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1.Motivation 1.1. Motivation

Motivation
From Data Integration to Peer Data Integration

DB1 DB2 DB3

G

DB1 DB2 DB3

Extend semantics from data integration, BUT:
query answering may become undecidable
some tractable fragments are very restrictive
further undesired properties

⇒ several suggestions made for semantics of mappings
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1.Motivation 1.1. Motivation

Motivation

⇒ use “tools” from data exchange and data integration
(but they are not completely satisfactory)

Additional problems (compared to DEI)
Modularity of peers
Inconsistencies, Updates
Trust

Peer Data Management covers a variety of scenarios
⇒ take a look on the theory behind some of these systems

(formal semantics, decidability, complexity, . . . )
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2.Query Answering in Peer Data Management 2.1. General Framework

A Framework for Peer Data Integration

P1

P2 P3 P4

P5

P6 P7

P8

Each peer P = (G,S,L,M) consists of

• a peer schema G
• a (possible empty) local/source schema S
• a (possible empty) set of local mappings L: {cqS ; cqG}
• a set of peer mappings M: {cqP′ ; cqP}

Queries q are posed over peer schema of a single peer
• data remains in sources, queries (and results) are propagated
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2.Query Answering in Peer Data Management 2.2. PPL

PPL (Peer Programming Language)

[Halevy et al., VLDB J. 2005]

P S

G
L

M

P = (G,S,L,M)

Definition
Local Mappings L:

• P : r ⊆ cq (P : r = cq)
Peer Mappings M:

• cq′P′ ⊆ cqP (cq′P′ = cqP)
inclusion/equality mappings

• rP(~x) :- cqP′ (~x)
definitional mappings

G, S:
• relational schemas

(Note: mappings only between pairs of peers)
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2.Query Answering in Peer Data Management 2.2. PPL

PPL: Semantics

Definition (consistent data instance)
Let N be a PDMS, D an instance for S.
Instance I for G is consistent with N and D if

for every m ∈ L
• r D ⊆ cqI (resp. r D = cqI )

for every m ∈M either
• cq′IP′ ⊆ cqI

P (resp. cq′IP′ = cqI
P) or

• r(~x)I = body(m1)I ∪ · · · ∪ body(mn)I where
r = head(m), and {m ∈M | head(m) = r} = {m1, . . . ,mn}

certain answers to query q(~x): tuples ~t s.t. ~t ∈ q(~x)I for every
consistent instance I
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2.Query Answering in Peer Data Management 2.2. PPL

PPL: First Order Interpretation
PDMS P = {P1, . . . ,Pn}

(consider only inclusion storage descriptions)

→ Define semantics in terms of FO logic:
∀~x
(
r(~x)→ ∃~zψG(~x ,~z)

)
(for each m ∈ Li )

∀~x
(
∃~y(φPi (~x , ~y))→ ∃~zψPj (~x ,~z)

)
(for each m ∈M)

• allow only restricted inclusion peer mappings,
• use disjunctive TGDs for definitional mappings

⇒ certain answers w.r.t. D: answer in every model I of P

FO theory TPi for Pi , TP =
⋃
Pi∈P TPi for P

Models for theories (given instances Di for Si ):
• Model of TPi (TP) based on Di (D =

⋃
i Di ):

interpretation I of TPi (TP) s.t. s I = sDi (for each s ∈ Si )
• Model of P based on D:

model of TP based on D and of mappings M
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2.Query Answering in Peer Data Management 2.2. PPL

PPL: Complexity

Theorem (Halevy et al., 2005)
Let N be a PDMS specified in PPL

1 Finding all certain answers to CQ q is undecidable
2 If N contains only inclusion peer and storage descriptions and

the peer mappings are acyclic
⇒ CQ answering in polynomial time (data complexity)

Proof (sketch).
(2) Encode query and mappings in a nonrecursive datalog program
with Skolem terms ⇒ evaluation PTIME (data complexity).
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2.Query Answering in Peer Data Management 2.2. PPL

PPL: Complexity (contd.)

Finding all certain answers to a CQ q is undecidable

Proof (sketch).
(1) Shown by reduction from implication problem for FDs and IDs:
Given ~R, Σ, ϕ = Ri [A] ⊆ Rj [B]

⇒ N = {P1}, with P1 = (~R, {S/1}, {S ⊆ Ri [A]},M), and M:

for FD Ri : ~A→ B:
{(~A,B1,B2) | Ri (~A,B1),Ri (~A,B2)} ⊆ {(~A,B,B) | Ri (~A,B)}
for ID Ri [~A] ⊆ Rj [~B]: Ri [~A] ⊆ Rj [~B]

Then let I = {S(a)}, and q : {Rj [B]}.
It holds that Σ |= ϕ iff q returns a.
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2.Query Answering in Peer Data Management 2.2. PPL

PPL: Complexity (contd.)

Consider the following restrictions:
1 equality storage or peer mappings do not contain projection
2 peer relations that appear in the head of a definitional

mapping do not appear on the rhs of any other mapping

Theorem (Halevy et al., VLDB J. 2005)
All inclusion peer mappings acyclic, but equality peer mappings
⇒ CQ answering is (data complexity)

If (1) and (2) ⇒ in PTIME
If (1) but not (2) ⇒ coNP complete
If (2) but not (1) ⇒ coNP complete
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2.Query Answering in Peer Data Management 2.2. PPL

PPL: Query Answering

Consider again the mappings:
Peer Mappings M:

• cq′P′ = cqP ⇒ cq′P′ ⊆ cqP and cqP ⊆ cq′P′

• cq′P′ ⊆ cqP ⇒ v(~x) ⊆ cqP and v(~x) :- cq′P′

• rP(~x) :- cqP′ (~x)

⇒ pure LAV and GAV mappings

combine methods for answering queries in these settings:
• unfolding
• algorithms for answering queries using views

build a rule/goal tree
derive UCQ over S from it

⇒ sound, and for polynomial cases also complete
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Query Answering: First Order Reasoning
query answering: FO reasoning over P

Citizen(P)

Male(P) Female(P)

TaxPayer(P)

m1 m2

m3 m4

C(,)

Female(alice)Male(alice)

TaxPayer(alice)
m1 : Citizen(x) :- Male(x)

m2 : Citizen(x) :- Female(x)
m3 : Male(x) ⊆ TaxPayer(x)

m4 : Female(x) ⊆ TaxPayer(x)

m1, m2 :
Citizen(x) → Male(x) ∨ Female(x)

m3 : Male(x) → TaxPayer(x)
m4 : Female(x) → TaxPayer(x)
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Epistemic Logic

A modal logic used for modeling knowledge, certainty
Modal logic is used e.g. in multi agent systems

More precisely: KT45 (or S5)

I1

I2I3

I4

Syntax: FOL, but also Kφ is an atom (if φ is a formula)
Semantics:

• Often defined using Kripke structures (W ,R,V )
• Here: every world is accessible from every world
• epistemic interpretation ε = (I,W )

W . . . set of FO interpretations, I ∈W

a(~x) satisfied in ε: by ~t s.t. a(~t) is true in I
Kφ(~x) satisfied in ε: by ~t s.t.
φ(~t) is satisfied in all ε′ = (J ,W ) with J ∈W

epistemic model: φ is satisfied in every (J ,W ) (J ∈W )
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Modeling PDM [Calvanese et al., 2004]
P1

P2 P3 P4

P5

P6 P7

P8

S1
G1

S2

G2

S3

G3

S4

G4

S5
G5

G6 G7

G8
q1

q2

Peer schema:
G may contain function free FO formulas over AG

Epistemic Theory:
TP :

• formulas in G
• ∀~x

(
∃~y(φS(~x , ~y))→ ∃~zψG(~x ,~z)

)
(for each m ∈ L)

MP :
• axioms ∀~x

(
K(∃~yφ(~x , ~y))→ ∃~zψ(~x ,~z)

)
(for each m ∈M)

Semantics:
Recall: FOL model of TP based on D
Epistemic model of P based on D: (I,W )

• W : set of models of TP based on D
• (I,W ): epistemic model of MP

Certain answers w.r.t. D:
⋂

qI for all epistemic models (I,W )
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Properties of Epistemic Logic Based Semantics
(denote certain answers w.r.t. source instance D as ans(q,P,D))

sound approximation of FOL: ansK(q,P,D) ⊆ ans fol (q,P,D)

Unique Maximal Epistemic Model for P
(I,W ) s.t. there exists no model (J ,W ′) with W ⊂W ′

• Unique, Independent of I

⇒ ansK(q,P,D) = {~t | ~t ∈ qI for each I ∈W }

FOE (P,D): minimal FO theory containing TP , D, and
• for each cq′ ; cq, if FOE (P,D) |= ∃~ybody cq′ (~t, ~y),

then ∃~zbody cq(~t,~z) ∈ FOE (P,D)

Theorem (Calvanese et al., 2004)
The set of interpretations {I | I |= FOE (P,D)} is the unique
maximal epistemic model W for P based on D.
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Intuition: Only exchange certain answers

Definition (τ(P))
Given Pi = (G,S,L,M), define τ(Pi ) = (G,S ′,L′,M) where

1 S ′ = S ∪ {r | cq′ ; cq ∈M}
2 L′ = L ∪

{
{~x | r(~x)}; cq | cq′ ; cq ∈M

}

G

S

cq′1 ; cq1

cq′2 ; cq2
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Intuition: Only exchange certain answers (contd.)

G

S

cq′1 ; cq1

cq′2 ; cq2

r1 r2

r1 → cq1
r2 → cq2

D

q

G

S

cq′1 ; cq1

cq′2 ; cq2

r1 r2

r1 → cq1
r2 → cq2

D

q

Given P, Pi = (G,S,L,M), D and query q over G:

Let D̄ be source instance for τ(Pi ) s.t.
• SD̄ = SD and r D̄ = ans(cq′,P,D)

We want ans(q,P,D) = ans(q, τ(P), D̄)

provides: modularity and independence
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Intuition: Only exchange certain answers (contd.)
Recall intuition: ans(q,P,D) = ans(q, τ(P), D̄)

for cq′ ; cq ∈M:
• r ∈ S ′, {~x | r(~x)}; cq ∈ L′
• r D̄ = ans(cq′,P,D)

Further recall:
ansK(cq′,P,D) = {~t | ~t ∈ cq′I for each I ∈W }

• for W : maximal epistemic model
axiom ∀~x

(
K(∃~ybody cq′(~x , ~y))→ ∃~zbody cq(~x ,~z)

)
Hence (informal)

ansK(cq′,P,D) = {~t | for each I ∈W : ∃~y : body cq′(~t, ~y) ∈ I}
K(∃~ybody cq′(~x , ~y)) satisfied by tuples

{~t | in each I ∈W : ∃~y : body cq′(~t, ~y) ∈ I}
⇒ P “imports” the same tuples
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Query Answering
use this idea for query answering ⇒ always consider τ(P)

perfect reformulation
Given query q over Gi ⇒ query q1 over S ′i s.t. for every instance
D1 for τ(P), qD1

1 = ans(q, τ(P),D1)

(assume settings where perfect reformulation always exists)

Idea of the Algorithm
Compute a datalog program DP, containing

• facts from S
• rules encoding perfect reformulations to S ′

Theorem (Calvanese et al., 2004)
1 Eval(headq,DP) computes ansK(q,P,D)

2 Given P, q, ~t, deciding ~t ∈ ansK(q,P,D) is
PTIME-complete (data complexity)
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Query Answering: Algorithm

query answering algorithm
at Pi : peerQueryHandler(q,rq)
(1) DPI = computePerfectRef(q,rq,Pi ); DPE = ∅
(2) for each r ∈ S ′i ∩ DPI :
(3) if r ∈ S (∗)

(3a) DPE = DPE ∪ {r(~t) | r(~t) ∈ D}

else (r ∈ S ′ \ S)
(3b) DP ′ = P ′.peerQueryHandler(Q(r),r)

DPI = DPI ∪ DP ′I ; DPE = DPE ∪ DP ′E

(4) return DP

(∗) loop detection omitted

G

S

cq′1 ; cq1

cq′2 ; cq2

r1 r2

r1 → cq1
r2 → cq2

D

q
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2.Query Answering in Peer Data Management 2.3. An Epistemic Logic Approach

Further nice properties
Decidability depends only on local properties

under FOL: also constraints may be propagated by mappings
Epistemic Logic: provides complete modularity for peers

Mapping Composition
Semantics allows for (reasonable) mapping composition
Resulting systems are query equivalent

Inconsistency Handling
Consider two kinds of inconsistency:

• local inconsistency, P2P inconsistency
Use nonmonotonic extension (K45A

n ), model cqi ; cqj :
• ∀~x

(
¬Ai⊥i ∧Ki (∃~ybody cqi

(~x , ~y)) ∧ ¬Aj (¬∃~zbody cqj
(~x ,~z))→

Kj (∃~zbody cqj
(~x ,~z))

)
S.Skritek – Theory of PDM 23/54



3.Materialization of Data in Peer Data Management 3.0.

Outline

1. Motivation

2. Query Answering in Peer Data Management

3. Materialization of Data in Peer Data Management
3.1 Reconciling PDM and Data Exchange
3.2 Active XML
3.3 Orchestra

4. Optimization of Query Reformulation

5. Conclusion
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3.Materialization of Data in Peer Data Management 3.1. Reconciling PDM and Data Exchange

Idea

So far: Peer Data Integration
data remains local at peers
information needed for query answering are exchanged
mappings can be considered as “virtual”

Other possibility: Generalize Data Exchange
copy data between different peers
interpret mappings as constraints
materialize data to satisfy these constraints

→ Look onto some approaches following this idea

S.Skritek – Theory of PDM 25/54
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Reconciling Data Exchange and PDM
[De Giacomo et al., PODS 2007]
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CE : TGDs & EGDs over
single peer

Semantics:
CE : FO semantics
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certain answers
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P1

P2 P3

P4 P5

S = 〈P, CE ,ME , CI ,MI〉

ME , MI : TGDs between
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CE , CI : TGDs & EGDs over
single peer

Semantics:
CE , CI : FO semantics
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Active XML

Recall: Active XML

xml

x x

x

Not considered yet
Formal semantics

• service call
• query answering

Complexity

[Abiteboul et al., PODS 2004]

→ consider only monotone Web Services
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3.Materialization of Data in Peer Data Management 3.2. Active XML

AXML Document

data nodes, function nodes

Definition (AXML document)
AXML document: pair (T , λ) where

T = (N,E ): finite, unordered tree
• N ⊂ N : finite set of nodes
• E ⊂ N × N: directed edges

λ : N → L∪ F ∪ V: function s.t.
• λ(n) ∈ V only if n is a leaf node
• for root n, λ(n) ∈ V ∪ L

D: document names, N : nodes, L: labels,
V: atomic values, F : function names

function call: pass subtree as parameter; get forest as return value
⇒ append as siblings to call node

S.Skritek – Theory of PDM 29/54



3.Materialization of Data in Peer Data Management 3.2. Active XML

AXML Document

data nodes, function nodes

Definition (AXML document)
AXML document: pair (T , λ) where

T = (N,E ): finite, unordered tree
• N ⊂ N : finite set of nodes
• E ⊂ N × N: directed edges

λ : N → L∪ F ∪ V: function s.t.
• λ(n) ∈ V only if n is a leaf node
• for root n, λ(n) ∈ V ∪ L

D: document names, N : nodes, L: labels,
V: atomic values, F : function names

function call: pass subtree as parameter; get forest as return value
⇒ append as siblings to call node

S.Skritek – Theory of PDM 29/54



3.Materialization of Data in Peer Data Management 3.2. Active XML

AXML Document

data nodes, function nodes

Definition (AXML document)
AXML document: pair (T , λ) where

T = (N,E ): finite, unordered tree
• N ⊂ N : finite set of nodes
• E ⊂ N × N: directed edges

λ : N → L∪ F ∪ V: function s.t.
• λ(n) ∈ V only if n is a leaf node
• for root n, λ(n) ∈ V ∪ L

D: document names, N : nodes, L: labels,
V: atomic values, F : function names

function call: pass subtree as parameter; get forest as return value
⇒ append as siblings to call node

S.Skritek – Theory of PDM 29/54



3.Materialization of Data in Peer Data Management 3.2. Active XML

Reduced Documents

Definition

(T1, λ1) is subsumed by (T2, λ2) ((T1, λ1) ⊆ (T2, λ2))
if there exists mapping h : N1 → N2 s.t:

• h(root(T1)) = root(T2)
• n1 child of n2 ⇒ h(n1) child of h(n2) (for all n1, n2 ∈ N1)
• λ1(n) = λ2(h(n)) (for all n ∈ N1)

d1 ⊆ d2 and d2 ⊆ d1 ⇒ d1 ≡ d2

→ Document d is reduced if for no subtree d ′ of d , d ≡ d ′

Properties:
• Each document has a unique reduced version
• Decision and Function problem solvable in PTIME
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Monotone AXML Systems

Definition (monotone AXML system)
monotone AXML system: S = (D,F , I)

• finite sets D ⊂ D , F ⊂ F
• mapping I: for d ∈ D, I(d) returns a document,

for f ∈ F , I(f ) returns a monotone service

(web) service s
• defined w.r.t. set {d1, . . . , dn} of document names
• given assignment θ of AXML documents to {d1, . . . , dn},

return forest of AXML documents
• consider s as black box

monotone service
• for all θ, θ′: for all i : θ(di ) ⊆ θ′(di ) ⇒ s(θ) ⊆ s(θ′)
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Invocations of Services

Service invocation
• given S, d ∈ D, v ∈ I(d), λ(v) = f
• invoking f : call I(f ) on θ: θ(di ) = I(di ), θ(input), θ(context)
• append I(f )(θ) to parent of v , normalize afterward

Sequences of Invocations
• S v−→ S ′: S ′ 6≡ S; S ′ obtained from S by invoking function at

node v
• rewriting (possible infinite): S v1−→ S1

v2−→ S2 → . . .
vn−→ Sn . . .

(S ∗−→ Sn)
• system terminates in Sn: no vn+1,Sn+1 s.t. Sn

vn+1−−→ Sn+1

fair (infinite) sequence
• for every vi ∈ Si : there exists a j > i s.t. either Sj

vi−→ Sj+1 or
invoking vi has no effect on Sj
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Semantics of monotone AXML systems

Definition (semantics of monotone AXML systems)
For a monotone AXML system S, its semantics [S] is defined as:

[S] = J if S ∗−→ J and system terminates at J (J finite)
[S] =

⋃
Si for infinite fair rewriting S . . .→ . . .

vi−→ Si . . .

Semantics is well defined
(order of invocations does not matter)

• S ∗−→ Ŝ and S ∗−→ S̄: either S̄ ⊆ S ′ (Ŝ terminates at S ′),
or S̄ ⊆ Si for some i (Ŝ not terminating)

• one rewriting terminates at J ⇒ any rewriting terminates at J
• one fair rewriting does not terminate ⇒ no rewriting

terminates; any fair rewriting results in same infinite system
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Positive Active XML
Also consider service implementations, defined as queries

Definition (Positive Query)
positive query q: r :- d1/p1, . . . , dn/pn, e1, . . . , em where

di : document names, r , pi : positive AXML tree patterns
each variable occurring in r also occurs in some pi

ej : inequalities x 6= y between label, function, or value
variables or constants (no tree variables).
No tree variable occurs twice in the body

simple query: no tree variables

AXML tree pattern:
subtree of AXML document
some labels replaced by label variables
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Query Semantics
Recall:

• query q = r :- d1/p1, . . . , dn/pn, e1, . . . , em
• monotone AXML system S = (D,F , I)

Snapshot Result q(S)
• consider variable assignments µ (respect typing) s.t.

for each di/pi ∈ q: µ(pi) ⊆ I(di)

• q(S): forest of all documents µ(r)
• Properties:

monotone (i.e. S ⊆ S ′ ⇒ q(S) ⊆ q(S ′)) for positive queries
(no inequalities of tree variables)
for positive queries: PTIME

Query Result [q](S)
• [q](S) = q([S]) if S converges to finite system [S]
• [q](S) =

⋃
q(Si ) for infinite fair rewriting S . . .Si . . .

otherwise
• for positive queries: result is independent of rewriting sequence

S.Skritek – Theory of PDM 35/54
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Positive Systems
service descriptions I(f ) defined as positive queries
if all queries are simple → simple positive system

Semantics of positive systems
positive system S, function node v , λ(v) = f , I(f ) = q
invoking f : evaluate q under θ
snapshot result of q(S) is added as sibling of v

Complexity

Theorem (Abiteboul et al., PODS 2004)
Any Turing Machine can be simulated by a positive AXML system,
with the input tape represented by an AXML tree.

⇒ it is undecidable whether a positive system terminates
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Any Turing Machine can be simulated by a positive AXML system,
with the input tape represented by an AXML tree.

⇒ it is undecidable whether a positive system terminates
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Restricted Systems
Try to find decidable systems

Acyclic Systems
dependency graph (V ,E ) of S = (D,F , I):

• V : D ∪ F (document and function names)
• E : edge (d , f ) if f occurs in I(d),

edge (f , d) (resp. (f , g)) if d (resp. g) occurs in I(f )

AXML system acyclic if dependency graph is acyclic
acyclic systems always terminate

Simple Positive Systems
Recall: simple queries: no tree variables
For every simple positive system S:

• [S] is regular
• compute finite graph representation of [S] in EXPTIME
• termination: decidable in EXPTIME, coNP hard
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Querying Positive Systems
Instead of materialization: just consider query answering

Definition (q-finite)
AXML system S is q-finite if [q](S) is finite

q: non-simple query
undecidable whether positive system S is q-finite
acyclic systems are q-finite
simple positive systems: deciding q-finiteness is coNP hard
and in EXPTIME

q: simple query
result is always finite
BUT: for non-simple positive systems S:
testing if [q](S) is nonempty is undecidable
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3.Materialization of Data in Peer Data Management 3.2. Active XML

Lazy Query Evaluation
It might not be necessary to invoke a service answering a query

irrelevant for answer
just return call to service in answer (lazy evaluation)

Definition (possible answer)
AXML document α is a possible answer if [α] = [[q](I)]

⇒ not expanding function nodes N still gives a possible answer?
(q–unneeded)

Given positive AXML system S, q, N in S, t:
• undecidable if: d is possible answer to q; function nodes in N

need not be expanded; no more function needs to be expanded
• For simple systems: in NEXPTIME, coNP hard
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Updates in Peer Data Management

Updates
in PDI: no problem
in PDM: may lead to inconsistencies ⇒ problem

Other concerns
so far: “global” systems
Trust
Provenance information

Take a look onto the Orchestra system
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3.Materialization of Data in Peer Data Management 3.3. Orchestra

General Setting

P1

P2

P3

schema mappings:
• (weakly acyclic) sets of TGDs

users work on their local copies
from time to time, they

• publish their updates and
• retrieve updates of other users

trust conditions on the mappings
⇒ need for provenance information
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3.Materialization of Data in Peer Data Management 3.3. Orchestra

Update Propagation

R(~x) ∆R(d , ~x)

∆G(d , ~y)

User Actions:
• Insert, Delete, Publish/Import

Maintain local edit log
Answers over local database

• consistent with local edit log
• for imported updates:

certain answers

⇒ what data to materialize
inconsistent updates:

reconciliation algorithm (Taylor, Ives; Sigmod 2006)
• resolve conflicts using priority mappings
• user interaction if merging not possible

here: assume consistent updates
concentrate on what data to materialize
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3.Materialization of Data in Peer Data Management 3.3. Orchestra

Semantics of Update Exchange

R(~x) ∆R(d , ~x)

Ro

R i R r

R`

Split every relation R:
• R`: local contributions

table
• R r : rejections table
• R i : input table
• Ro : output table

Translate mappings Σ→ Σ′:
• for each m ∈M: replace R

in lhs by Ro and
in rhs by R i

• R i (~x) ∧ ¬R r (~x)→ Ro(~x)
• R`(~x)→ Ro(~x)
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3.Materialization of Data in Peer Data Management 3.3. Orchestra

Semantics of Update Exchange (contd.)
Recall Σ′:

• R i (~x) ∧ ¬R r (~x)→ Ro(~x)
• R`(~x)→ Ro(~x)
• M′: weakly acyclic TGDs

Publish:
• create new instance of R r , R`

Import:
• recompute R i , Ro (chase)

Definition (consistent system state)
Instance 〈I, J〉 over schema 〈

⋃
R` ∪

⋃
R r ,

⋃
Ro ∪

⋃
R i〉 is

consistent if J = chaseΣ ′(I)

computable in polynomial time (data complexity)
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3.Materialization of Data in Peer Data Management 3.3. Orchestra

Provenance
Need to track from where tuples are derived, and how

Provenance Token
base tuple: tuple id
derived tuple: polynomial

• binary operators +,·
• unary function for each

mapping

Also possible: define provenance
via provenance graph (omitted)

Example (Provenance Tokens)
Relations R1,R2, Mappings
m1 : R1(A,B)→ R2(A,B),
m2 : R2(A,B) ∧ R1(B,C)→ R2(A,C)

r1 : R1(a, b), r2 : R1(b, c), r3 : R1(a, c)
r4 : R1(c, d)

Pv(R2(a, b)) : m1(r1)
Pv(R2(a, c)) : m1(r3)+m2(r2 ·m1(r1))
Pv(R2(a, d)) :

m2(r4 · (m1(r3) + m2(r2 ·m1(r1)))

Infinitely many or arbitrarily large derivations ⇒ finitely representable
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3.Materialization of Data in Peer Data Management 3.3. Orchestra

Trust
Trust annotations T and D – Reject D

Trust Conditions
Define trust conditions ρi for mappings mi

• e.g. trivial conditions T, D
• more elaborate conditions like T if xi > 4, D otherwise

Assume every base tuple to be annotated with T, D
Import data if ρi is satisfied and tuples are trusted

Evaluate (finite) provenance expressions
Identify T, D with boolean true, false, and +, · with ∨, ∧
Combine trust conditions on mappings by ∧ with arguments

⇒ Consider finite provenance expression as boolean equation

Encode trust in Σ′

add table Rt ; change intern mappings to
• R t(~x) = trusted(R i (~x))
• R t(~x) ∧ ¬R r (~x)→ Ro(~x)
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4.Optimization of Query Reformulation 4.0.

Outline

1. Motivation

2. Query Answering in Peer Data Management

3. Materialization of Data in Peer Data Management

4. Optimization of Query Reformulation

5. Conclusion
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4.Optimization of Query Reformulation 4.0.

Query Reformulation in Peer Data Integration
consider again query answering for PPL

Query Reformulation Algorithm
combination of LAV and GAV mappings
for a query goal

• unfolding if part of a GAV mapping
• rewriting if part of a LAV mapping

follow semantic paths through the system
create (special) rule-goal tree

⇒ prune the search tree

peers described by XML schemas
mappings described as queries in a subset of XQuery
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4.Optimization of Query Reformulation 4.0.

Pruning the Search Tree

possibilities for optimization
Pruning reformulation goals

⇒ XML query containment

• identify dead ends, redundancies
Minimizing reformulations

⇒ minimization of XML queries

• identify redundant subexpressions
Pre-computation of semantic paths

⇒ mapping composition

• a priori optimization
Order of expansions (search strategy)
Memorization
Find first reformulations quickly
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5.Conclusion 5.1. Conclusion

Conclusion
Theory of Peer Data Management

considering PDM: interesting questions and results

Summary
• Peer Data Integration

global FO theory or “modular” semantics
• Data Exchange in Peer Data Management

exchange certain answers
AXML (service invocations, rewritings, query answering)
update exchange (including trust, provenance)

Further Results
• Trust, Priorities, Preferences
• (In)consistency handling
• Updates
• . . .
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5.Conclusion 5.3. Thanks!

Thank you!
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