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Data Streams

Situation:
• massive amounts of data

• generated automatically

• continuous, rapid updates

Examples:
• meteorological data (sensor networks)

• astronomical data

• network monitoring

• banking and credit transactions

Challenges:
• cannot wait with processing until “all” the data has arrived
 process data “on-the-fly”

• cannot afford to store all the data  store a “sketch”

• data may arrive so rapidly that you cannot even afford to look at each incoming
data item  “sampling”
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Example: Network Monitoring

Let A be a node in the world wide web.
As input, A receives a stream of “packets”

p1, p2, p3, p4, . . . , pm.

Each packet pi contains information on
I the sender’s IP address,
I the destination’s IP address,
I the data that is transmitted

Question: How many distinct IP addresses have sent at least one packet through
node A? — I.e., what is the 0-th frequency moment F0 of the input stream?

Problem: A does not want to store the entire stream p1, p2, p3, . . . , pm.

Solution:
A suitable randomised algorithm that computes a good approximate answer:
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Tight bound for approximating F0
COMPUTING F0

Input: A sequence p1, p2, p3, . . . , pm of elements in {1, . . , n}.
Task: Compute the number F0 of distinct elements in the input.

Theorem:
(a) Upper Bound: (Flajolet, Martin, FOCS’83)

For every c > 2 there is a randomized one-pass algorithm that uses O(log n)
bits of memory and computes a number Y such that
Prob

( Y
F0
6 1

c or Y
F0
> c
)
6 2/c.

(b) Lower Bound: (Alon, Matias, Szegedy, STOC’96)
Any randomized one-pass algorithm computing a number Y such that
Prob

( Y
F0
6 0.9 or Y

F0
> 1.1

)
6 0.25 uses Ω(log n) bits of memory.

Remark: improved bounds: Bar-Yossef, Jayram, Kumar, Sivakumar (RANDOM’00)
and Kane, Nelson, Woodruff (PODS’10).

Main issues concerning data streams:
How to design algorithms & how to prove lower bounds
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Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks
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One pass over a single stream

Scenario:

��������������������������������������������������������������������������

memory
buffer

input:
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Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n

X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary
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Exercise # 1

Find a data stream algorithm that uses at most poly(k · log n) bits of memory
and solves the following generalization of the “missing numbers puzzle”:

k MISSING NUMBERS

Input: Two numbers n, k and a stream x1, x2, x3, . . , xn−k of
n−k distinct numbers from {1, . . ,n}

Task: Find the k missing numbers
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The MULTISET-EQUALITY Problem (1/3)

MULTISET-EQUALITY Total input length: N = O(m· log n) bits
Input: Two multisets {x1, . . , xm} and {y1, . . , ym} of

numbers xi , yj in {1, . . , n}.
Question: Is {x1, . . , xm} = {y1, . . , ym}?

Observation:
Every deterministic solution requires Ω(N) bits of storage.

Proof:

• Use fact from Communication Complexity:

Deciding if two m-element subsets of {1, . . , n} are equal
requires at least log

(n
m

)
bits of communication.

• If n = m2, then log
(n

m

)
> m· log m bits of communication are necessary, and the

total length of the corresponding MULTISET-EQUALITY input is N = Θ(m· log m).
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Communication Complexity
Yao’s 2-Party Communication Model:

• 2 players: Alice & Bob
• both know a function f : A× B → {0, 1}
• Alice only sees input a ∈ A, Bob only sees input b ∈ B
• they jointly want to compute f (a, b)

• Goal: exchange as few bits of communication as possible

Fact: Deciding if two m-element input sets

a = {x1, . . , xm} ⊆ {1, . . , n} und b = {y1, . . , ym} ⊆ {1, . . , n}

are equal, requires at least log
(n

m

)
bits of communication.
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The MULTISET-EQUALITY Problem (1/3)

MULTISET-EQUALITY Total input length: N = O(m· log n) bits
Input: Two multisets {x1, . . , xm} and {y1, . . , ym} of

numbers xi , yj in {1, . . , n}.
Question: Is {x1, . . , xm} = {y1, . . , ym}?

Observation:
Every deterministic solution requires Ω(N) bits of storage.

Proof:

• Use fact from Communication Complexity:

Deciding if two m-element subsets of {1, . . , n} are equal
requires at least log

(n
m

)
bits of communication.

• If n = m2, then log
(n

m

)
> m· log m bits of communication are necessary, and the

total length of the corresponding MULTISET-EQUALITY input is N = Θ(m· log m).
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The MULTISET-EQUALITY Problem (2/3)
Proof (continued):

• Known: N = Θ(m · log m), and > m · log m bits of communication are necessary
for solving MULTISET-EQUALITY.

• A deterministic data stream algorithm solving MULTISET-EQUALITY with s bits of
storage would lead to a communication protocol with s bits of communication.

x m�� �� ��

x3x2x1

ALICE

y1 ym�� �� ��

y3y2

BOB

memory
buffer

data stream
algorithm

• Thus: Lower bound on
communication complexity  

lower bound on memory size
of data stream algorithm
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The MULTISET-EQUALITY Problem (3/3)
Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers a1, . . , am, b1, . . , bm from {1, . . , n}, the
algorithm

• accepts with probability 1 if {a1, . . , am} = {b1, . . , bm}
• rejects with probability > 0.9 if {a1, . . , am} 6= {b1, . . , bm}.

Basic idea: Use “Fingerprinting”-techniques:

• represent {a1, . . , am} by a polynomial f (x) :=
∑m

i=1 xai

• represent {b1, . . , bm} by a polynomial g(x) :=
∑m

i=1 xbi

• choose a random number r and check if f (r) = g(r)

• accept if f (r) = g(r); reject otherwise.

If {a1, . . , am} = {b1, . . , bm}, then f (x) = g(x), and thus the algorithm always
accepts. If {a1, . . , am} 6= {b1, . . , bm}, then there are at most degree(f−g) many
distinct r with f (r) = g(r), and thus the algorithm rejects with high probability.
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Exercise # 2

Work out the details of the described algorithm and its analysis.
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Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks
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Several passes over a single stream

Scenario:

��������������������������������������������������������������������������

memory
buffer

input:

Parameters:
p : number of passes
s : size of memory buffer (number of bits)

We call such computations (p, s)-bounded computations.

If necessary, an output stream can be generated during a computation.
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An easy observation

��������������������������������������������������������������������������

memory
buffer

input:

Fact:
During a (p, s)-bounded computation, only (p · s) bits can be communicated
between the first and the second half of the input.

Consequence:
Lower bounds on communication complexity lead to
lower bounds for (p, s)-bounded computations

. . . even if backward passes are allowed

. . . even if writing on the “input tape” is allowed.
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A lower bound for connectedness of a graph
CONNECTEDNESS Parameters: m edges on 6 n nodes

Input: A list of edges e1, . . . , em on node set V ⊆ {1, . . , n}.
Question: Is the input graph connected?

Theorem: (Henzinger, Raghavan, Rajagopalan, 1998)
Solving CONNECTEDNESS with p passes requires Ω(n/p) bits of memory.

Proof:
By a reduction using the set disjointness problem.

SET DISJOINTNESS PROBLEM

Input: Two sets A,B ⊆ {1, . . , n}
Question: Is A ∩ B = ∅ ?

Known communication complexity of the set disjointness problem:
n bits of communication are necessary (and sufficient).
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Exercise # 3

Work out the details of the proof:

(a) prove that n bits of communication are necessary for solving the set
disjointness problem in Yao’s 2-party communication model, and

(b) use this to show that solving graph connectedness with p passes
requires Ω(n/p) bits of memory.
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A lower bound for sorting

SORTING Input length N = O(m · log n) bits
Input: A sequence of numbers x1, . . . , xm ∈ {1, . . , n} (for arbitrary m, n).

Output: x1, . . . , xm sorted in ascending order.

Theorem: (Grohe, Koch, S., ICALP’05)
SORTING can be solved by a (p, s)-bounded computation ⇐⇒ (p · s) ∈ Ω(N)

Proof:
I upper bound: easy.

I lower bound: by a reduction using the set disjointness problem.
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A hierarchy on the number of passes

Allowing a single extra scan may be more powerful than significantly increasing the
internal memory space:

Theorem: (Hernich, S., Theor. Comput. Sci. 2008)
For every logspace-computable function p with p(N) ∈ o

( N
log2 N

)
, there

exists a decision problem that
I can be solved by a (p+1, s)-bounded computation, but
I that cannot be solved by any (p,S)-bounded computation,

for s(N) = O(log N) and S(N) = o
( N

p(N)·log N

)
.

Remark: An analogous result also holds for randomised computations.

Proof idea:

Use a result by Nisan and Wigderson (1993) on the k -round communication
complexity of a particular “pointer jumping” problem.
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A lower bound for finding a
longest increasing subsequence

LONGEST-INCREASING-SUBSEQUENCE

Input: a sequence of numbers x1, . . . , xm ∈ {1, . . , n} (for arbitrary m, n)

Output: an increasing subsequence xi1 , . . . , xik of maximum length (denoted k )

Theorem: (Guha, McGregor, ICALP’08)
Any randomized p-pass algorithm solving LONGEST-INCREASING-SUBSEQUENCE

with p passes (and probability 0.9) requires Ω
(
k1+ 1

2p−1
)

bits of memory.

Proof:
I not by using communication complexity
I introduce a new method of pass elimination (somewhat related to “round

elimination” methods in communication complexity, but taylored towards stream
processing).

Remark:
A matching upper bound was proved by Liben-Nowell, Vee, Zhu, COCOON’05.
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Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks
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Several passes over several streams in parallel

Basic scenario:

��������������������������������������������������������������������������

��������������������������������������������������������������������������

memory
buffer

input S:

input T:

Parameters:
I 2 input streams: S = s1, s2, . . . , sn and T = t1, t2, . . . , tn.
I one pass over each input; heads may proceed asynchronously
I advancement of heads and new content of memory depends on

the current content of memory and the symbols seen at both heads
I for simplicity: advancement of only one head at a time
I s : size of memory buffer (number of bits)
I m : number of possible memory configurations, i.e., log m = s
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How to prove lower bounds in this scenario?
Problem:
“Classical” communication complexity results cannot be used so easily here.

Solution: Take a direct look at the “flow of information” during computations.

Consider the following example:
I n > 2
I Dn := {a1, b1, c1 . . . , an, bn, cn} — domain of 3n input items
I variation of the set disjointness problem:

DISJn

Input: Two streams S = s1, s2, . . . , sn and T = t1, t2, . . . , tn
of elements in Dn

such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?
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A lower bound proof for DISJn (1/5)
DISJn Dn := {a1, b1, c1 . . . , an, bn, cn}

Input: two streams S = s1, s2, . . . , sn, T = t1, t2, . . . , tn of elements in Dn,
such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}.

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

Proof:
I Consider input instances D(I1, I2) := (SI1 ,TI2 ) with I1, I2 ⊆ {1, . . , n} and

I SI1 : i ∈ I1 =⇒ i-th position carries ai

i 6∈ I1 =⇒ i-th position carries bi

I TI2 : i ∈ I2 =⇒ (n−i+1)-th position carries ai

i 6∈ I2 =⇒ (n−i+1)-th position carries ci

I Note: SI1 ∩ TI2 = ∅ ⇐⇒ I1 ∩ I2 = ∅
I Restrict attention to input instances D(I, I) = (SI ,TI) for I ⊆ {1, . . , n}.

(particular “yes”-instances)
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 27/55



ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (1/5)
DISJn Dn := {a1, b1, c1 . . . , an, bn, cn}

Input: two streams S = s1, s2, . . . , sn, T = t1, t2, . . . , tn of elements in Dn,
such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}.

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

Proof:
I Consider input instances D(I1, I2) := (SI1 ,TI2 ) with I1, I2 ⊆ {1, . . , n} and

I SI1 : i ∈ I1 =⇒ i-th position carries ai

i 6∈ I1 =⇒ i-th position carries bi

I TI2 : i ∈ I2 =⇒ (n−i+1)-th position carries ai

i 6∈ I2 =⇒ (n−i+1)-th position carries ci

I Note: SI1 ∩ TI2 = ∅ ⇐⇒ I1 ∩ I2 = ∅
I Restrict attention to input instances D(I, I) = (SI ,TI) for I ⊆ {1, . . , n}.

(particular “yes”-instances)
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 27/55



ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (1/5)
DISJn Dn := {a1, b1, c1 . . . , an, bn, cn}

Input: two streams S = s1, s2, . . . , sn, T = t1, t2, . . . , tn of elements in Dn,
such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}.

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

Proof:
I Consider input instances D(I1, I2) := (SI1 ,TI2 ) with I1, I2 ⊆ {1, . . , n} and

I SI1 : i ∈ I1 =⇒ i-th position carries ai

i 6∈ I1 =⇒ i-th position carries bi

I TI2 : i ∈ I2 =⇒ (n−i+1)-th position carries ai

i 6∈ I2 =⇒ (n−i+1)-th position carries ci

I Note: SI1 ∩ TI2 = ∅ ⇐⇒ I1 ∩ I2 = ∅
I Restrict attention to input instances D(I, I) = (SI ,TI) for I ⊆ {1, . . , n}.

(particular “yes”-instances)
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 27/55



ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (1/5)
DISJn Dn := {a1, b1, c1 . . . , an, bn, cn}

Input: two streams S = s1, s2, . . . , sn, T = t1, t2, . . . , tn of elements in Dn,
such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}.

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

Proof:
I Consider input instances D(I1, I2) := (SI1 ,TI2 ) with I1, I2 ⊆ {1, . . , n} and

I SI1 : i ∈ I1 =⇒ i-th position carries ai

i 6∈ I1 =⇒ i-th position carries bi

I TI2 : i ∈ I2 =⇒ (n−i+1)-th position carries ai

i 6∈ I2 =⇒ (n−i+1)-th position carries ci

I Note: SI1 ∩ TI2 = ∅ ⇐⇒ I1 ∩ I2 = ∅
I Restrict attention to input instances D(I, I) = (SI ,TI) for I ⊆ {1, . . , n}.

(particular “yes”-instances)
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 27/55



ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (2/5)
Situation during a computation:

��������������������������������������������������������������������������

��������������������������������������������������������������������������

memory
buffer

input S: 1 nn−12 3 i

input T: 31 2 n−i+1 n−1 n

I potential head positions: (i, j) with 1 6 i, j 6 n
I start: (1, 1)

I end: (n, n)

1 2 3 n

1

2

3

n

S

T

I For each input D(I, I) there exists exactly one i ∈ {1, . . , n} such that
the heads visit position (i, n−i+1).
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A lower bound proof for DISJn (3/5)
Goal now: “cut-and-paste argument”
Find I, J ⊆ {1, . . , n} such that computations on D(I, I) and D(J, J) can be combined
to an accepting computation on D(I′, J ′) for I′ and J ′ with I′ ∩ J ′ 6= ∅.

=⇒ accept a “no”-instance!

(1) Ex. i ∈ {1, . . , n} and X1 ⊆ {I : I ⊆ {1, . . , n}} such that
I for each I ∈ X1, head position (i, n−i+1) is visited,
I |X1| > 2n

n .

(2) Ex. X2 ⊆ X1 such that
I for all I, J ∈ X2: i ∈ I ⇐⇒ i ∈ J,
I |X2| > |X1|

2 >
2n

2n .

(3) Ex. memory configuration c and X3 ⊆ X2 such that
I for all I ∈ X3: memory configuration c when at head position (i, n−i+1),
I |X3| > |X2|

m > 2n

2nm .

Note: |X3| > 1 ⇐⇒ m < 2n

2n ⇐⇒ s = log m < n − log n − 1.
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A lower bound proof for DISJn (4/5)
Let I, J ∈ X3 with I 6= J.

Same situation on input D(I, I) and on input D(J, J):

��������������������������������������������������������������������������

��������������������������������������������������������������������������

memory
buffer

input S: 1 nn−12 3 i

input T:
same memory

configuration c

1 2 3 n−i+1 n−1 n

I Cut-and-paste argument =⇒ Same situation on inputs D(I1, I2) and D(I′1, I
′
2)

I I1 =
(
I ∩ {1, . . , i−1}

)
∪
(
I ∩ {i}

)
∪
(
J ∩ {i+1, . . , n}

)
I2 =

(
I ∩ {i+1, . . , n}

)
∪
(
I ∩ {i}

)
∪
(
J ∩ {1, . . , i−1}

)
I I′1 =

(
J ∩ {1, . . , i−1}

)
∪
(
J ∩ {i}

)
∪
(
I ∩ {i+1, . . , n}

)
I′2 =

(
J ∩ {i+1, . . , n}

)
∪
(
J ∩ {i}

)
∪
(
I ∩ {1, . . , i−1}

)
Since I 6= J, D(I1, I2) or D(I′1, I

′
2) is a “no”-instance.
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∪
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A lower bound proof for DISJn (5/5)

We have proved

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

The proof given by Bar-Yossef and Shalem (ICDE 2008) is different.
For their proof, they introduce a particular kind of communication model: the
token-based mesh communication model.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 31/55



ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over several streams in parallel

General scenario: mp2s-automaton A with parameters (D,m, kf , kb)

��������������������������������������������������������������������������

��������������������������������������������������������������������������

��������������������������������������������������������������������������

������������������������������������������������������������������������ memory
buffer

input S:

input T:

Parameters:
I 2 input streams: S = s1, s2, . . . , sn and T = t1, t2, . . . , tn of elements in D.
I m : number of possible memory configurations;

s := log m size of the memory buffer (number of bits).
I kf forward heads on each input stream,

kb backward heads on each input stream
I Depending on (a) the current memory state and (b) the elements in S and T at

the current head positions, a deterministic transition function determines (1) the
next memory state and (2) which of the heads should be advanced to the next
position.
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Solving DISJn with an mp2s-automaton: upper bound

Proposition:
DISJn can be solved by an mp2s-automaton with parameters (Dn, n+2,

√
n, 0).

(I.e.: memory buffer of log(n+2) bits,
√

n forward heads, no backward heads)

Proof:

Phase 1:
Move heads on S such that they partition S into blocks of length

√
n.

(use n+1−
√

n states)

Phase 2:

For j = 1, . . . ,
√

n do

(1) Let j-th head on T pass the entire stream and compare each
element of T with the

√
n elements at head positions in S.

(2) Advance each head on S one step to the right.

(use 2 states)
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Solving DISJn with an mp2s-automaton: lower bound

Theorem: (S, STACS’09)

For all n,m, kf , kb such that, for k = 2kf + 2kb and v = (k2
f + k2

b + 1)·(2kf kb + 1),

k2 · v · log(n+1) + k · v · log m + v · (1 + lg v) 6 n,

the problem DISJn cannot be solved by any mp2s-automaton with parameters
(Dn,m, kf , kb).

Proof:

I Similar to the shown proof where only one forward head is available on each
stream.

I Divide input streams into blocks and choose a block that is “not checked” by any
pair of cursors.
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Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT’07

I an abstract model for database query processing
I formal model: based on Abstract State Machines

Informal Description of a FCM:
I works on a relational database

(tables, not sets) (read-only access)
I on each table:

a fixed number of cursors
I cursors are one-way,

but can move asynchronously
I internal memory:

I finite state control
I fixed number of registers which

can store bitstrings
I manipulation of output row and internal

memory: via built-in bitstring functions
on data elements and bitstrings

Cursor 3

Cursor 2

Cursor 1

Cursor 1

Cursor 2
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Easy Observations
Consider the operators from Relational Algebra

I Selection σi=j (R) can be implemented by a FCM
I Union R1 ∪ R2 and Projection πJ (R) can be implemented by a FCM,

provided that input tables are ordered
I Joins are NOT computable by FCMs, because the output size of a join can be

quadratic, and FCMs can output only a linear number of different tuples
I Window Joins for a fixed window size w can be computed by an FCM (which has

w cursors on each relation)
I Semijoins R nθ S can be computed by an FCM, provided that input tables are

ordered R nθ S := {t ∈ R : there is an s ∈ S such that θ(t , s)}

Corollary:
Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)

Question: Are intermediate sorting steps really necessary?
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Question:
Are intermediate sorting steps really necessary?

Answer: Yes! . . .

Theorem: (Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT’07)

The query

Is R nx1=y1 (S nx2=y1 T ) nonempty?

where R and T are unary and S in binary, is not computable by an FCM (even if
the FCM is allowed to have as input all sorted versions of the input relations).
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An Open Question

Is there a Boolean query from Relational Algebra
(or, equivalently, a sentence of first-order logic),
that cannot be computed by any composition of

FCMs and sorting operations?

Conjecture: Yes

. . . since otherwise FO would have data complexity of time n · log n
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Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks
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Read/write streams
Scenario:

��������������������������������������������������������������������������

��������������������������������������������������������������������������

��������������������������������������������������������������������������

memory
buffer

Parameters:
I t read/write streams
I one head on each stream; each head can write onto (and append) the stream
I r : maximum number of head reversals
I s : size of “internal memory” (number of bits)

I input on first read/write stream
I if necessary: output on last read/write stream
I formal model: based on Turing machines.
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Read/write streams
Scenario:
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I one head on each stream; each head can write onto (and append) the stream
I r : maximum number of head reversals
I s : size of “internal memory” (number of bits)

I input on first read/write stream
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I formal model: based on Turing machines.
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Complexity classes

ST(r , s, t) :

class of all problems that can be solved by a deterministic algorithm using

I t read/write streams,

I at most r head reversals, and

I a memory buffer of size s.
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The sorting problem
SORTING Input length N = m · (n + 1)

Input: bit-strings x1, . . . , xm ∈ {0, 1}n (for arbitrary m, n)

Output: x1, . . . , xm sorted in ascending order

Already seen in this talk :

Theorem: (Grohe, Koch, S., ICALP’05)
SORTING can be solved by a (p, s)-bounded computation ⇐⇒ (p · s) ∈ Ω(N)

Thus: SORTING ∈ ST(r , s,1) ⇐⇒ r(N)·s(N) ∈ Ω
(
N
)
.

Theorem: (Chen, Yap, 1991)
SORTING ∈ ST(O(log N),O(1),2)

Proof method: refinement of Merge-Sort.

Question: Is this optimal? . . . . . . . . . . . . . I.e..: What about o(log n) head reversals?
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Lower bound for sorting with > 2 r/w streams

Problem:
An additional read/write stream can be used to move around large parts of the input
(with just 2 head reversals).

 communication complexity does not help to prove lower bounds

Intuition:
Still, the order of the input strings cannot be changed so easily.

Fact:
For sufficiently small r(N), s(N), even with t > 2 read/write streams,
sorting by solely comparing and moving around the input strings is impossible.

(For comparison-exchange algorithms, according lower bounds are well-known.)
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Lower bound for sorting with > 2 r/w streams
Problem:
Algorithms for read/write streams are based on Turing machines.
They can perform much more complicated operations than just compare and move
around input strings.

Example:
During a first scan of the input, compute the sum of the input numbers modulo a
large prime.
(In this way, already a single scan suffices to produce a number that depends in a
non-trivial way on the entire input.)

...

Do some magic!
— Recall the data stream algorithms for MISSING NUMBER
or MULTISET-EQUALITY !

...
Write the sorted sequence onto the output read/write stream.
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Lower Bound for Sorting

Theorem: (Grohe, S., PODS’05)
SORTING 6∈ ST

(
o(log N),N1−ε,O(1)

)
(for every ε > 0)

Proof method:

1. New machine model: List Machines

• can only compare and move around input strings ( weaker than TMs)

• non-uniform & lots of states and tape symbols ( stronger than TMs)

2. Show that list machines can simulate algorithms on read/write streams.

3. Prove that list machines cannot sort ( . . . use combinatorics).
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Randomised ST-Classes: RST and co-RST

Definition of RST: analogous to the class RP (randomised polynomial time):

An RST-algorithm produces

• no “false positives”, i.e., it rejects “no”-instances with prob. 1

• “false negatives” with prob. < 0.1, i.e. it accepts “yes”-inst. with prob. > 0.9

A co-RST-algorithm has complementary probabilities for accepting resp. rejecting:

• no “false negatives”, i.e. it accepts “yes”-instances with prob. 1

• “false positives” with prob. < 0.1, i.e. it rejects “no”-inst. with prob. > 0.9

Theorem: (Grohe, Hernich, S., PODS’06)

MULTISET-EQUALITY


6∈ RST(o(log N),N1−ε,O(1)) (for every ε > 0)
∈ co-RST(2,O(log N), 1)

∈ ST(O(log N),O(1), 2)
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Consequences

Separation of deterministic, randomised, and nondeterministic ST(· · · )-classes:

NST(R,S,O(1))
| ← MULTISET-EQUALITY ∈ NST(3,O(log N), 2)

RST(R,S,O(1))
| ← MULTISET-EQUALITY ∈ co-RST(2,O(log N), 1)

ST(R,S,O(1))

for all R ⊆ o(log n) and O(log n) ⊆ S ⊆ O(N1−ε)
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ST-Classes with 2-Sided Bounded Error

Definition of BPST: analogous to the class BPP
(two-sided bounded error probabilistic polynomial time):

An BPST-machine produces

• “false positives” with prob. < 0.1, i.e., it rejects “no”-instances with prob. > 0.9

• “false negatives” with prob. < 0.1, it accepts “yes”-instances with prob. > 0.9

Theorem: (Beame, Jayram, Rudra, STOC’07)

SET-DISJOINTNESS 6∈ BPST
(

o
(

log N
log log N

)
,N1−ε,O(1)

)
(for every ε > 0)

Theorem: (Beame, Huynh-Ngoc, FOCS’08)

Approximating the frequency moments Fk with a randomised read/write stream
algorithm with o(log N) head reversals requires (almost) as much internal
memory as a “conventional” one-pass data stream algorithm.
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Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks
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A few directions for future research

I Consider randomized versions of mp2s-automata:
Design efficient randomized approximation algorithms for particular problems
and develop techniques for proving lower bounds in the randomized model.

I Study the extension of the read/write stream model in which intermediate sorting
steps are available.
This is the StrSort model by Aggarwal, Datar, Rajagopalan, Ruhl, FOCS’04.

I An open question concerning finite cursor machines:
Is there a sentence from first-order logic that cannot be evaluated by a
composition of finite cursor machines and sorting operations?
(Conjecture: yes!)

I An open question from complexity theory:
Can the sorting problem be solved by a linear time multi-tape Turing machine?
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Data stream talks during DEIS’10

I Data stream management systems and query languages Sandra Geisler
(Tuesday, 8:45–9:45)

I Basic algorithmic techniques for processing data streams Mariano Zelke
(Tuesday, 9:45–10:45)

I Querying and mining data streams Elena Ikonomovska
(Wednesday, 11:15–12:15)

I Stream-based processing of XML documents Cristian Riveros
(Thursday, 11:15–12:15)

I Distributed processing of data streams and large data sets Marwan Hassani
(Thursday 1:45–2:45)
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Exercise # 4

Let s be a number with 0 < s < 1.
The goal is to find a data stream algorithm that processes an input stream

x1, x2, x3, . . . , xn

of elements from {1, . . . ,m} and outputs a set M of input elements such
that M contains (at least) all those elements that occur for > s · n times in
the input stream.

Note:
I The output has to be a set — i.e., it is not allowed to output elements

more than once. (In particular, this means that you cannot simply output
the entire input stream.)

I The problem can be solved by a deterministic data stream algorithm
using O( 1

s · log m· log n) memory bits.
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Algorithms, J.M. Abello and J.S. Vitter (eds.). DIMACS Series in Discrete Mathematics and Theoretical
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#4: G. Schnitger: Lecture notes on “Internet Algorithmen” (in German). Goethe-Universität Frankfurt am
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— See Algorithm 4.20 on page 72.
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Thank You!
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