ar 2 ar 3 ar 4

ai

replace a sampled element
uniformly at random 1

4
1
4

1
4

1
4

sample with probability 1/i

Memory usage for sampling k items: k · log n
Mariano Zelke Basic algorithmic techniques for data streams 6/12



Sampling Applications

stream:
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Sampling Applications

stream:

sampling

samples:
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Sampling Applications

stream:

sampling

samples:

Goal: determine query selectivity on items of stream

(assume query to be invariant of stream order)
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Sampling Applications

stream:

sampling

samples:

determine selectivity of query on samples
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Sampling Applications

stream:

sampling

samples:

determine selectivity of query on samples

To get (1± ε)-estimate with probability 1− δ: What sample size s ?
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Sampling Applications

stream:

sampling

samples:

determine selectivity of query on samples

To get (1± ε)-estimate with probability 1− δ: What sample size s ?

Query selects m
c stream items ⇒ Exp[ s+ ] = s

c
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Sampling Applications

stream:

sampling

samples:

determine selectivity of query on samples

To get (1± ε)-estimate with probability 1− δ: What sample size s ?

Query selects m
c stream items ⇒ Exp[ s+ ] = s

c

Chernoff-Hoeffding-Ineq.: Pr [ |s+ − Exp[ s+ ]| > ε · s+ ] ≤ e−Θ(ε2s)
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Sampling Applications

stream:

sampling

samples:

determine selectivity of query on samples

To get (1± ε)-estimate with probability 1− δ: What sample size s ?

Query selects m
c stream items ⇒ Exp[ s+ ] = s

c

Chernoff-Hoeffding-Ineq.: Pr [ |s+ − Exp[ s+ ]| > ε · s+ ] ≤ e−Θ(ε2s)

sample O
(

1
ε2 · log 1

δ

)
items
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Sampling Applications

stream:

sampling

samples:

determine selectivity of query on samples

To get (1± ε)-estimate with probability 1− δ: What sample size s ?

Query selects m
c stream items ⇒ Exp[ s+ ] = s

c

Chernoff-Hoeffding-Ineq.: Pr [ |s+ − Exp[ s+ ]| > ε · s+ ] ≤ e−Θ(ε2s)

Memory usage: O
(

1
ε2 · log 1

δ

)
items × log n bits

Mariano Zelke Basic algorithmic techniques for data streams 7/12



Sampling Applications

stream:

sampling

samples:

determine selectivity of query on samples

To get (1± ε)-estimate with probability 1− δ: What sample size s ?

Query selects m
c stream items ⇒ Exp[ s+ ] = s

c

Chernoff-Hoeffding-Ineq.: Pr [ |s+ − Exp[ s+ ]| > ε · s+ ] ≤ e−Θ(ε2s)

Memory usage: O
(

1
ε2 · log 1

δ · log n
)

bits
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Sampling Applications

stream:

sampling

samples:
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Sampling Applications

stream:

sampling

samples:

Goal: find the median of the stream
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Sampling Applications

stream:

sampling

samples:

sort samples

sorted

samples: ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
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Sampling Applications

stream:

sampling

samples:

sort samples

sorted

samples: ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

Pick median of samples as an estimate of stream’s median

median of samples
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Sampling Applications

stream:

sampling

samples:

sort samples

sorted

samples: ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
median of samples

Pick median of samples as an estimate of stream’s median

To get (1± ε)-estimate with probability 1− δ:

sample O
(

1
ε2 · log 1

δ

)
items
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AMS Sampling [Alon, Matias, Szegedy ’96]

Stream a1, a2, a3, . . . , am

Frequency of an item: f i =
∣∣{j : a j = i}

∣∣
kth frequency moment Fk =

n∑
i=1

f k
i

Frequency moments provide useful statistics:

I F0: number of distinct elements in stream
I F1: length of stream, m
I F2: size of self join
I Fk , k ≥ 2: skew of distribution

Trivial determination of Fk : maintain counters for each f i

⇒ Ω(n) bits needed
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AMS Sampling [Alon, Matias, Szegedy ’96]

Stream a1, a2, a3, . . . , am

Frequency of an item: f i =
∣∣{j : a j = i}

∣∣
kth frequency moment Fk =

n∑
i=1

f k
i

Frequency moments provide useful statistics:

I F0: number of distinct elements in stream
I F1: length of stream, m
I F2: size of self join
I Fk , k ≥ 2: skew of distribution

Trivial determination of Fk : maintain counters for each f i

⇒ Ω(n) bits needed
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AMS Sampling [Alon, Matias, Szegedy ’96]

Stream a1, a2, a3, . . . , am

Frequency of an item: f i =
∣∣{j : a j = i}

∣∣

kth frequency moment Fk =
n∑

i=1
f k
i

Frequency moments provide useful statistics:

I F0: number of distinct elements in stream
I F1: length of stream, m
I F2: size of self join
I Fk , k ≥ 2: skew of distribution

Trivial determination of Fk : maintain counters for each f i

⇒ Ω(n) bits needed
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AMS Sampling [Alon, Matias, Szegedy ’96]

Stream a1, a2, a3, . . . , am

Frequency of an item: f i =
∣∣{j : a j = i}

∣∣
Example: stream 2, 3, 3, 2, 3, 1, 2, 3

f 1 = 1, f 2 = 3, f 3 = 4

Frequency moments provide useful statistics:

I F0: number of distinct elements in stream
I F1: length of stream, m
I F2: size of self join
I Fk , k ≥ 2: skew of distribution

Trivial determination of Fk : maintain counters for each f i

⇒ Ω(n) bits needed
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AMS Sampling [Alon, Matias, Szegedy ’96]

Stream a1, a2, a3, . . . , am

Frequency of an item: f i =
∣∣{j : a j = i}

∣∣
kth frequency moment Fk =

n∑
i=1

f k
i

Frequency moments provide useful statistics:

I F0: number of distinct elements in stream
I F1: length of stream, m
I F2: size of self join
I Fk , k ≥ 2: skew of distribution

Trivial determination of Fk : maintain counters for each f i

⇒ Ω(n) bits needed
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AMS Sampling [Alon, Matias, Szegedy ’96]

Stream a1, a2, a3, . . . , am

Frequency of an item: f i =
∣∣{j : a j = i}

∣∣
kth frequency moment Fk =

n∑
i=1

f k
i

Frequency moments provide useful statistics:
I F0: number of distinct elements in stream
I F1: length of stream, m
I F2: size of self join
I Fk , k ≥ 2: skew of distribution

Trivial determination of Fk : maintain counters for each f i

⇒ Ω(n) bits needed
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AMS Sampling [Alon, Matias, Szegedy ’96]

Stream a1, a2, a3, . . . , am

Frequency of an item: f i =
∣∣{j : a j = i}

∣∣
kth frequency moment Fk =

n∑
i=1

f k
i

Frequency moments provide useful statistics:
I F0: number of distinct elements in stream
I F1: length of stream, m
I F2: size of self join
I Fk , k ≥ 2: skew of distribution

Trivial determination of Fk : maintain counters for each f i

⇒ Ω(n) bits needed
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AMS Sampling [Alon, Matias, Szegedy ’96]

Stream a1, a2, a3, . . . , am

Frequency of an item: f i =
∣∣{j : a j = i}

∣∣
kth frequency moment Fk =

n∑
i=1

f k
i

Frequency moments provide useful statistics:
I F0: number of distinct elements in stream
I F1: length of stream, m
I F2: size of self join
I Fk , k ≥ 2: skew of distribution

Trivial determination of Fk : maintain counters for each f i

⇒ Ω(n) bits needed
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)

1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream

2. Compute r =
∣∣{j ′ : j ′ ≥ j , aj′ = aj}

∣∣
3. At the end of the stream calculate
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

Example: stream 2, 3, 3, 2, 3, 1, 2, 3

aj = 3, r = 3

3. At the end of the stream calculate
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

=
[
m(f k1 −(f1−1)k)
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

=
[
m(f k1 −(f1−1)k) + m((f1−1)k−(f1−2)k)

Mariano Zelke Basic algorithmic techniques for data streams 8/12



AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

=
[
m(f k1 −(f1−1)k) + m((f1−1)k−(f1−2)k) +. . .+ m(2k−1k)
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

=
[
m(f k1 −(f1−1)k) + m((f1−1)k−(f1−2)k) +. . .+ m(2k−1k) + m · 1k
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

=
[
m(f k1 −(f1−1)k) + m((f1−1)k−(f1−2)k) +. . .+ m(2k−1k) + m · 1k

+m(f k2 −(f2−1)k) + m((f2−1)k−(f2−2)k) +. . .+ m(2k−1k) + m · 1k
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

=
[
m(f k1 −(f1−1)k) + m((f1−1)k−(f1−2)k) +. . .+ m(2k−1k) + m · 1k

+m(f k2 −(f2−1)k) + m((f2−1)k−(f2−2)k) +. . .+ m(2k−1k) + m · 1k

. . .

+m(f kn −(fn−1)k) + m((fn−1)k−(fn−2)k) +. . .+ m(2k−1k) + m · 1k
]
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

=
[
m(f k1 −(f1−1)k) + m((f1−1)k−(f1−2)k) +. . .+ m(2k−1k) + m · 1k

+m(f k2 −(f2−1)k) + m((f2−1)k−(f2−2)k) +. . .+ m(2k−1k) + m · 1k

. . .

+m(f kn −(fn−1)k) + m((fn−1)k−(fn−2)k) +. . .+ m(2k−1k) + m · 1k
]

1
m
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

= f k1 + f k2 + f k3 + . . . + f kn
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

for k ≥ 1 : Exp[m(rk − (r − 1)k) ]

= f k1 + f k2 + f k3 + . . . + f kn = Fk
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

To get (1± ε)-estimate of Fk with probability 1− δ:
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

To get (1± ε)-estimate of Fk with probability 1− δ:

Run O
(
n1−1/k

ε2

)
parallel instances, take average A
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

To get (1± ε)-estimate of Fk with probability 1− δ:

Run O
(
n1−1/k

ε2

)
parallel instances, take average A

⇒ Chebyshev-Ineq.: Pr [ |A− Fk | > ε · Fk ] ≤ p < 1
2
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

To get (1± ε)-estimate of Fk with probability 1− δ:

Run O
(
n1−1/k

ε2

)
parallel instances, take average A

⇒ Chebyshev-Ineq.: Pr [ |A− Fk | > ε · Fk ] ≤ p < 1
2

Take median M over O
(
log 1

δ

)
such averages
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

To get (1± ε)-estimate of Fk with probability 1− δ:

Run O
(
n1−1/k

ε2

)
parallel instances, take average A

⇒ Chebyshev-Ineq.: Pr [ |A− Fk | > ε · Fk ] ≤ p < 1
2

Take median M over O
(
log 1

δ

)
such averages

⇒ Chernoff-Ineq.: Pr [ |M − Fk | > ε · Fk ] ≤ δ
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AMS Sampling [Alon, Matias, Szegedy ’96]

AMS Sampling (for estimating Fk)
1. Pick random item aj from stream
2. Compute r =

∣∣{j ′ : j ′ ≥ j , aj′ = aj}
∣∣

3. At the end of the stream calculate

m(rk − (r − 1)k)

To get (1± ε)-estimate of Fk with probability 1− δ:

Run O
(
n1−1/k

ε2

)
parallel instances, take average A

⇒ Chebyshev-Ineq.: Pr [ |A− Fk | > ε · Fk ] ≤ p < 1
2

Take median M over O
(
log 1

δ

)
such averages

⇒ Chernoff-Ineq.: Pr [ |M − Fk | > ε · Fk ] ≤ δ

Memory consumption: O
(
n1−1/k

ε2 · log 1
δ · (log n + logm)

)
bits
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Sliding Window Sampling
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current sample: a2
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Sliding Window Sampling
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Mariano Zelke Basic algorithmic techniques for data streams 9/12



Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Goal: sample an item uniformly from sliding window of size w

Trivial: - memorize whole window content ⇒ w · log n bits

- impractical if w is large

Mariano Zelke Basic algorithmic techniques for data streams 9/12



Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Goal: sample an item uniformly from sliding window of size w

Trivial: - memorize whole window content ⇒ w · log n bits

- impractical if w is large

Better idea:

Algorithm:

Mariano Zelke Basic algorithmic techniques for data streams 9/12



Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Goal: sample an item uniformly from sliding window of size w

Trivial: - memorize whole window content ⇒ w · log n bits

- impractical if w is large

Better idea:

Algorithm: 1: For each ai pick random value ri ∈ (0, 1)

Mariano Zelke Basic algorithmic techniques for data streams 9/12



Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Goal: sample an item uniformly from sliding window of size w

Trivial: - memorize whole window content ⇒ w · log n bits

- impractical if w is large

Better idea:

Algorithm: 1: For each ai pick random value ri ∈ (0, 1)

2: In window (ai−w+1, . . . , ai ) choose aj with smallest rj

Mariano Zelke Basic algorithmic techniques for data streams 9/12



Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Goal: sample an item uniformly from sliding window of size w

Trivial: - memorize whole window content ⇒ w · log n bits

- impractical if w is large

Better idea:

Algorithm: 1: For each ai pick random value ri ∈ (0, 1)

2: In window (ai−w+1, . . . , ai ) choose aj with smallest rj

3: Only maintain items in window whose r -value is

3: minimal among subsequent r -values

Mariano Zelke Basic algorithmic techniques for data streams 9/12



Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Algorithm: 1: For each ai pick random value ri ∈ (0, 1)

2: In window (ai−w+1, . . . , ai ) choose aj with smallest rj

3: Only maintain items in window whose r -value is

3: minimal among subsequent r -values

Mariano Zelke Basic algorithmic techniques for data streams 9/12



Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Algorithm: 1: For each ai pick random value ri ∈ (0, 1)

2: In window (ai−w+1, . . . , ai ) choose aj with smallest rj

3: Only maintain items in window whose r -value is

3: minimal among subsequent r -values

Mariano Zelke Basic algorithmic techniques for data streams 9/12



Sliding Window Sampling
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Sliding Window Sampling
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Algorithm: 1: For each ai pick random value ri ∈ (0, 1)
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Algorithm: 1: For each ai pick random value ri ∈ (0, 1)

2: In window (ai−w+1, . . . , ai ) choose aj with smallest rj

3: Only maintain items in window whose r -value is

3: minimal among subsequent r -values

current

sample

random value r 2 = 0.4
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Algorithm: 1: For each ai pick random value ri ∈ (0, 1)
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Algorithm: 1: For each ai pick random value ri ∈ (0, 1)

2: In window (ai−w+1, . . . , ai ) choose aj with smallest rj

3: Only maintain items in window whose r -value is

3: minimal among subsequent r -values

current

sample

random value r 3 = 0.7

a1

0.2

a2

0.4

a3

0.7
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Algorithm: 1: For each ai pick random value ri ∈ (0, 1)

2: In window (ai−w+1, . . . , ai ) choose aj with smallest rj

3: Only maintain items in window whose r -value is

3: minimal among subsequent r -values

current
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random value r 6 = 0.5
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

current

sample

ax
rx

a5

0.6

ay
ry

· · ·
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

current

sample

ax
rx

a5

0.6

ay
ry

· · ·

linked list `
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Worst case: |`| = w But that is very unlikely.
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ax
rx
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0.6

ay
ry

· · ·
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Exp[ |`| ] =

current

sample

ax
rx

a5

0.6

ay
ry

· · ·

linked list `
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Sliding Window Sampling
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Analysis: What is the length of ` ?
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Exp[ |`| ] = Pr [ai ∈ ` ] + Pr [ai−1 ∈ ` ] +
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Exp[ |`| ] = Pr [ai ∈ ` ] + Pr [ai−1 ∈ ` ] + . . .+ Pr [ai−w+1 ∈ ` ]
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Exp[ |`| ] = Pr [ai ∈ ` ] + Pr [ai−1 ∈ ` ] + . . .+ Pr [ai−w+1 ∈ ` ]

= 1 +

current

sample

ax
rx

a5

0.6

ay
ry

· · ·

linked list `
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Exp[ |`| ] = Pr [ai ∈ ` ] + Pr [ai−1 ∈ ` ] + . . .+ Pr [ai−w+1 ∈ ` ]

= 1 + 1
2 +

current

sample

ax
rx

a5

0.6

ay
ry

· · ·

linked list `
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Exp[ |`| ] = Pr [ai ∈ ` ] + Pr [ai−1 ∈ ` ] + . . .+ Pr [ai−w+1 ∈ ` ]

= 1 + 1
2 + 1

3 +

current

sample

ax
rx

a5

0.6

ay
ry

· · ·

linked list `
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Exp[ |`| ] = Pr [ai ∈ ` ] + Pr [ai−1 ∈ ` ] + . . .+ Pr [ai−w+1 ∈ ` ]

= 1 + 1
2 + 1

3 + 1
4 + . . .+ 1

w

current

sample

ax
rx

a5

0.6

ay
ry

· · ·

linked list `
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis: What is the length of ` ?

Exp[ |`| ] = Pr [ai ∈ ` ] + Pr [ai−1 ∈ ` ] + . . .+ Pr [ai−w+1 ∈ ` ]

= 1 + 1
2 + 1

3 + 1
4 + . . .+ 1

w = O(logw)

current

sample

ax
rx

a5

0.6

ay
ry

· · ·

linked list `
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Sliding Window Sampling

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , ai , . . . , am

Analysis:

Exp[ memory usage ] = O(logw · log n)

current

sample

ax
rx

a5

0.6

ay
ry

· · ·

linked list `
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Count-Min Sketch [Cormode, Muthukrishnan ’04]

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , aj , . . . , am
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a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , aj , . . . , am

Point query: fi = ?

Trivial solution: maintain n counters
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a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , aj , . . . , am

Point query: fi = ?

Give f̂i as estimate for fi

Analysis:

2/ε

rand. hash funct. h1

i

f̂i
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Point query: fi = ?

Give f̂i as estimate for fi

Analysis: f̂i ≥ fi

Exp[ f̂i ] ≤ fi + ε ·m/2

2/ε

rand. hash funct. h1
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a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , aj , . . . , am

Point query: fi = ?

Give f̂i as estimate for fi

Analysis: f̂i ≥ fi

Exp[ f̂i ] ≤ fi + ε ·m/2

Markov-Ineq.: Pr [ f̂i > fi + ε ·m ] ≤ 1
2

2/ε

rand. hash funct. h1

i

f̂i
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d =
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Point query: fi = ?
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a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , aj , . . . , am

2/ε

rand. hash funct. h1

rand. hash funct. h2

rand. hash funct. h3

rand. hash funct. hd

d =

log 1
δ

i

Point query: fi = ?

Give f̂i := minimum of -values as estimate for fi
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a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, . . . , aj , . . . , am

2/ε

rand. hash funct. h1
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i

Analysis: Pr [ f̂i > fi + ε ·m ] ≤
(

1
2

)d
= δ
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2/ε

rand. hash funct. h1

rand. hash funct. h2

rand. hash funct. h3

rand. hash funct. hd

d =

log 1
δ

i

Analysis: Pr [ f̂i > fi + ε ·m ] ≤
(

1
2

)d
= δ

Memory consumption: O
(

1
ε · log 1

δ · logm + log 1
δ · log n

)
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Recap

I Reservoir sampling for uniform selection

I AMS sampling for frequency moments

I Sliding window sampling

I Count-Min sketch for point queries
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