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Data Streams

Examples:

Situation:

) e meteorological data (sensor networks)
e massive amounts of data

) e astronomical data
e generated automatically

. . e network monitoring
e continuous, rapid updates

e banking and credit transactions
Challenges:

e cannot wait with processing until “all” the data has arrived
~ process data “on-the-fly”

e cannot afford to store all the data ~~ store a “sketch”

e data may arrive so rapidly that you cannot even afford to look at each incoming
dataitem ~~ “sampling”
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Example: Network Monitoring

i * Let A be a node in the world wide web.
¥ As input, A receives a stream of “packets”
s } P1, P2, P3, Pa, . - ., Pm-
) '. ﬁ : * 3 =>  Each packet p; contains information on
. oo " b » the sender’s IP address,
B o/ 10A7: > the destination’s IP address,

» the data that is transmitted
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Example: Network Monitoring

Let A be a node in the world wide web.
As input, A receives a stream of “packets

:'-': P1,P2,P3,P4, .., Pm-

Each packet p; contains information on
. » the sender’s IP address,
u Ao .z » the destination’s IP address,

» the data that is transmitted

Question: How many distinct IP addresses have sent at least one packet through
node A? — l.e., what is the 0-th frequency moment F, of the input stream?

Problem: A does not want to store the entire stream p1, p2, ps, . . ., Pm.

Solution:
A suitable randomised algorithm that computes a good approximate answer:
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Tight bound for approximating Fo

COMPUTING Fq
Input: A sequence p1, p2, s, . - ., Pm Of elements in {1,.., n}.
Task: Compute the number F, of distinct elements in the input.

Theorem:

(a) Upper Bound: (Flajolet, Martin, FOCS’83)
For every ¢ > 2 there is a randomized one-pass algorithm that uses O(log n)
bits of memory and computes a number Y such that
Prob (# < g or £ >¢) <2/c.
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Tight bound for approximating Fo

COMPUTING Fq
Input: A sequence p1, p2, s, . - ., Pm Of elements in {1,.., n}.
Task: Compute the number F, of distinct elements in the input.

Theorem:
(a) Upper Bound: (Flajolet, Martin, FOCS’83)

For every ¢ > 2 there is a randomized one-pass algorithm that uses O(log n)
bits of memory and computes a number Y such that
Prob (# < g or £ >¢) <2/c.

(b) Lower Bound: (Alon, Matias, Szegedy, STOC’96)

Any randomized one -pass algorithm computing a number Y such that
Prob (£ < 0.9 or £ >1.1) <0.25 uses Q(log ) bits of memory.
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Tight bound for approximating Fo

COMPUTING Fq
Input: A sequence p1, p2, s, . - ., Pm Of elements in {1,.., n}.
Task: Compute the number F, of distinct elements in the input.

Theorem:
(a) Upper Bound: (Flajolet, Martin, FOCS’83)

For every ¢ > 2 there is a randomized one-pass algorithm that uses O(log n)
bits of memory and computes a number Y such that
Prob (# < g or £ >¢) <2/c.

(b) Lower Bound: (Alon, Matias, Szegedy, STOC’96)

Any randomized one -pass algorithm computing a number Y such that
Prob (£ < 0.9 or £ >1.1) <0.25 uses Q(log ) bits of memory.

Remark: improved bounds: Bar-Yossef, Jayram, Kumar, Sivakumar (RANDOM’00)
and Kane, Nelson, Woodruff (PODS’10).

Main issues concerning data streams:
How to design algorithms & how to prove lower bounds
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Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel
Read/write streams

Future tasks
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ONE PASS/ONE STREAM

Overview

One pass over a single stream
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ONE PASS/ONE STREAM

One pass over a single stream

Scenario:

input: | |

memory

buffer
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution:
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2

11234 |5|6|7|8]|---|n
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2 5
11234 (5|6 |7|8]|---|n
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2 5 1

11234 |5|6|7|8]|---|n
axs v
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2 51 3

11234 |5|6|7|8]|---|n
Sxaxs v
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2 51 3 4

11234 |5|6|7|8]|---|n
VIiVIVIVI|Y
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2 51 3 4 8

11234 |5|6|7|8]|---|n
VIiVIVIVI|Y v
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2 513 4 8 6

11234 |5|6|7|8]|---|n
VIiVIVIVIVIV] |V
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n

11234 |5|6|7|8]---
VIVIVIVIVIY VI VvV

3>
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum

S = Xi
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum

S = Xy+ X
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum

S = X +Xo+ X3
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum

S 1= X{+Xo+ X3+ Xy
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum

S = X{+Xo+ X3+ Xg+ -+ Xp_1
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum
S = X{+Xo+ X3+ Xg+ -+ Xp_1

Missing number = w )
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum O(log n) bits suffice
S = X{+Xo+ X3+ Xg+ -+ Xp—1

Missing number = w )
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum O(log n) bits suffice
S = X{+Xo+ X3+ Xg+ -+ Xp—1

Missing number = w )

Lower Bound:
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ONE PASS/ONE STREAM

Missing Number Puzzle

MISSING NUMBER

Input: A stream xq, X2, X3, .., Xp_1 Of
n—1 distinct numbers from {1, .., n}.

Question: Which number from {1, .., n} is missing?

Naive Solution: 2513486 --- n requires n bits of storage

11234 |5|6|7|8]|---|n
VIVIVIVIVIY VI VvV

Clever Solution: Store running sum O(log n) bits suffice
S = X{+Xo+ X3+ Xg+ -+ Xp—1

Missing number = w )

Lower Bound: atleast log n bits are necessary
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ONE PASS/ONE STREAM

Exercise # 1

Find a data stream algorithm that uses at most poly(k - log n) bits of memory
and solves the following generalization of the “missing numbers puzzle”:

k MISSING NUMBERS

Input: Two numbers n, k and a stream xq, X2, Xs, . ., Xp_k Of
n—k distinct numbers from {1,.., n}

Task: Find the k missing numbers
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (1/3)

MULTISET-EQUALITY Total input length: N = O(m-log n) bits

Input: Two multisets {xi,..,xm} and {y1,.., ym} of
numbers x;, y;in {1,..,n}.

Question: 1s {x1, .., Xm} ={y1,..,ym} ?

Observation:
Every deterministic solution requires Q(N) bits of storage.

Proof:

e Use fact from Communication Complexity:
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ONE PASS/ONE STREAM

Communication Complexity

Yao’s 2-Party Communication Model:

e 2 players: Alice & Bob

e both know a function f: Ax B — {0,1}

e Alice only seesinput ac A, Bobonly seesinputb e B
e they

e Goal: exchange as few bits of communication as possible
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ONE PASS/ONE STREAM

Communication Complexity

Yao’s 2-Party Communication Model:

e 2 players: Alice & Bob

e both know a function f: Ax B — {0,1}

e Alice only seesinput ac A, Bobonly seesinputb e B
e they

e Goal: exchange as few bits of communication as possible

Fact: Deciding if two m-element input sets
a={x,..,xm}<{1,..,n} und b={y1,...,ym} C{1,..,n}

are equal, requires at least log (,’]1) bits of communication.
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (1/3)

MULTISET-EQUALITY Total input length: N = O(m-log n) bits

Input: Two multisets {xi,..,xm} and {y1,.., ym} of
numbers x;, y;in {1,..,n}.

Question: 1s {x1, .., Xm} ={y1,..,ym} ?

Observation:
Every deterministic solution requires Q(N) bits of storage.

Proof:

e Use fact from Communication Complexity:
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (1/3)

MULTISET-EQUALITY Total input length: N = O(m-log n) bits

Input: Two multisets {xi,..,xm} and {y1,.., ym} of
numbers x;, y;in {1,..,n}.

Question: 1s {x1, .., Xm} ={y1,..,ym} ?

Observation:
Every deterministic solution requires Q2(N) bits of storage.

Proof:

e Use fact from Communication Complexity:

Deciding if two m-element subsets of {1, .., n} are equal
requires at least log (,’,’,) bits of communication.
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (1/3)

MULTISET-EQUALITY Total input length: N = O(m-log n) bits
Input: Two multisets {xi,..,xm} and {y1,.., ym} of
numbers x;, y;in {1,..,n}.

Question: 1s {x1, .., Xm} ={y1,..,ym} ?

Observation:
Every deterministic solution requires Q2(N) bits of storage.
Proof:

e Use fact from Communication Complexity:

Deciding if two m-element subsets of {1, .., n} are equal
requires at least log (,’,’7) bits of communication.

e If n=n7?, then log(?) > m-logm bits of communication are necessary, and the
total length of the corresponding MULTISET-EQUALITY input is N = ©(m-log m).
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (2/3)

Proof (continued):

e Known: N =0©(m-logm),and > m-logm bits of communication are necessary
for solving MULTISET-EQUALITY.
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (2/3)

Proof (continued):

e Known: N =0©(m-logm),and > m-logm bits of communication are necessary
for solving MULTISET-EQUALITY.

e A deterministic data stream algorithm solving MULTISET-EQUALITY with s bits of
storage would lead to a communication protocol with s bits of communication.
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (2/3)

Proof (continued):

e Known: N =0©(m-logm),and > m-logm bits of communication are necessary
for solving MULTISET-EQUALITY.

e A deterministic data stream algorithm solving MULTISET-EQUALITY with s bits of
storage would lead to a communication protocol with s bits of communication.

ALICE BOB

Xp Xp X3 e oo Xm [ Y] Yo Y3 oo oo Yy

data stream
algorithm =

memory
buffer
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (2/3)

Proof (continued):

e Known: N =0©(m-logm),and > m-logm bits of communication are necessary
for solving MULTISET-EQUALITY.

e A deterministic data stream algorithm solving MULTISET-EQUALITY with s bits of
storage would lead to a communication protocol with s bits of communication.

ALICE BOB

Xp Xp X3 e oo Xm [ Y] Yo Y3 oo oo Yy

data stream
X -
algorithm
memory
buffer
Lower bound on lower bound on memory size

e Thus: communication complexity 7 of data stream algorithm
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (3/3)

Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:
Given m, n, and a stream of numbers ay, . ., am, b, ..
algorithm
e accepts with probability 1 if {a1,..,am} = {b,..
e rejects with probability > 0.9 if {ai,..,am} # {b1,..

,bm from {1,..,n}, the

7bm}
»bm}-
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (3/3)
(Grohe, Hernich, S., PODS’06)

Theorem:
The MULTISET-EQUALITY problem can be solved by a randomised algorithm

using O(log N) bits of storage in the following sense:
Given m, n, and a stream of numbers ay, . ., am, b, ..
algorithm
e accepts with probability 1 if {a1,..,am} = {b,..
e rejects with probability > 0.9 if {ai,..,am} # {b1,..

,bm from{1,..,n}, the

7bm}
>bm}-

Basic idea: Use “Fingerprinting”-techniques:
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (3/3)

Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers ay, .., am, b, ..,bn from {1,.., n}, the
algorithm

e accepts with probability 1 if {at,..,am} ={b1,..,bm}

e rejects with probability > 0.9 if {ai1,..,am} # {b1,..,bm}.

Basic idea: Use “Fingerprinting”-techniques:

NICOLE SCHWEIKARDT

represent {a, .., am} by a polynomial f(x):= Y, x%
represent {b, .., bm} by a polynomial g(x) := 37, x"
choose a random number r and check if f(r) = g(r)
accept if f(r) = g(r); reject otherwise.
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (3/3)

Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers ay, .., am, b, ..,bn from {1,.., n}, the
algorithm

e accepts with probability 1 if {at,..,am} ={b1,..,bm}
e rejects with probability > 0.9 if {ai1,..,am} # {b1,..,bm}.

Basic idea: Use “Fingerprinting”-techniques:

e represent {ai, .., am} by a polynomial f(x):=3>"", x%

represent {b, .., bm} by a polynomial g(x) := 37, x"

choose a random number r and check if f(r) = g(r)

accept if f(r) = g(r); reject otherwise.

If {a1,..,am} = {b1,.., bm}, then f(x) = g(x), and thus the algorithm always
accepts.
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ONE PASS/ONE STREAM

The MULTISET-EQUALITY Problem  (3/3)

Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers ay, .., am, b, ..,bn from {1,.., n}, the
algorithm

e accepts with probability 1 if {at,..,am} ={b1,..,bm}
e rejects with probability > 0.9 if {ai1,..,am} # {b1,..,bm}.

Basic idea: Use “Fingerprinting”-techniques:

e represent {ai, .., am} by a polynomial f(x):=3>"", x%
e represent {b, .., bm} by a polynomial g(x) := 37, x"
e choose a random number r and check if f(r) = g(r)

e accept if f(r) = g(r); reject otherwise.

If {a1,..,am} = {b1,.., bm}, then f(x) = g(x), and thus the algorithm always
accepts. If {a1,..,am} # {b1, .., bm}, then there are at most degree(f—g) many
distinct r with f(r) = g(r), and thus the algorithm rejects with high probability.
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ONE PASS/ONE STREAM

Exercise #2

Work out the details of the described algorithm and its analysis.
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MULTI-PASS/ONE STREAM

Overview

Several passes over a single stream
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MULTI-PASS/ONE STREAM

Several passes over a single stream

Scenario:
input: | I
- -
memory
buffer
Parameters:
p : number of passes
s : size of memory buffer (number of bits)

We call such computations (p, s)-bounded computations.
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MULTI-PASS/ONE STREAM

Several passes over a single stream

Scenario:
input: | I
- -
memory
buffer
Parameters:
p : number of passes
s : size of memory buffer (number of bits)

We call such computations (p, s)-bounded computations.

If necessary, an output stream can be generated during a computation.
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MULTI-PASS/ONE STREAM

An easy observation

input: |

memory

buffer

Fact:
During a (p, s)-bounded computation, only (p - s) bits can be communicated
between the first and the second half of the input.
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MULTI-PASS/ONE STREAM

An easy observation

input: | I

memory

buffer

Fact:

During a (p, s)-bounded computation, only (p - s) bits can be communicated
between the first and the second half of the input.

Consequence:

Lower bounds on communication complexity lead to
lower bounds for (p, s)-bounded computations
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MULTI-PASS/ONE STREAM

An easy observation

input: | I

memory

buffer

Fact:

During a (p, s)-bounded computation, only (p - s) bits can be communicated
between the first and the second half of the input.

Consequence:

Lower bounds on communication complexity lead to
lower bounds for (p, s)-bounded computations

. even if backward passes are allowed
. even if writing on the “input tape” is allowed.
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MULTI-PASS/ONE STREAM

A lower bound for connectedness of a graph

CONNECTEDNESS Parameters: m edges on < n nodes
Input: Alist of edges eq,...,em onnodeset V C {1,..,n}.
Question: s the input graph connected?

Theorem: (Henzinger, Raghavan, Rajagopalan, 1998)
Solving CONNECTEDNESS with p passes requires Q2(n/p) bits of memory.
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MULTI-PASS/ONE STREAM

A lower bound for connectedness of a graph

CONNECTEDNESS Parameters: m edges on < n nodes
Input: Alist of edges eq,...,em onnodeset V C {1,..,n}.
Question: s the input graph connected?

Theorem: (Henzinger, Raghavan, Rajagopalan, 1998)
Solving CONNECTEDNESS with p passes requires Q2(n/p) bits of memory.

Proof:
By a reduction using the set disjointness problem.

SET DISJOINTNESS PROBLEM
Input: Two sets A,BC {1,..,n}
Question: sANB=07?

Known communication complexity of the set disjointness problem:
n bits of communication are necessary (and sufficient).
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MULTI-PASS/ONE STREAM

Exercise #3

Work out the details of the proof:

(a) prove that n bits of communication are necessary for solving the set
disjointness problem in Yao’s 2-party communication model, and

(b) use this to show that solving graph connectedness with p passes
requires Q(n/p) bits of memory.
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MULTI-PASS/ONE STREAM

A lower bound for sorting

SORTING Input length N = O(m - log n) bits
Input: A sequence of numbers x1,...,xm € {1,..,n} (for arbitrary m, n).
Output: X1, ..., Xm sorted in ascending order.
Theorem: (Grohe, Koch, S., ICALP’05)

SORTING can be solved by a (p, s)-bounded computation <= (p-s) € Q(N)

Proof:
> upper bound: easy.

» lower bound: by a reduction using the set disjointness problem.
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MULTI-PASS/ONE STREAM

A hierarchy on the number of passes

Allowing a single extra scan may be more powerful than significantly increasing the
internal memory space:

Theorem: (Hernich, S., Theor. Comput. Sci. 2008)
For every logspace-computable function p with p(N) € o(longN), there

exists a decision problem that
» can be solved by a (p+1, s)-bounded computation, but

» that cannot be solved by any (p, S)-bounded computation,

for s(N) = O(log N) and S(N) = o( sw1iegn) -
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MULTI-PASS/ONE STREAM

A hierarchy on the number of passes

Allowing a single extra scan may be more powerful than significantly increasing the
internal memory space:

Theorem: (Hernich, S., Theor. Comput. Sci. 2008)
For every logspace-computable function p with p(N) € o(longN), there
exists a decision problem that

» can be solved by a (p+1, s)-bounded computation, but

» that cannot be solved by any (p, S)-bounded computation,

for s(N) = O(log N) and S(N) = o( sw1iegn) -

Remark: An analogous result also holds for randomised computations.
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MULTI-PASS/ONE STREAM

A hierarchy on the number of passes

Allowing a single extra scan may be more powerful than significantly increasing the
internal memory space:

Theorem: (Hernich, S., Theor. Comput. Sci. 2008)
For every logspace-computable function p with p(N) € o(longN), there
exists a decision problem that

» can be solved by a (p+1, s)-bounded computation, but

» that cannot be solved by any (p, S)-bounded computation,

for s(N) = O(log N) and S(N) = o( sw1iegn) -

Remark: An analogous result also holds for randomised computations.

Proof idea:
Use a result by Nisan and Wigderson (1993) on the k-round communication
complexity of a particular “pointer jumping” problem.
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MULTI-PASS/ONE STREAM

A lower bound for finding a
longest increasing subsequence

LONGEST-INCREASING-SUBSEQUENCE

Input: a sequence of numbers x1,...,xm € {1,..,n} (for arbitrary m, n)
Output: an increasing subsequence X;,, .. ., X; of maximum length (denoted k)
Theorem: (Guha, McGregor, ICALP’08)

Any randomized p-pass algorithm solving LONGEST-INCREASING-SUBSEQUENCE
1
with p passes (and probability 0.9) requires Q(k“’?pf1 ) bits of memory.

Remark:
A matching upper bound was proved by Liben-Nowell, Vee, Zhu, COCOON'05.
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MULTI-PASS/ONE STREAM

A lower bound for finding a
longest increasing subsequence

LONGEST-INCREASING-SUBSEQUENCE

Input: a sequence of numbers x1,...,xm € {1,..,n} (for arbitrary m, n)
Output: an increasing subsequence X;,, .. ., X; of maximum length (denoted k)
Theorem: (Guha, McGregor, ICALP’08)

Any randomized p-pass algorithm solving LONGEST-INCREASING-SUBSEQUENCE
1
with p passes (and probability 0.9) requires Q(k“’?pf1 ) bits of memory.

Proof:
» not by using communication complexity

> introduce a new method of pass elimination (somewhat related to “round
elimination” methods in communication complexity, but taylored towards stream
processing).

Remark:
A matching upper bound was proved by Liben-Nowell, Vee, Zhu, COCOON'05.
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MULTI-PASS/MULTIPLE STREAMS

Overview

Several passes over several streams in parallel
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MULTI-PASS/MULTIPLE STREAMS

Several passes over several streams in parallel

Basic scenario:

input S: | |
L] L memory
buffer
input T: | |
L -
Parameters:
> 2input streams: S=51,S,...,8, and T =t,b,..., .

> one pass over each input; heads may proceed asynchronously
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MULTI-PASS/MULTIPLE STREAMS

Several passes over several streams in parallel

Basic scenario:

input S: | |
L] L memory
buffer
input T: | |
L -
Parameters:
> 2input streams: S=51,S,...,8, and T =t,b,..., .

> one pass over each input; heads may proceed asynchronously

» advancement of heads and new content of memory depends on
the current content of memory and the symbols seen at both heads

» for simplicity: advancement of only one head at a time
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MULTI-PASS/MULTIPLE STREAMS

Several passes over several streams in parallel

Basic scenario:

memory

buffer

input S: | |
L -
input T: | |
L -
Parameters:
> 2input streams: S=51,S,...,8, and T =t,b,..., .

> one pass over each input; heads may proceed asynchronously

» advancement of heads and new content of memory depends on
the current content of memory and the symbols seen at both heads

for simplicity: advancement of only one head at a time

v

> s : size of memory buffer (number of bits)

v

m : number of possible memory configurations, i.e., logm = s
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MULTI-PASS/MULTIPLE STREAMS

How to prove lower bounds in this scenario?

Problem:
“Classical” communication complexity results cannot be used so easily here.

Solution: Take a direct look at the “flow of information” during computations.
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MULTI-PASS/MULTIPLE STREAMS

How to prove lower bounds in this scenario?

Problem:
“Classical” communication complexity results cannot be used so easily here.

Solution: Take a direct look at the “flow of information” during computations.

Consider the following example:
»n=>2
> D,:={ai,bi,¢i...,an,bn,cn} — domain of 3ninput items
» variation of the set disjointness problem:

DisJn

Input: Two streams S =51,S,...,8p and T =4, b,.... t
of elements in D,

Question: 1s {s1,8z2,...,Sn} N{t,b,...., 0.} =07
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MULTI-PASS/MULTIPLE STREAMS

How to prove lower bounds in this scenario?

Problem:
“Classical” communication complexity results cannot be used so easily here.

Solution: Take a direct look at the “flow of information” during computations.

Consider the following example:
»n>2
> D,:={ai,bi,¢i...,an,bn,cn} — domain of 3ninput items
» variation of the set disjointness problem:

DisJn

Input: Two streams S =51,S,...,8p and T =4, b,.... t
of elements in D, such that s; € {a;, b} and t,_i11 € {a;, ¢}

Question: 1s {s1,8z2,...,Sn} N{t,b,...., 0.} =07
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DiISJ, (1/5)

DisJp Dy :={as,b1,C1...,an, bn, Cn}

Input: two streams S = s1,S2,...,8n, T = ti,b,..., 1, of elements in Dp,
such that s; € {a;, bi} and t,_iy1 € {aj, Ci}.

Question: 1s {s1,82,...,8n} N{t,bo,...., 0.} =07?

Theorem: (Bar Yossef, Shalem, ICDE’08)

DisJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n—logn— 1 bits of memory.

Proof:
» Consider input instances D(/, k) := (S, T),) with Iy, L C {1,..,n} and
» S, : i€l = ithposition carries a

i ¢ Iy = i-th position carries b;
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DiISJ, (1/5)

DisJp Dy :={as,b1,C1...,an, bn, Cn}

Input: two streams S = s1,S2,...,8n, T = ti,b,..., 1, of elements in Dp,
such that s; € {a;, bi} and t,_iy1 € {aj, Ci}.

Question: 1s {s1,82,...,8n} N{t,bo,...., 0.} =07?

Theorem: (Bar Yossef, Shalem, ICDE’08)

DisJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n—logn— 1 bits of memory.

Proof:
» Consider input instances D(/, k) := (S, T),) with Iy, L C {1,..,n} and
» S, : i€l = ithposition carries a
i ¢ Iy = i-th position carries b;
» T, : i€k = (n—i+1)-th position carries a;

i ¢ b = (n—i+1)-th position carries ¢;
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DiISJ, (1/5)

DisJn Dy :={as,b1,C1...,an, bn, Cn}
Input: two streams S = s1,S2,...,8n, T = ti,b,..., 1, of elements in Dp,
such that s; € {a;, bi} and t,_iy1 € {aj, Ci}.
Question: 1s {s1,82,...,8n} N{t,bo,...., 0.} =07?
Theorem: (Bar Yossef, Shalem, ICDE’08)

DisJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n—logn— 1 bits of memory.

Proof:
» Consider input instances D(/, k) := (S, T),) with Iy, L C {1,..,n} and
» S, : i€l = ithposition carries a
i ¢ Iy = i-th position carries b;
» T, : i€k = (n—i+1)-th position carries a;

i ¢ b = (n—i+1)-th position carries ¢;

» Note: S, NT,,=0 <= hnk=>0
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DiISJ, (1/5)

DisJn Dy :={as,b1,C1...,an, bn, Cn}
Input: two streams S = s1,S2,...,8n, T = ti,b,..., 1, of elements in Dp,
such that s; € {a;, bi} and t,_iy1 € {aj, Ci}.
Question: 1s {s1,82,...,8n} N{t,bo,...., 0.} =07?
Theorem: (Bar Yossef, Shalem, ICDE’08)

DisJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n—logn— 1 bits of memory.

Proof:
» Consider input instances D(/, k) := (S, T),) with Iy, L C {1,..,n} and
» S, : i€l = ithposition carries a
i ¢ Iy = i-th position carries b;
» T, : i€k = (n—i+1)-th position carries a;

i ¢ b = (n—i+1)-th position carries ¢;
» Note: S, NT,=0 <= hnk=10

> Restrict attention to input instances D(/, /) = (S;, T;) for I C {1,..,n}.
(particular “yes™-instances)
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DiIsJ, (2/5)

Situation during a computation:

inputS: [1 2 3 i n-1 n |
4 L memory
buffer
input T: [1_ 2 3 n—i+1 n—-1 n
4 -

» potential head positions: (i,j) with 1 <i,j<n

> start: (1,1) n [0 °
» end: (n,n) [] =

=

T ST O

2[] ]
1|é O
1 2 3 n

S

» For each input D(/, I) there exists exactly one i € {1,.., n} such that
the heads visit position (i, n—i+1).
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (3/5)

Goal now: “cut-and-paste argument”

Find /,J C {1,.., n} such that computations on D(/, ) and D(J, J) can be combined

to an accepting computation on D(/',J’) for I and J' with /' N J" # 0.
— accept a “no”-instance!
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (3/5)

Goal now: “cut-and-paste argument”

Find /,J C {1,.., n} such that computations on D(/, ) and D(J, J) can be combined
to an accepting computation on D(/',J’) for I and J' with /' N J" # 0.
— accept a “no”-instance!

(1) Ex.ie{1,..,nyand X; C {/:1C{1,..,n}} such that

» for each I € Xi, head position (i, n—i+1) is visited,
> X > 2.
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (3/5)

Goal now: “cut-and-paste argument”

Find /,J C {1,.., n} such that computations on D(/, ) and D(J, J) can be combined

to an accepting computation on D(/',J’) for I and J' with /' N J" # 0.

— accept a “no”-instance!

(1) Ex.ie{1,..,nyand X; C {/:1C{1,..,n}} such that
» for each I € Xi, head position (i, n—i+1) is visited,
> X > 2.

(2) Ex. Xo C X; such that
» forall [ Je Xo: iel < ield,

> Xel> > 2
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (3/5)

Goal now: “cut-and-paste argument”

Find /,J C {1,.., n} such that computations on D(/, ) and D(J, J) can be combined

to an accepting computation on D(/',J’) for I and J' with /' N J" # 0.
— accept a “no”-instance!

(1) Ex.ie{1,..,nyand X; C {/:1C{1,..,n}} such that
» for each I € Xi, head position (i, n—i+1) is visited,
> X > 2.

(2) Ex. Xo C X; such that
>foraIIIJeX2' el < ied,

X1
|X|> 2 /2n

(3) Ex. memory configuration ¢ and X5 C X, such that
» for all ] € X3: memory configuration ¢ when at head position (i, n—i+1),
X > el > 2

m Z 2nm*
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (3/5)

Goal now: “cut-and-paste argument”

Find /,J C {1,.., n} such that computations on D(/, ) and D(J, J) can be combined

to an accepting computation on D(/',J’) for I and J' with /' N J" # 0.
— accept a “no”-instance!

(1) Ex.ie{1,..,nyand X; C {/:1C{1,..,n}} such that
» for each I € Xi, head position (i, n—i+1) is visited,
> X > 2.

(2) Ex. Xo C X; such that
>foraIIIJeX2' el < ied,

X1
|X|> 2 /2n

(3) Ex. memory configuration ¢ and X5 C X, such that
» for all ] € X3: memory configuration ¢ when at head position (i, n—i+1),
> el > > A
Note: |X3|>1 <«— m< ’;’—Z <~ s=logm<n—logn-—1.
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (3/5)

Goal now: “cut-and-paste argument”

Find /,J C {1,.., n} such that computations on D(/, ) and D(J, J) can be combined

to an accepting computation on D(/',J’) for I and J' with /' N J" # 0.
— accept a “no”-instance!

(1) Ex.ie{1,..,nyand X; C {/:1C{1,..,n}} such that
» for each I € Xi, head position (i, n—i+1) is visited,
> X > 2.

(2) Ex. Xo C X; such that
>foraIIIJeX2' el < ied,

X1
|X|> 2 /2n

(3) Ex. memory configuration ¢ and X5 C X, such that
» for all ] € X3: memory configuration ¢ when at head position (i, n—i+1),
> el > > A
Note: |X3|>1 <= m< g—z <~ s=logm<n—logn—1.
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (4/5)

Let /,J € X3 with [ # J.

Same situation on input D(/, /) and on input D(J, J):

input S: [ 1 2 3 i n—1 n |
4 L memory
buffer
inputT: [1 2 3 n—i+1 n-1n
same memory
- configuration ¢
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (4/5)

Let /,J € X3 with [ # J.

Same situation on input D(/, /) and on input D(J, J):

input S: [ 1 2 3 i n—1 n |
4 L memory
buffer
inputT: [1 2 3 n—i+1 n-1n
same memory
- configuration ¢

» Cut-and-paste argument = Same situation on inputs D(h, k) and D(/{, 1)
» b= (In{1,..,i=1}) U (In{i}) U (Un{i+1,..,n})

L o= (In{i+1,..,n}) u (In{i}) U (Un{1,..,i—1})
» = (In{1,..i—1}) U (Un{i}) U (In{i+1,..,n})

b = (In{i+1,...,n}) u (Un{i}) U (IN{1,..,i-1})
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (4/5)

Let /,J € X3 with [ # J.

Same situation on input D(/, /) and on input D(J, J):

input S: [ 1 2 3 i n—1 n |
4 L memory
buffer
inputT: [1 2 3 n—i+1 n-1n
same memory
- configuration ¢

» Cut-and-paste argument = Same situation on inputs D(h, k) and D(/{, 1)
» b= (In{1,..,i=1}) U (In{i}) U (Un{i+1,..,n})

L o= (In{i+1,..,n}) u (In{i}) U (Un{1,..,i—1})
» = (In{1,..i—1}) U (Un{i}) U (In{i+1,..,n})

b = (In{i+1,...,n}) u (Un{i}) U (IN{1,..,i-1})

Since | # J, D(h, k) or D(If, ) is a “no™instance. O
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MULTI-PASS/MULTIPLE STREAMS

A lower bound proof for DisJ, (5/5)

We have proved

Theorem: (Bar Yossef, Shalem, ICDE’08)

DisJ, cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n—logn— 1 bits of memory.

The proof given by Bar-Yossef and Shalem (ICDE 2008) is different.
For their proof, they introduce a particular kind of communication model: the
token-based mesh communication model.
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MULTI-PASS/MULTIPLE STREAMS

Several passes over several streams in parallel

General scenario: mp2s-automaton A with parameters (ID, m, k¢, kp)

input S: | |
X X I S 3 S S N S
< I

memory

buffer

input T: | |

+
- 1 ! !
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MULTI-PASS/MULTIPLE STREAMS

Several passes over several streams in parallel

General scenario: mp2s-automaton A with parameters (ID, m, k¢, kp)

input S: | |
52 f3 T S S S
- | | | | memory
buffer
input T: | |
2 4 44 44 A 4
- [ [ [
Parameters:
> 2input streams: S=51,S,...,8, and T =, t,...,t, of elements in D.

» m : number of possible memory configurations;
s := log m size of the memory buffer (number of bits).

» K forward heads on each input stream,
kp backward heads on each input stream
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Several passes over several streams in parallel

General scenario: mp2s-automaton A with parameters (ID, m, k¢, kp)

input S: | |
52 f3 T S S S
- | | | | memory
buffer
input T: | |
2 4 44 44 A 4
- [ [ [
Parameters:
> 2input streams: S=51,S,...,8, and T =, t,...,t, of elements in D.

» m : number of possible memory configurations;
s := log m size of the memory buffer (number of bits).

» K forward heads on each input stream,
kp backward heads on each input stream

» Depending on (a) the current memory state and (b) the elements in S and T at
the current head positions, a deterministic transition function determines (1) the
next memory state and (2) which of the heads should be advanced to the next
position.
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MULTI-PASS/MULTIPLE STREAMS

Solving DisJ, with an mp2s-automaton: upper bound

Proposition:
DisJ, can be solved by an mp2s-automaton with parameters (Dn, n+2,/n,0).
(l.e.: memory buffer oflog(n+2) bits, \/n forward heads, no backward heads)

Proof:
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Solving DisJ, with an mp2s-automaton: upper bound

Proposition:
DisJ, can be solved by an mp2s-automaton with parameters (Dn, n+2,/n,0).
(l.e.: memory buffer oflog(n+2) bits, \/n forward heads, no backward heads)

Proof:

Phase 1:
Move heads on S such that they partition S into blocks of length /n.
(use n+1—+/n states)
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MULTI-PASS/MULTIPLE STREAMS

Solving DisJ, with an mp2s-automaton: upper bound

Proposition:
DisJ, can be solved by an mp2s-automaton with parameters (Dn, n+2,/n,0).
(l.e.: memory buffer oflog(n+2) bits, \/n forward heads, no backward heads)

Proof:

Phase 1:
Move heads on S such that they partition S into blocks of length /n.
(use n+1—+/n states)

Phase 2:
Forj=1,...,4/ndo

(1) Let j-th head on T pass the entire stream and compare each
element of T with the \/n elements at head positions in S.

(2) Advance each head on S one step to the right.

(use 2 states)
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MULTI-PASS/MULTIPLE STREAMS

Solving DisJ, with an mp2s-automaton: lower bound

Theorem: (S, STACS'09)
For all n, m, ks, ks such that, for k = 2k; + 2k, and v = (k? + k2 +1)-(2kikp + 1),

K?-v-log(n+1) + k-v-logm + v-(1+lgv) < n,

the problem DiSJ,, cannot be solved by any mp2s-automaton with parameters
(Dm mv kf7 kb)

Proof:

» Similar to the shown proof where only one forward head is available on each
stream.

» Divide input streams into blocks and choose a block that is “not checked” by any
pair of cursors.
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MULTI-PASS/MULTIPLE STREAMS

Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT'07

» an abstract model for database query processing
» formal model: based on Abstract State Machines

Cursor 1

Cursor 2

Cursor 3

- - - - - - - - - - - - -
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Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT'07

» an abstract model for database query processing
» formal model: based on Abstract State Machines

Informal Description of a FCM:
» works on a relational database | Cursord
1
(tables, not sets) (read-only access) 1 Cursor 2
|
1
1
1
1
|
v Cursor 3
3 Cursor 1
3 Cursor 2
\J
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» an abstract model for database query processing
» formal model: based on Abstract State Machines

Informal Description of a FCM:
» works on a relational database | Cursord
1
(tables, not sets) (read-only access) 1 Cursor 2
1
» on each table: X
a fixed number of cursors X
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» an abstract model for database query processing
» formal model: based on Abstract State Machines

Informal Description of a FCM:
» works on a relational database | Cursord
1
(tables, not sets) (read-only access) 1 Cursor 2
1
» on each table: X
a fixed number of cursors X
1
> CUursors are one-way, !
but can move asynchronously v Cursor 3
> internal memory:
» finite state control
» fixed number of registers which Cursor 1
can store bitstrings !
. Cursor 2
\J

NICOLE SCHWEIKARDT LowER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 35/55



MULTI-PASS/MULTIPLE STREAMS

Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT'07

» an abstract model for database query processing
» formal model: based on Abstract State Machines

Informal Description of a FCM:

» works on a relational database Cursor 1

(tables, not sets) (read-only access)

Cursor 2

» on each table:
a fixed number of cursors

> CUrsors are one-way,
but can move asynchronously

Cursor 3

- - - - - - - - - - - - -

> internal memory:

» finite state control
» fixed number of registers which
can store bitstrings

Cursor 1

Cursor 2

> manipulation of output row and internal
memory: via built-in bitstring functions Y
on data elements and bitstrings
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MULTI-PASS/MULTIPLE STREAMS

Easy Observations
Consider the operators from Relational Algebra

» Selection oj=;(R) can be implemented by a FCM

» Union Ry U Ry and Projection 7;(R) can be implemented by a FCM,
provided that input tables are ordered
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» Selection oj=;(R) can be implemented by a FCM

» Union Ry U Ry and Projection 7;(R) can be implemented by a FCM,
provided that input tables are ordered

» Joins are NOT computable by FCMs, because the output size of a join can be
quadratic, and FCMs can output only a linear number of different tuples
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w cursors on each relation)

NICOLE SCHWEIKARDT LowER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 36/55



MULTI-PASS/MULTIPLE STREAMS

Easy Observations
Consider the operators from Relational Algebra

» Selection oj=;(R) can be implemented by a FCM

» Union Ry U Ry and Projection 7;(R) can be implemented by a FCM,
provided that input tables are ordered

» Joins are NOT computable by FCMs, because the output size of a join can be
quadratic, and FCMs can output only a linear number of different tuples
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MULTI-PASS/MULTIPLE STREAMS

Easy Observations
Consider the operators from Relational Algebra

» Selection oj=;(R) can be implemented by a FCM

» Union Ry U Ry and Projection 7;(R) can be implemented by a FCM,
provided that input tables are ordered

» Joins are NOT computable by FCMs, because the output size of a join can be
quadratic, and FCMs can output only a linear number of different tuples

» Window Joins for a fixed window size w can be computed by an FCM (which has
w cursors on each relation)

» Semijoins R xy S can be computed by an FCM, provided that input tables are
ordered Rxy S:={t € R :thereisan s e Ssuchthat (¢, s)}

Corollary:

Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)
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Easy Observations
Consider the operators from Relational Algebra

» Selection oj=;(R) can be implemented by a FCM

» Union Ry U Ry and Projection 7;(R) can be implemented by a FCM,
provided that input tables are ordered

» Joins are NOT computable by FCMs, because the output size of a join can be
quadratic, and FCMs can output only a linear number of different tuples

» Window Joins for a fixed window size w can be computed by an FCM (which has
w cursors on each relation)

» Semijoins R xy S can be computed by an FCM, provided that input tables are
ordered Rxy S:={t € R :thereisan s e Ssuchthat (¢, s)}

Corollary:

Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)

Question: Are intermediate sorting steps really necessary?
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MULTI-PASS/MULTIPLE STREAMS

Question:
Are intermediate sorting steps really necessary?

Answer: Yes! ...

Theorem: (Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT'07)

The query
Is R Xx—y, (SXx—y, T) nonempty?

where R and T are unary and S in binary, is not computable by an FCM (even if
the FCM is allowed to have as input all sorted versions of the input relations).
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NICOLE SCHWEIKARDT

MULTI-PASS/MULTIPLE STREAMS

An Open Question

Is there a Boolean query from Relational Algebra

(or, equivalently, a sentence of first-order logic),

that cannot be computed by any composition of
FCMs and sorting operations?
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MULTI-PASS/MULTIPLE STREAMS

An Open Question

Is there a Boolean query from Relational Algebra

(or, equivalently, a sentence of first-order logic),

that cannot be computed by any composition of
FCMs and sorting operations?

Conjecture: Yes

... since otherwise FO would have data complexity of time n-logn
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READ/WRITE STREAMS

Overview

Read/write streams
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READ/WRITE STREAMS

Read/write streams

Scenario:
- L) > memory
buffer
-¢ + s
-¢ * s
Parameters:

> t read/write streams

» one head on each stream; each head can write onto (and append) the stream
» r : maximum number of head reversals

> s : size of “internal memory” (number of bits)
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READ/WRITE STREAMS

Read/write streams

Scenario:
- L) > memory
buffer
-¢ + s
-¢ * s
Parameters:

> t read/write streams

» one head on each stream; each head can write onto (and append) the stream
» r : maximum number of head reversals

> s : size of “internal memory” (number of bits)

> input on first read/write stream
» if necessary: output on last read/write stream
» formal model: based on Turing machines.
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READ/WRITE STREAMS

Complexity classes

ST(I’, S, t) :

class of all problems that can be solved by a deterministic algorithm using

» f read/write streams,
» at most r head reversals, and

» a memory buffer of size s.
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READ/WRITE STREAMS

The sorting problem

SORTING Input length N =m- (n+ 1)
Input: bit-strings x1, ..., xm € {0,1}"  (for arbitrary m, n)

Output: x1,...,Xm sorted in ascending order

Already seen in this talk :

Theorem: (Grohe, Koch, S., ICALP’05)
SORTING can be solved by a (p, s)-bounded computation <= (p - s) € Q(N)

Thus: SORTING € ST(r,s,1) <= r(N)-s(N) € Q(N).
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READ/WRITE STREAMS

The sorting problem

SORTING Input length N =m- (n+ 1)
Input: bit-strings x1, ..., xm € {0,1}"  (for arbitrary m, n)

Output: x1,...,Xm sorted in ascending order

Already seen in this talk :

Theorem: (Grohe, Koch, S., ICALP’05)
SORTING can be solved by a (p, s)-bounded computation <= (p - s) € Q(N)

Thus: SORTING € ST(r,s,1) <= r(N)-s(N) € Q(N).

Theorem: (Chen, Yap, 1991)
SORTING € ST(O(log N), O(1),2)

Proof method: refinement of Merge-Sort.
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READ/WRITE STREAMS

Lower bound for sorting with > 2 r/w streams

Problem:
An additional read/write stream can be used to move around large parts of the input
(with just 2 head reversals).

~» communication complexity does not help to prove lower bounds
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READ/WRITE STREAMS

Lower bound for sorting with > 2 r/w streams

Problem:

An additional read/write stream can be used to move around large parts of the input
(with just 2 head reversals).

~» communication complexity does not help to prove lower bounds

Intuition:
Still, the order of the input strings cannot be changed so easily.

Fact:

For sufficiently small r(N), s(N), even with t > 2 read/write streams,
sorting by solely comparing and moving around the input strings is impossible.

(For comparison-exchange algorithms, according lower bounds are well-known.)
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READ/WRITE STREAMS

Lower bound for sorting with > 2 r/w streams

Problem:

Algorithms for read/write streams are based on Turing machines.

They can perform much more complicated operations than just compare and move
around input strings.

Example:

During a first scan of the input, compute the sum of the input numbers modulo a
large prime.

(In this way, already a single scan suffices to produce a number that depends in a
non-trivial way on the entire input.)

Do some magic!

— Recall the data stream algorithms for MISSING NUMBER
or MULTISET-EQUALITY !

Write the sorted sequence onto the output read/write stream.
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READ/WRITE STREAMS

Lower Bound for Sorting

Theorem: (Grohe, S., PODS’05)
SORTING ¢ ST(o(log N), N'==, O(1)) (for every e > 0)
Proof method:

1. New machine model: List Machines
e can only compare and move around input strings (~ weaker than TMs)

e non-uniform & lots of states and tape symbols (~ stronger than TMs)
2. Show that list machines can simulate algorithms on read/write streams.

3. Prove that list machines cannot sort (... use combinatorics).
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READ/WRITE STREAMS

Randomised ST-Classes: RST and co-RST

Definition of RST: analogous to the class RP (randomised polynomial time):

An RST-algorithm produces
e no “false positives”, i.e., it rejects “no”-instances with prob. 1
o ‘“false negatives” with prob. < 0.1, i.e. it accepts “yes™-inst. with prob. > 0.9
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o ‘“false negatives” with prob. < 0.1, i.e. it accepts “yes™-inst. with prob. > 0.9

A co-RST-algorithm has complementary probabilities for accepting resp. rejecting:

e no “false negatives”, i.e. it accepts “yes”-instances with prob. 1
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READ/WRITE STREAMS

Randomised ST-Classes: RST and co-RST

Definition of RST: analogous to the class RP (randomised polynomial time):

An RST-algorithm produces

e no “false positives”, i.e., it rejects “no”-instances with prob. 1

o ‘“false negatives” with prob. < 0.1, i.e. it accepts “yes™-inst. with prob. > 0.9

A co-RST-algorithm has complementary probabilities for accepting resp. rejecting:

e no “false negatives”, i.e. it accepts “yes”-instances with prob. 1

o ‘“false positives” with prob. < 0.1, i.e. it rejects “no”-inst. with prob. > 0.9

Theorem: (Grohe, Hernich, S., PODS’06)

¢ RST(o(log N),N'=¢, O(1)) (for every e > 0)
MULTISET-EQUALITY € co-RST(2, O(log N), 1)

€ ST(O(log N), O(1),2)
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READ/WRITE STREAMS

Consequences

Separation of deterministic, randomised, and nondeterministic ST(- - - )-classes:

NST(R, S, O(1))
\ < MULTISET-EQUALITY € NST(3, O(log N), 2)
RST(R, S, O(1))
| < MULTISET-EQUALITY € co-RST(2, O(log N), 1)
ST(R, S, 0(1))

forall R C o(logn) and O(logn) C S C O(N'~¢)
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READ/WRITE STREAMS

ST-Classes with 2-Sided Bounded Error

Definition of BPST: analogous to the class BPP
(two-sided bounded error probabilistic polynomial time):

An BPST-machine produces
o “false positives” with prob. < 0.1, i.e,, it rejects “no™-instances with prob. > 0.9
o “false negatives” with prob. < 0.1, it accepts “yes’-instances with prob. > 0.9

NICOLE SCHWEIKARDT LowER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 48/55



READ/WRITE STREAMS

ST-Classes with 2-Sided Bounded Error

Definition of BPST: analogous to the class BPP
(two-sided bounded error probabilistic polynomial time):

An BPST-machine produces
e “false positives” with prob. < 0.1, i.e., it rejects “no”-instances with prob. > 0.9
o “false negatives” with prob. < 0.1, it accepts “yes’-instances with prob. > 0.9

Theorem: (Beame, Jayram, Rudra, STOC'07)

SET-DISJOINTNESS ¢ BPST (o (lo';,%g’,\,) CN'E, O(1)) (for every e > 0)
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READ/WRITE STREAMS

ST-Classes with 2-Sided Bounded Error

Definition of BPST: analogous to the class BPP
(two-sided bounded error probabilistic polynomial time):
An BPST-machine produces
e “false positives” with prob. < 0.1,
e “false negatives” with prob. < 0.1,

i.e., it rejects “no”-instances with prob. > 0.9
it accepts “yes’-instances with prob. > 0.9

(Beame, Jayram, Rudra, STOC’07)

Theorem:
SET-DISJOINTNESS ¢ BPST (o (lo';ff)g’,\,) CN'E, O(1)) (for every e > 0)

Theorem: (Beame, Huynh-Ngoc, FOCS’08)

Approximating the frequency moments Fy with a randomised read/write stream
algorithm with o(log N) head reversals requires (almost) as much internal
memory as a “conventional” one-pass data stream algorithm.
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READ/WRITE STREAMS

Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel
Read/write streams

Future tasks
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FUTURE TASKS

Overview

Future tasks

NICOLE SCHWEIKARDT LowER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 50/55



A few directions for future research

Consider randomized versions of mp2s-automata:

Design efficient randomized approximation algorithms for particular problems
and develop techniques for proving lower bounds in the randomized model.

Study the extension of the read/write stream model in which intermediate sorting
steps are available.

This is the StrSort model by Aggarwal, Datar, Rajagopalan, Ruhl, FOCS’'04.

An open question concerning finite cursor machines:

Is there a sentence from first-order logic that cannot be evaluated by a
composition of finite cursor machines and sorting operations?
(Conijecture: yes!)

An open question from complexity theory:
Can the sorting problem be solved by a linear time multi-tape Turing machine?
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FUTURE TASKS

Data stream talks during DEIS’10

v

Data stream management systems and query languages Sandra Geisler
(Tuesday, 8:45-9:45)

» Basic algorithmic techniques for processing data streams Mariano Zelke
(Tuesday, 9:45—-10:45)

» Querying and mining data streams Elena Ikonomovska
(Wednesday, 11:15-12:15)

v

Stream-based processing of XML documents Cristian Riveros
(Thursday, 11:15-12:15)

v

Distributed processing of data streams and large data sets Marwan Hassani
(Thursday 1:45—-2:45)
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FUTURE TASKS

Exercise #4

Let s be a number with0 < s < 1.
The goal is to find a data stream algorithm that processes an input stream

X1, Xo, X3, ..., Xp

of elements from {1,..., m} and outputs a set M of input elements such
that M contains (at least) all those elements that occur for > s- n times in
the input stream.

Note:

» The output has to be a set — i.e., it is not allowed to output elements
more than once. (In particular, this means that you cannot simply output
the entire input stream.)

» The problem can be solved by a deterministic data stream algorithm
using O(‘; log m- log n) memory bits.
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FUTURE TASKS

References

References to the literature can be found in the following surveys:

> N. Schweikardt. Machine models and lower bounds for query processing. In Proc. PODS’07, pp. 41-52.
> N. Schweikardt. Machine models for query processing. SIGMOD Record 38(2), pp. 18-28, 2009.

Solutions to the exercises can be found in the following articles:

#1: S. Ganguly, A. Majumder: Deterministic K-set structure. Information Processing Letters 109(1), pp.
27-31, 2008.

#2: M. Grohe, A. Hernich, N. Schweikardt: Lower bounds for processing data with few random accesses to
external memory. Journal of the ACM 56(3), 2009. — See Theorem 3.5.

#3: M. Henzinger, P. Raghavan, S. Rajagopalan: Computing on data streams. In External Memory
Algorithms, J.M. Abello and J.S. Vitter (eds.). DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 50. AMS, New York, pp. 107-118, 1999. — See Theorem 6.

#4: G. Schnitger: Lecture notes on “Internet Algorithmen” (in German). Goethe-Universitat Frankfurt am
Main, 2009. http://www.thi.informatik.uni-frankfurt.de/Internet0809/skript.pdf
— See Algorithm 4.20 on page 72.
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FUTURE TASKS

Thank You!

NICOLE SCHWEIKARDT LowER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 55/55



	One pass over a single stream
	Several passes over a single stream
	Several passes over several streams in parallel
	Read/write streams
	Future tasks

