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Quick reminder

Data integration
global relations (mediated schema)—used in queries
source relations—store actual data,

view instance I,

mapping: LAV—each source relation described as a result of a
query over the global relations,

view definitions V = (V1, . . .Vn),
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Quick reminder

Data integration
global relations (mediated schema)—used in queries
source relations—store actual data, view instance I,
mapping: LAV—each source relation described as a result of a
query over the global relations, view definitions V = (V1, . . .Vn),

Query rewriting
query rewriting using views—mentions the source relations only,
can be equivalent or maximally-contained (possibly relative to a
set of constraints).
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Query Answering vs. Incomplete Databases
Idea

Views (=source data) represent many possible (global) databases
Idea: use techniques in incomplete databases

Example
View definitions:

v(0,Y ) : − p(0,Y )
v(X ,Y ) : − p(X ,Z ), p(Z ,Y )

View instance:

{v(0,1), v(1,1)}

Conditional table (OWA):

p: 0 1 w = 1
0 x w 6= 1
x 1 w 6= 1
1 u true
u 1 true

Conditional table (CWA):

p: 0 1 true
1 1 true
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Query Answering under OWA vs. Query Containment

Simple reductions between the two problems in both directions exist
(for views and queries in CQ, CQ6=, PQ, datalog)

Reduction to query containment
Input: V = (v1, . . . , vk ), Q, I and a tuple t .
Let Q′ be the query consisting of all the definitions V together with:

q′(t) : − v1(t11), . . . , v1(t1n1), . . .
v1(tk1), . . . , vk (tkn1)

where I(vi) = {ti1, . . . , tini}
Then t is a certain answer iff Q′ ⊆ Q.



Query Answering under OWA vs. Query Containment

Simple reductions between the two problems in both directions exist
(for views and queries in CQ, CQ6=, PQ, datalog)

Reduction to computing certain answers
Input: Q1 and Q2.
Let the view definition be the rules of Q1 together with

v(c) : − q1(X ),p(X )

Let the instance I = {v(c)} and let Q consists of all the rules of Q2
together with

q(c) : − q2(X ),p(X )

Then Q1 ⊆ Q2 iff (c) is a certain answer.



Query Answering under OWA vs. Query Containment

Simple reductions between the two problems in both directions exist
(for views and queries in CQ, CQ6=, PQ, datalog)

Consequences
Decidability and undecidability results carry over in both directions.
If the problems are decidable then
the combined complexity of computing certain answers is the same
as the query complexity of query containment.



Data complexity of computing certain answers
under OWA

query
views CQ CQ 6= PQ datalog FO
CQ PTIME coNP PTIME PTIME undec.
CQ6= PTIME coNP PTIME PTIME undec.
PQ coNP coNP coNP coNP undec.
datalog coNP undec. coNP undec. undec.
FO undec. undec. undec. undec. undec.



Data complexity of computing certain answers
under CWA

query
views CQ CQ 6= PQ datalog FO
CQ coNP coNP coNP coNP undec.
CQ6= coNP coNP coNP coNP undec.
PQ coNP coNP coNP coNP undec.
datalog undec. undec. undec. undec. undec.
FO undec. undec. undec. undec. undec.



Maximally contained rewriting vs. certain answers

A datalog query P is a query plan if all EDB predicates in P are
views literals.
The expansion Pexp of a query plan P is P with all views literals
replaced with their definitions.
A query plan P is maximally-contained in a datalog query Q
w.r.t. view definitions V if

I Pexp ⊆ Q, and
I for each query plan P ′ with (P ′)exp ⊆ Q we have (P ′)exp ⊆ Pexp.



Maximally contained rewriting vs. certain answers

Theorem
Let V ⊆ CQ, Q ∈ datalog, let P be maximally-contained in Q w.r.t. V.
Then for each view instance I the query plan P computes exactly the
certain answers of Q under OWA.

Proof.
I - view instance such that P fails to compute a certain answer t .
P ′ - the query plan P with two additional rules:

r1 : q′(X ) : − q(X )

r2 : q′(t) : − v1(t11), . . . , v1(t1n1), . . .

v1(tk1), . . . , vk (tkn1)

where I(vi) = {ti1, . . . , tini} and q is the answer predicate of P.

(P ′)exp is contained in Q but it is not contained in (P)exp.
That contradicts the maximal containment of P in Q.
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Inverse rules

Example
Data sources

s1(X ,Y ) : − edge(X ,Z ), edge(Z ,W ), edge(W ,Y )
s2(X ) : − edge(X ,Z )

Inverse rules

edge(X , f1(X ,Y )) : − s1(X ,Y )
edge(f1(X ,Y ), f2(X ,Y )) : − s1(X ,Y )
edge(f1(X ,Y ),Y ) : − s1(X ,Y )
edge(X , f3(X )) : − s2(X )

The fresh function symbol fr ,i
for each rule r and each existential variable Xi in r
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Inverse rules algorithm (1)

Example
Query Q:

q(X ,Y ) : − edge(X ,Y )
q(X ,Y ) : − edge(X ,Z ), edge(Z ,Y )

Data source:

s(X,Y) : − edge(X ,Z ), edge(Z ,Y )

Query plan (Q,V−1):

q(X ,Y ) : − edge(X ,Y )
q(X ,Y ) : − edge(X ,Z ), edge(Z ,Y )
edge(X , f (X ,Y )) : − s(X ,Y )
edge(f (X ,Y ),Y ) : − s(X ,Y )
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Inverse rules algorithm (1)

Example
Query Q:

q(X ,Y ) : − edge(X ,Y )
q(X ,Y ) : − edge(X ,Z ), edge(Z ,Y )

Data source:

s(X,Y) : − edge(X ,Z ), edge(Z ,Y )

Query plan (Q,V−1):

q(X ,Y ) : − edge(X ,Y )
q(X ,Y ) : − edge(X ,Z ), edge(Z ,Y )
edge(X , f (X ,Y )) : − s(X ,Y )
edge(f (X ,Y ),Y ) : − s(X ,Y )

No longer datalog, but
we can evaluate it in two stages:

start with the inverse rules (they introduce
function symbols but are not recursive),
apply the rules of Q, (they are recursive but
do not introduce function symbols).

In fact, with a little bit of bureaucracy
we can get rid of function symbols at all.



Inverse rules algorithm (2)

Inverse rules algorithm

Compute plan (Q,V−1) ↓ that returns the same set of tuples as
(Q,V−1) but filters out the tuples that contain function symbol(s).
Evaluate (Q,V−1) ↓ on a set of data sources.



Something similar: chase

Applying inverse rules is like chasing I with the view definitions.

Example

s(X,Y) : − edge(X ,Z ), edge(Z ,Y )
∀X ,Y s(X,Y) → ∃Z edge(X ,Z ), edge(Z ,Y )

I: s: 0 0
0 1
3 2

V−1(I): edge: 0 Z1
Z1 0
0 Z2
Z2 1
3 Z3
Z3 2
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Probles with the inverse rules algorithm

The inverse rules algorithm produces expensive query plans
Does not use views directly, forces a lot of recomputation.
e.g. Q(x̄) = V (x̄)

May compute useless tuples i.e. may invert the extensions of the
views that are not needed in the rewriting.



Another approach: bucket algorithm
1 Create buckets, one for each subgoal g in Q.

The bucket for g contains the views with subgoals to which g can
be mapped.

2 For each element of the Cartesian product of the buckets
1 construct a conjunctive rewriting r ,
2 check the containment of r in Q

(equate some pairs of variables in r , if necessary).

Example

q(X) : − e(X ,Y ), e(Y ,X ), p(X ,Y )
v1(U) : − e(U,V ), e(V ,U)
v2(U,V) : − p(U,V )
v3(U,W) : − e(U,V ), e(V ,W ), p(U,V )

e(X ,Y ) e(Y ,X ) p(X ,Y )

v1(X ),���v1(Y ) v1(X ) v2(X ,Y )
v3(X ,Y ) v3(X ,Y ) v3(X ,Y )

Rewritings

q0(X) : − v1(X ), v2(X ,Y )
. . .
qi(X) : − v3(X ,X )



Another approach: bucket algorithm
1 Create buckets, one for each subgoal g in Q.

The bucket for g contains the views with subgoals to which g can
be mapped.

2 For each element of the Cartesian product of the buckets
1 construct a conjunctive rewriting r ,
2 check the containment of r in Q

(equate some pairs of variables in r , if necessary).

Example

q(X) : − e(X ,Y ), e(Y ,X ), p(X ,Y )
v1(U) : − e(U,V ), e(V ,U)
v2(U,V) : − p(U,V )
v3(U,W) : − e(U,V ), e(V ,W ), p(U,V )

e(X ,Y ) e(Y ,X ) p(X ,Y )

v1(X ),���v1(Y ) v1(X ) v2(X ,Y )
v3(X ,Y ) v3(X ,Y ) v3(X ,Y )

Problems
Expensive - tries many
useless combinations,
e.g. v1 useless in the
rewriting: since Y is
not distinguished it is
not possible to join
e(X ,Y ) and p(X ,Y ).



MiniCon algorithm

Better idea
As before, for each subgoal g in Q find the views with subgoals to
which g can be mapped.
But then, given such a partial mapping, finds minimal additional
set of subgoals in the query that have to be mapped together.

MiniCon Descriptions (MCDs)
MCD C for a query Q over a view v consists of

head homomorphism h (may equate head variables e.g.
v3(X ,X )),
partial mapping ϕ from Vars(Q) to Vars(V ).
some subset G of subgoals in Q that are covered by some
subgoal in h(V ) using ϕ.



MCDs
Key Property
MCD C for Q over V can only be used in a non-redundant rewriting of Q if:

C1 For each head variable x of Q in domain of ϕ, ϕ(x) is head variable in
MCD view (i.e. in h(V )).

C2 If a variable participates in a join predicate (in Q) which is not enforced
by V , then it must be in the head of the view. (new!)

Example

q(X) : − e(X ,Y ), e(Y ,X ), p(X ,Y )
v1(U) : − e(U,V ), e(V ,U)
v2(U,V) : − p(U,V )
v3(U,W) : − e(U,V ), e(V ,W ), p(U,V )

C2

v(Ȳ ) h ϕ goals covered
v1(U) U → U X → U,Y → V 1,2?
v2(U,V ) U → U,V → V X → U,Y → V 3
v3(U,U) U → U,W → U X → U,Y → V 1,2,3



MiniCon Algorithm: Phase 2

Minimality of MCDs
Only the minimal set of subgoals required to satisfy the Key Property is
included in the set of goals G that are covered by MCD

Phase 2: combining MCDs
The only combinations of MCDs that can result in a non-redundant
rewriting s of Q are such that:

the sets of subgoals covered by the MCDs form a partition of the
set of subgoals of Q.



MiniCon Algorithm: Phase 2

Running time (worst-case)
The running time of the MiniCon algorithm is O(nmM)n, where

n is the number of subgoals in the query,
m is the maximal number of subgoals in a view,
M is the number of views.
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Back to inverse rules - full dependencies

Extending the inverse rules algorithm
Inverse rule algorithm can be extended to deal with full dependencies
and access patterns.
The idea: add new datalog rules to the rewriting.

Rectification
New relation e is added with an intention to capture equality.
Queries should be modified to be able to use e.
For example

q(X ) : − pred(c,X ,Y ,Y )

should be rewritten to its rectified version

q̄(X ) : − pred(Z ,X ′,Y ,Y ′),e(X ,X ′),e(c,Z ),e(Y ,Y ′)



Back to inverse rules - full dependencies

The rules: chase(∆)
For each rectified full dependency in ∆

∀X̄ p1(X̄1) ∧ . . . ∧ pn−1(X̄n−1) → pn(X̄n)

(pi are global relations or the relation e, X̄n ⊆ X̄ , and X̄ = X̄1, . . . , X̄n−1)

introduce a new datalog rule in chase(∆)

pn(X̄n) : − p1(X̄1) ∧ . . . ∧ pn−1(X̄n−1)

The rewriting
Let ∆ be a set of full dependencies, V a set of conjunctive source
descriptions, and let Q be a (rectified) query.
Let R be the set of rules V−1 ∪ chase(∆) ∪ Equiv(e).
Then (Q,R) ↓ is maximally-contained in Q relative to ∆.



Access patterns - domain enumeration

Access patterns

so
1(X ) : − podsPaper(X )

sio
2 (X ,Y ) : − cites(X ,Y )

si
3(X ) : − awarded(X )

Query

q(X ) : − awarded(X )

The executable rewriting

domain(X ) : − so
1(X )

domain(X ) : − domain(Y ), sio
2 (Y ,X )

q(X ) : − domain(X ), si
3(X )
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Once again: our setting
We are given:

a query Q over global schema,
a set of views with access patterns,
a set of constraints Σc ,

We have to find a query E such that
E mentions the views literals only,
E is executable w.r.t. access patterns,
E is equivalent (or at least minimally-containing) to Q relative to Σ

where Σ contains Σc ∪ ΣVf ∪ ΣVb

Forward constraints ΣVf and backward constraints ΣVb
For each Vi in V we have

forward constraint: ∀ X̄i , Ȳi (body(Vi)→ head(Vi))
backward constraint: ∀ X̄i (head(Vi)→ ∃ Ȳibody(Vi))



Chase: handling negation
Constraints IC(UCQ¬)

σ : ∀X̄ ψ(x̄)→
l∨

i=1

∃Ȳi ξi(X̄ , Ȳi)

where ψ and ξi are quantifier-free CQ¬

Step for Q in CQ¬

Chase step of Q with σ applies iff
there is homomorphism h from ψ to Q such that
for each i , h has no extension to a homomorphism from ψ ∧ ξi to Q.
The result is

∨l
i=1 Q ∧ h′(ξi) (h′ extends h to be the identity on Ȳi )

Negation Constraints Στ
¬

For each relation r in the schema τ , the set Στ
¬ includes

the constraint ∀X̄ true→ (r(X̄ ) ∨ ¬r(X̄ ))



Rewriting and the chase

ViewRewrite(Q,Σc,V)
1 Q1 = chase(Q,Σc ∪ Στ

¬)

2 Q2 = chase(Q1,ΣVf ∪ ΣτV¬ )

3 Q3 = Q2|τV (leave the view literals only)
4 Q4 = ans(Q3)

If there exists an executable rewriting using views that contains Q
(and the chase terminates) then ViewRewrite(Q,Σc ,V) returns
the minimal executable overestimate of Q.



Is the rewriting equivalent (relative to Σ)?

ViewFeasible(Q,Σc,V)
1 Q4 = ViewRewrite(Q,Σc ,V)
2 if Q4 is undefined then return false
3 Q5 = chase(Q4,ΣVb ∪ ΣτV¬ )

4 Q6 = chase(Q5,Σc ∪ Στ
¬)

5 Q7 = Q6|τV (drop the view literals)
6 if Q7 is contained in Q return true otherwise return false

If ViewFeasible(Q,Σc ,V) terminates then it returns true iff
there is an executable rewriting of Q using V that is equivalent to Q
relative to Σ.



Conclusions

Connections of query answering in data integration to incomplete
databases as well as to the problem of query containment,
Inverse rules and MiniCon algorithm that compute
maximally-contained rewritings w.r.t conjunctive views,
Inverse rules algorithm allows for processing recursive queries,
full dependencies and access patterns,
Recursive plans may be necessary when rewriting with access
patterns or under functional dependencies,
Access patterns, constraints and negation can be treated in a
uniform way (chase).
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