
Data Streams — A Tutorial

Nicole Schweikardt

Goethe-Universität Frankfurt am Main

DEIS’10: GI-Dagstuhl Seminar on Data Exchange, Integration, and Streams

Schloss Dagstuhl, November 8, 2010

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Data Streams

Situation:
• massive amounts of data

• generated automatically

• continuous, rapid updates

Examples:
• meteorological data (sensor networks)

• astronomical data

• network monitoring

• banking and credit transactions

Challenges:
• cannot wait with processing until “all” the data has arrived
 process data “on-the-fly”

• cannot afford to store all the data store a “sketch”

• data may arrive so rapidly that you cannot even afford to look at each incoming
data item “sampling”

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 2/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Example: Network Monitoring

Let A be a node in the world wide web.
As input, A receives a stream of “packets”

p1, p2, p3, p4, . . . , pm.

Each packet pi contains information on
I the sender’s IP address,
I the destination’s IP address,
I the data that is transmitted

Question: How many distinct IP addresses have sent at least one packet through
node A? — I.e., what is the 0-th frequency moment F0 of the input stream?

Problem: A does not want to store the entire stream p1, p2, p3, . . . , pm.

Solution:
A suitable randomised algorithm that computes a good approximate answer:

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 3/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Example: Network Monitoring

Let A be a node in the world wide web.
As input, A receives a stream of “packets”

p1, p2, p3, p4, . . . , pm.

Each packet pi contains information on
I the sender’s IP address,
I the destination’s IP address,
I the data that is transmitted

Question: How many distinct IP addresses have sent at least one packet through
node A? — I.e., what is the 0-th frequency moment F0 of the input stream?

Problem: A does not want to store the entire stream p1, p2, p3, . . . , pm.

Solution:
A suitable randomised algorithm that computes a good approximate answer:

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 3/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Tight bound for approximating F0
COMPUTING F0

Input: A sequence p1, p2, p3, . . . , pm of elements in {1, . . , n}.
Task: Compute the number F0 of distinct elements in the input.

Theorem:
(a) Upper Bound: (Flajolet, Martin, FOCS’83)

For every c > 2 there is a randomized one-pass algorithm that uses O(log n)
bits of memory and computes a number Y such that
Prob

(Y
F0
6 1

c or Y
F0
> c
)
6 2/c.

(b) Lower Bound: (Alon, Matias, Szegedy, STOC’96)
Any randomized one-pass algorithm computing a number Y such that
Prob

(Y
F0
6 0.9 or Y

F0
> 1.1

)
6 0.25 uses Ω(log n) bits of memory.

Remark: improved bounds: Bar-Yossef, Jayram, Kumar, Sivakumar (RANDOM’00)
and Kane, Nelson, Woodruff (PODS’10).

Main issues concerning data streams:
How to design algorithms & how to prove lower bounds
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 4/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Tight bound for approximating F0
COMPUTING F0

Input: A sequence p1, p2, p3, . . . , pm of elements in {1, . . , n}.
Task: Compute the number F0 of distinct elements in the input.

Theorem:
(a) Upper Bound: (Flajolet, Martin, FOCS’83)

For every c > 2 there is a randomized one-pass algorithm that uses O(log n)
bits of memory and computes a number Y such that
Prob

(Y
F0
6 1

c or Y
F0
> c
)
6 2/c.

(b) Lower Bound: (Alon, Matias, Szegedy, STOC’96)
Any randomized one-pass algorithm computing a number Y such that
Prob

(Y
F0
6 0.9 or Y

F0
> 1.1

)
6 0.25 uses Ω(log n) bits of memory.

Remark: improved bounds: Bar-Yossef, Jayram, Kumar, Sivakumar (RANDOM’00)
and Kane, Nelson, Woodruff (PODS’10).

Main issues concerning data streams:
How to design algorithms & how to prove lower bounds
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 4/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Tight bound for approximating F0
COMPUTING F0

Input: A sequence p1, p2, p3, . . . , pm of elements in {1, . . , n}.
Task: Compute the number F0 of distinct elements in the input.

Theorem:
(a) Upper Bound: (Flajolet, Martin, FOCS’83)

For every c > 2 there is a randomized one-pass algorithm that uses O(log n)
bits of memory and computes a number Y such that
Prob

(Y
F0
6 1

c or Y
F0
> c
)
6 2/c.

(b) Lower Bound: (Alon, Matias, Szegedy, STOC’96)
Any randomized one-pass algorithm computing a number Y such that
Prob

(Y
F0
6 0.9 or Y

F0
> 1.1

)
6 0.25 uses Ω(log n) bits of memory.

Remark: improved bounds: Bar-Yossef, Jayram, Kumar, Sivakumar (RANDOM’00)
and Kane, Nelson, Woodruff (PODS’10).

Main issues concerning data streams:
How to design algorithms & how to prove lower bounds
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 4/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 5/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 6/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

One pass over a single stream

Scenario:

��

memory
buffer

input:

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 7/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n

X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n

X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n

X

X

X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n

X

X

X X

X

X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X

X X

X

X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X

X

X

X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X

X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X

X

X

X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X

X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound:

at least log n bits are necessary

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Missing Number Puzzle
MISSING NUMBER

Input: A stream x1, x2, x3, . . , xn−1 of
n−1 distinct numbers from {1, . . ,n}.

Question: Which number from {1, . . ,n} is missing?

Naive Solution: 2 5 1 3 4 8 6 · · · n requires n bits of storage
1 2 3 4 5 6 7 8 · · · n
X X X X X X X X X

Clever Solution: Store running sum O(log n) bits suffice

s := x1 + x2 + x3 + x4 + · · ·+ xn−1

Missing number =
n · (n+1)

2
− s

Lower Bound: at least log n bits are necessary
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 8/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Exercise # 1

Find a data stream algorithm that uses at most poly(k · log n) bits of memory
and solves the following generalization of the “missing numbers puzzle”:

k MISSING NUMBERS

Input: Two numbers n, k and a stream x1, x2, x3, . . , xn−k of
n−k distinct numbers from {1, . . ,n}

Task: Find the k missing numbers

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 9/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (1/3)

MULTISET-EQUALITY Total input length: N = O(m· log n) bits
Input: Two multisets {x1, . . , xm} and {y1, . . , ym} of

numbers xi , yj in {1, . . , n}.
Question: Is {x1, . . , xm} = {y1, . . , ym}?

Observation:
Every deterministic solution requires Ω(N) bits of storage.

Proof:

• Use fact from Communication Complexity:

Deciding if two m-element subsets of {1, . . , n} are equal
requires at least log

(n
m

)
bits of communication.

• If n = m2, then log
(n

m

)
> m· log m bits of communication are necessary, and the

total length of the corresponding MULTISET-EQUALITY input is N = Θ(m· log m).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 10/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Communication Complexity
Yao’s 2-Party Communication Model:

• 2 players: Alice & Bob
• both know a function f : A× B → {0, 1}
• Alice only sees input a ∈ A, Bob only sees input b ∈ B
• they jointly want to compute f (a, b)

• Goal: exchange as few bits of communication as possible

Fact: Deciding if two m-element input sets

a = {x1, . . , xm} ⊆ {1, . . , n} und b = {y1, . . , ym} ⊆ {1, . . , n}

are equal, requires at least log
(n

m

)
bits of communication.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 11/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Communication Complexity
Yao’s 2-Party Communication Model:

• 2 players: Alice & Bob
• both know a function f : A× B → {0, 1}
• Alice only sees input a ∈ A, Bob only sees input b ∈ B
• they jointly want to compute f (a, b)

• Goal: exchange as few bits of communication as possible

Fact: Deciding if two m-element input sets

a = {x1, . . , xm} ⊆ {1, . . , n} und b = {y1, . . , ym} ⊆ {1, . . , n}

are equal, requires at least log
(n

m

)
bits of communication.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 11/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (1/3)

MULTISET-EQUALITY Total input length: N = O(m· log n) bits
Input: Two multisets {x1, . . , xm} and {y1, . . , ym} of

numbers xi , yj in {1, . . , n}.
Question: Is {x1, . . , xm} = {y1, . . , ym}?

Observation:
Every deterministic solution requires Ω(N) bits of storage.

Proof:

• Use fact from Communication Complexity:

Deciding if two m-element subsets of {1, . . , n} are equal
requires at least log

(n
m

)
bits of communication.

• If n = m2, then log
(n

m

)
> m· log m bits of communication are necessary, and the

total length of the corresponding MULTISET-EQUALITY input is N = Θ(m· log m).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 12/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (1/3)

MULTISET-EQUALITY Total input length: N = O(m· log n) bits
Input: Two multisets {x1, . . , xm} and {y1, . . , ym} of

numbers xi , yj in {1, . . , n}.
Question: Is {x1, . . , xm} = {y1, . . , ym}?

Observation:
Every deterministic solution requires Ω(N) bits of storage.

Proof:

• Use fact from Communication Complexity:
Deciding if two m-element subsets of {1, . . , n} are equal
requires at least log

(n
m

)
bits of communication.

• If n = m2, then log
(n

m

)
> m· log m bits of communication are necessary, and the

total length of the corresponding MULTISET-EQUALITY input is N = Θ(m· log m).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 12/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (1/3)

MULTISET-EQUALITY Total input length: N = O(m· log n) bits
Input: Two multisets {x1, . . , xm} and {y1, . . , ym} of

numbers xi , yj in {1, . . , n}.
Question: Is {x1, . . , xm} = {y1, . . , ym}?

Observation:
Every deterministic solution requires Ω(N) bits of storage.

Proof:

• Use fact from Communication Complexity:
Deciding if two m-element subsets of {1, . . , n} are equal
requires at least log

(n
m

)
bits of communication.

• If n = m2, then log
(n

m

)
> m· log m bits of communication are necessary, and the

total length of the corresponding MULTISET-EQUALITY input is N = Θ(m· log m).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 12/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (2/3)
Proof (continued):

• Known: N = Θ(m · log m), and > m · log m bits of communication are necessary
for solving MULTISET-EQUALITY.

• A deterministic data stream algorithm solving MULTISET-EQUALITY with s bits of
storage would lead to a communication protocol with s bits of communication.

x m�� �� ��

x3x2x1

ALICE

y1 ym�� �� ��

y3y2

BOB

memory
buffer

data stream
algorithm

• Thus: Lower bound on
communication complexity

lower bound on memory size
of data stream algorithm

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 13/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (2/3)
Proof (continued):

• Known: N = Θ(m · log m), and > m · log m bits of communication are necessary
for solving MULTISET-EQUALITY.

• A deterministic data stream algorithm solving MULTISET-EQUALITY with s bits of
storage would lead to a communication protocol with s bits of communication.

x m�� �� ��

x3x2x1

ALICE

y1 ym�� �� ��

y3y2

BOB

memory
buffer

data stream
algorithm

• Thus: Lower bound on
communication complexity

lower bound on memory size
of data stream algorithm

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 13/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (2/3)
Proof (continued):

• Known: N = Θ(m · log m), and > m · log m bits of communication are necessary
for solving MULTISET-EQUALITY.

• A deterministic data stream algorithm solving MULTISET-EQUALITY with s bits of
storage would lead to a communication protocol with s bits of communication.

x m�� �� ��

x3x2x1

ALICE

y1 ym�� �� ��

y3y2

BOB

memory
buffer

data stream
algorithm

• Thus: Lower bound on
communication complexity

lower bound on memory size
of data stream algorithm

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 13/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (2/3)
Proof (continued):

• Known: N = Θ(m · log m), and > m · log m bits of communication are necessary
for solving MULTISET-EQUALITY.

• A deterministic data stream algorithm solving MULTISET-EQUALITY with s bits of
storage would lead to a communication protocol with s bits of communication.

x m�� �� ��

x3x2x1

ALICE

y1 ym�� �� ��

y3y2

BOB

memory
buffer

data stream
algorithm

• Thus: Lower bound on
communication complexity

lower bound on memory size
of data stream algorithm

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 13/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (3/3)
Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers a1, . . , am, b1, . . , bm from {1, . . , n}, the
algorithm

• accepts with probability 1 if {a1, . . , am} = {b1, . . , bm}
• rejects with probability > 0.9 if {a1, . . , am} 6= {b1, . . , bm}.

Basic idea: Use “Fingerprinting”-techniques:

• represent {a1, . . , am} by a polynomial f (x) :=
∑m

i=1 xai

• represent {b1, . . , bm} by a polynomial g(x) :=
∑m

i=1 xbi

• choose a random number r and check if f (r) = g(r)

• accept if f (r) = g(r); reject otherwise.

If {a1, . . , am} = {b1, . . , bm}, then f (x) = g(x), and thus the algorithm always
accepts. If {a1, . . , am} 6= {b1, . . , bm}, then there are at most degree(f−g) many
distinct r with f (r) = g(r), and thus the algorithm rejects with high probability.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 14/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (3/3)
Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers a1, . . , am, b1, . . , bm from {1, . . , n}, the
algorithm

• accepts with probability 1 if {a1, . . , am} = {b1, . . , bm}
• rejects with probability > 0.9 if {a1, . . , am} 6= {b1, . . , bm}.

Basic idea: Use “Fingerprinting”-techniques:

• represent {a1, . . , am} by a polynomial f (x) :=
∑m

i=1 xai

• represent {b1, . . , bm} by a polynomial g(x) :=
∑m

i=1 xbi

• choose a random number r and check if f (r) = g(r)

• accept if f (r) = g(r); reject otherwise.

If {a1, . . , am} = {b1, . . , bm}, then f (x) = g(x), and thus the algorithm always
accepts. If {a1, . . , am} 6= {b1, . . , bm}, then there are at most degree(f−g) many
distinct r with f (r) = g(r), and thus the algorithm rejects with high probability.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 14/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (3/3)
Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers a1, . . , am, b1, . . , bm from {1, . . , n}, the
algorithm

• accepts with probability 1 if {a1, . . , am} = {b1, . . , bm}
• rejects with probability > 0.9 if {a1, . . , am} 6= {b1, . . , bm}.

Basic idea: Use “Fingerprinting”-techniques:

• represent {a1, . . , am} by a polynomial f (x) :=
∑m

i=1 xai

• represent {b1, . . , bm} by a polynomial g(x) :=
∑m

i=1 xbi

• choose a random number r and check if f (r) = g(r)

• accept if f (r) = g(r); reject otherwise.

If {a1, . . , am} = {b1, . . , bm}, then f (x) = g(x), and thus the algorithm always
accepts. If {a1, . . , am} 6= {b1, . . , bm}, then there are at most degree(f−g) many
distinct r with f (r) = g(r), and thus the algorithm rejects with high probability.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 14/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (3/3)
Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers a1, . . , am, b1, . . , bm from {1, . . , n}, the
algorithm

• accepts with probability 1 if {a1, . . , am} = {b1, . . , bm}
• rejects with probability > 0.9 if {a1, . . , am} 6= {b1, . . , bm}.

Basic idea: Use “Fingerprinting”-techniques:

• represent {a1, . . , am} by a polynomial f (x) :=
∑m

i=1 xai

• represent {b1, . . , bm} by a polynomial g(x) :=
∑m

i=1 xbi

• choose a random number r and check if f (r) = g(r)

• accept if f (r) = g(r); reject otherwise.

If {a1, . . , am} = {b1, . . , bm}, then f (x) = g(x), and thus the algorithm always
accepts. If {a1, . . , am} 6= {b1, . . , bm}, then there are at most degree(f−g) many
distinct r with f (r) = g(r), and thus the algorithm rejects with high probability.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 14/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The MULTISET-EQUALITY Problem (3/3)
Theorem: (Grohe, Hernich, S., PODS’06)

The MULTISET-EQUALITY problem can be solved by a randomised algorithm
using O(log N) bits of storage in the following sense:

Given m, n, and a stream of numbers a1, . . , am, b1, . . , bm from {1, . . , n}, the
algorithm

• accepts with probability 1 if {a1, . . , am} = {b1, . . , bm}
• rejects with probability > 0.9 if {a1, . . , am} 6= {b1, . . , bm}.

Basic idea: Use “Fingerprinting”-techniques:

• represent {a1, . . , am} by a polynomial f (x) :=
∑m

i=1 xai

• represent {b1, . . , bm} by a polynomial g(x) :=
∑m

i=1 xbi

• choose a random number r and check if f (r) = g(r)

• accept if f (r) = g(r); reject otherwise.

If {a1, . . , am} = {b1, . . , bm}, then f (x) = g(x), and thus the algorithm always
accepts. If {a1, . . , am} 6= {b1, . . , bm}, then there are at most degree(f−g) many
distinct r with f (r) = g(r), and thus the algorithm rejects with high probability.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 14/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Exercise # 2

Work out the details of the described algorithm and its analysis.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 15/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 16/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over a single stream

Scenario:

��

memory
buffer

input:

Parameters:
p : number of passes
s : size of memory buffer (number of bits)

We call such computations (p, s)-bounded computations.

If necessary, an output stream can be generated during a computation.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 17/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over a single stream

Scenario:

��

memory
buffer

input:

Parameters:
p : number of passes
s : size of memory buffer (number of bits)

We call such computations (p, s)-bounded computations.

If necessary, an output stream can be generated during a computation.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 17/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

An easy observation

��

memory
buffer

input:

Fact:
During a (p, s)-bounded computation, only (p · s) bits can be communicated
between the first and the second half of the input.

Consequence:
Lower bounds on communication complexity lead to
lower bounds for (p, s)-bounded computations

. . . even if backward passes are allowed

. . . even if writing on the “input tape” is allowed.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 18/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

An easy observation

��

memory
buffer

input:

Fact:
During a (p, s)-bounded computation, only (p · s) bits can be communicated
between the first and the second half of the input.

Consequence:
Lower bounds on communication complexity lead to
lower bounds for (p, s)-bounded computations

. . . even if backward passes are allowed

. . . even if writing on the “input tape” is allowed.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 18/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

An easy observation

��

memory
buffer

input:

Fact:
During a (p, s)-bounded computation, only (p · s) bits can be communicated
between the first and the second half of the input.

Consequence:
Lower bounds on communication complexity lead to
lower bounds for (p, s)-bounded computations

. . . even if backward passes are allowed

. . . even if writing on the “input tape” is allowed.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 18/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound for connectedness of a graph
CONNECTEDNESS Parameters: m edges on 6 n nodes

Input: A list of edges e1, . . . , em on node set V ⊆ {1, . . , n}.
Question: Is the input graph connected?

Theorem: (Henzinger, Raghavan, Rajagopalan, 1998)
Solving CONNECTEDNESS with p passes requires Ω(n/p) bits of memory.

Proof:
By a reduction using the set disjointness problem.

SET DISJOINTNESS PROBLEM

Input: Two sets A,B ⊆ {1, . . , n}
Question: Is A ∩ B = ∅ ?

Known communication complexity of the set disjointness problem:
n bits of communication are necessary (and sufficient).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 19/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound for connectedness of a graph
CONNECTEDNESS Parameters: m edges on 6 n nodes

Input: A list of edges e1, . . . , em on node set V ⊆ {1, . . , n}.
Question: Is the input graph connected?

Theorem: (Henzinger, Raghavan, Rajagopalan, 1998)
Solving CONNECTEDNESS with p passes requires Ω(n/p) bits of memory.

Proof:
By a reduction using the set disjointness problem.

SET DISJOINTNESS PROBLEM

Input: Two sets A,B ⊆ {1, . . , n}
Question: Is A ∩ B = ∅ ?

Known communication complexity of the set disjointness problem:
n bits of communication are necessary (and sufficient).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 19/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Exercise # 3

Work out the details of the proof:

(a) prove that n bits of communication are necessary for solving the set
disjointness problem in Yao’s 2-party communication model, and

(b) use this to show that solving graph connectedness with p passes
requires Ω(n/p) bits of memory.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 20/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound for sorting

SORTING Input length N = O(m · log n) bits
Input: A sequence of numbers x1, . . . , xm ∈ {1, . . , n} (for arbitrary m, n).

Output: x1, . . . , xm sorted in ascending order.

Theorem: (Grohe, Koch, S., ICALP’05)
SORTING can be solved by a (p, s)-bounded computation ⇐⇒ (p · s) ∈ Ω(N)

Proof:
I upper bound: easy.

I lower bound: by a reduction using the set disjointness problem.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 21/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A hierarchy on the number of passes

Allowing a single extra scan may be more powerful than significantly increasing the
internal memory space:

Theorem: (Hernich, S., Theor. Comput. Sci. 2008)
For every logspace-computable function p with p(N) ∈ o

(N
log2 N

)
, there

exists a decision problem that
I can be solved by a (p+1, s)-bounded computation, but
I that cannot be solved by any (p,S)-bounded computation,

for s(N) = O(log N) and S(N) = o
(N

p(N)·log N

)
.

Remark: An analogous result also holds for randomised computations.

Proof idea:

Use a result by Nisan and Wigderson (1993) on the k -round communication
complexity of a particular “pointer jumping” problem.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 22/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A hierarchy on the number of passes

Allowing a single extra scan may be more powerful than significantly increasing the
internal memory space:

Theorem: (Hernich, S., Theor. Comput. Sci. 2008)
For every logspace-computable function p with p(N) ∈ o

(N
log2 N

)
, there

exists a decision problem that
I can be solved by a (p+1, s)-bounded computation, but
I that cannot be solved by any (p,S)-bounded computation,

for s(N) = O(log N) and S(N) = o
(N

p(N)·log N

)
.

Remark: An analogous result also holds for randomised computations.

Proof idea:

Use a result by Nisan and Wigderson (1993) on the k -round communication
complexity of a particular “pointer jumping” problem.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 22/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A hierarchy on the number of passes

Allowing a single extra scan may be more powerful than significantly increasing the
internal memory space:

Theorem: (Hernich, S., Theor. Comput. Sci. 2008)
For every logspace-computable function p with p(N) ∈ o

(N
log2 N

)
, there

exists a decision problem that
I can be solved by a (p+1, s)-bounded computation, but
I that cannot be solved by any (p,S)-bounded computation,

for s(N) = O(log N) and S(N) = o
(N

p(N)·log N

)
.

Remark: An analogous result also holds for randomised computations.

Proof idea:

Use a result by Nisan and Wigderson (1993) on the k -round communication
complexity of a particular “pointer jumping” problem.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 22/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound for finding a
longest increasing subsequence

LONGEST-INCREASING-SUBSEQUENCE

Input: a sequence of numbers x1, . . . , xm ∈ {1, . . , n} (for arbitrary m, n)

Output: an increasing subsequence xi1 , . . . , xik of maximum length (denoted k)

Theorem: (Guha, McGregor, ICALP’08)
Any randomized p-pass algorithm solving LONGEST-INCREASING-SUBSEQUENCE

with p passes (and probability 0.9) requires Ω
(
k1+ 1

2p−1
)

bits of memory.

Proof:
I not by using communication complexity
I introduce a new method of pass elimination (somewhat related to “round

elimination” methods in communication complexity, but taylored towards stream
processing).

Remark:
A matching upper bound was proved by Liben-Nowell, Vee, Zhu, COCOON’05.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 23/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound for finding a
longest increasing subsequence

LONGEST-INCREASING-SUBSEQUENCE

Input: a sequence of numbers x1, . . . , xm ∈ {1, . . , n} (for arbitrary m, n)

Output: an increasing subsequence xi1 , . . . , xik of maximum length (denoted k)

Theorem: (Guha, McGregor, ICALP’08)
Any randomized p-pass algorithm solving LONGEST-INCREASING-SUBSEQUENCE

with p passes (and probability 0.9) requires Ω
(
k1+ 1

2p−1
)

bits of memory.

Proof:
I not by using communication complexity
I introduce a new method of pass elimination (somewhat related to “round

elimination” methods in communication complexity, but taylored towards stream
processing).

Remark:
A matching upper bound was proved by Liben-Nowell, Vee, Zhu, COCOON’05.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 23/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 24/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over several streams in parallel

Basic scenario:

��

��

memory
buffer

input S:

input T:

Parameters:
I 2 input streams: S = s1, s2, . . . , sn and T = t1, t2, . . . , tn.
I one pass over each input; heads may proceed asynchronously
I advancement of heads and new content of memory depends on

the current content of memory and the symbols seen at both heads
I for simplicity: advancement of only one head at a time
I s : size of memory buffer (number of bits)
I m : number of possible memory configurations, i.e., log m = s

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 25/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over several streams in parallel

Basic scenario:

��

��

memory
buffer

input S:

input T:

Parameters:
I 2 input streams: S = s1, s2, . . . , sn and T = t1, t2, . . . , tn.
I one pass over each input; heads may proceed asynchronously
I advancement of heads and new content of memory depends on

the current content of memory and the symbols seen at both heads
I for simplicity: advancement of only one head at a time
I s : size of memory buffer (number of bits)
I m : number of possible memory configurations, i.e., log m = s

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 25/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over several streams in parallel

Basic scenario:

��

��

memory
buffer

input S:

input T:

Parameters:
I 2 input streams: S = s1, s2, . . . , sn and T = t1, t2, . . . , tn.
I one pass over each input; heads may proceed asynchronously
I advancement of heads and new content of memory depends on

the current content of memory and the symbols seen at both heads
I for simplicity: advancement of only one head at a time
I s : size of memory buffer (number of bits)
I m : number of possible memory configurations, i.e., log m = s

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 25/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

How to prove lower bounds in this scenario?
Problem:
“Classical” communication complexity results cannot be used so easily here.

Solution: Take a direct look at the “flow of information” during computations.

Consider the following example:
I n > 2
I Dn := {a1, b1, c1 . . . , an, bn, cn} — domain of 3n input items
I variation of the set disjointness problem:

DISJn

Input: Two streams S = s1, s2, . . . , sn and T = t1, t2, . . . , tn
of elements in Dn

such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 26/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

How to prove lower bounds in this scenario?
Problem:
“Classical” communication complexity results cannot be used so easily here.

Solution: Take a direct look at the “flow of information” during computations.

Consider the following example:
I n > 2
I Dn := {a1, b1, c1 . . . , an, bn, cn} — domain of 3n input items
I variation of the set disjointness problem:

DISJn

Input: Two streams S = s1, s2, . . . , sn and T = t1, t2, . . . , tn
of elements in Dn

such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 26/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

How to prove lower bounds in this scenario?
Problem:
“Classical” communication complexity results cannot be used so easily here.

Solution: Take a direct look at the “flow of information” during computations.

Consider the following example:
I n > 2
I Dn := {a1, b1, c1 . . . , an, bn, cn} — domain of 3n input items
I variation of the set disjointness problem:

DISJn

Input: Two streams S = s1, s2, . . . , sn and T = t1, t2, . . . , tn
of elements in Dn such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 26/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (1/5)
DISJn Dn := {a1, b1, c1 . . . , an, bn, cn}

Input: two streams S = s1, s2, . . . , sn, T = t1, t2, . . . , tn of elements in Dn,
such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}.

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

Proof:
I Consider input instances D(I1, I2) := (SI1 ,TI2) with I1, I2 ⊆ {1, . . , n} and

I SI1 : i ∈ I1 =⇒ i-th position carries ai

i 6∈ I1 =⇒ i-th position carries bi

I TI2 : i ∈ I2 =⇒ (n−i+1)-th position carries ai

i 6∈ I2 =⇒ (n−i+1)-th position carries ci

I Note: SI1 ∩ TI2 = ∅ ⇐⇒ I1 ∩ I2 = ∅
I Restrict attention to input instances D(I, I) = (SI ,TI) for I ⊆ {1, . . , n}.

(particular “yes”-instances)
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 27/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (1/5)
DISJn Dn := {a1, b1, c1 . . . , an, bn, cn}

Input: two streams S = s1, s2, . . . , sn, T = t1, t2, . . . , tn of elements in Dn,
such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}.

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

Proof:
I Consider input instances D(I1, I2) := (SI1 ,TI2) with I1, I2 ⊆ {1, . . , n} and

I SI1 : i ∈ I1 =⇒ i-th position carries ai

i 6∈ I1 =⇒ i-th position carries bi

I TI2 : i ∈ I2 =⇒ (n−i+1)-th position carries ai

i 6∈ I2 =⇒ (n−i+1)-th position carries ci

I Note: SI1 ∩ TI2 = ∅ ⇐⇒ I1 ∩ I2 = ∅
I Restrict attention to input instances D(I, I) = (SI ,TI) for I ⊆ {1, . . , n}.

(particular “yes”-instances)
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 27/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (1/5)
DISJn Dn := {a1, b1, c1 . . . , an, bn, cn}

Input: two streams S = s1, s2, . . . , sn, T = t1, t2, . . . , tn of elements in Dn,
such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}.

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

Proof:
I Consider input instances D(I1, I2) := (SI1 ,TI2) with I1, I2 ⊆ {1, . . , n} and

I SI1 : i ∈ I1 =⇒ i-th position carries ai

i 6∈ I1 =⇒ i-th position carries bi

I TI2 : i ∈ I2 =⇒ (n−i+1)-th position carries ai

i 6∈ I2 =⇒ (n−i+1)-th position carries ci

I Note: SI1 ∩ TI2 = ∅ ⇐⇒ I1 ∩ I2 = ∅
I Restrict attention to input instances D(I, I) = (SI ,TI) for I ⊆ {1, . . , n}.

(particular “yes”-instances)
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 27/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (1/5)
DISJn Dn := {a1, b1, c1 . . . , an, bn, cn}

Input: two streams S = s1, s2, . . . , sn, T = t1, t2, . . . , tn of elements in Dn,
such that si ∈ {ai , bi} and tn−i+1 ∈ {ai , ci}.

Question: Is {s1, s2, . . . , sn} ∩ {t1, t2, . . . , tn} = ∅ ?

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

Proof:
I Consider input instances D(I1, I2) := (SI1 ,TI2) with I1, I2 ⊆ {1, . . , n} and

I SI1 : i ∈ I1 =⇒ i-th position carries ai

i 6∈ I1 =⇒ i-th position carries bi

I TI2 : i ∈ I2 =⇒ (n−i+1)-th position carries ai

i 6∈ I2 =⇒ (n−i+1)-th position carries ci

I Note: SI1 ∩ TI2 = ∅ ⇐⇒ I1 ∩ I2 = ∅
I Restrict attention to input instances D(I, I) = (SI ,TI) for I ⊆ {1, . . , n}.

(particular “yes”-instances)
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 27/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (2/5)
Situation during a computation:

��

��

memory
buffer

input S: 1 nn−12 3 i

input T: 31 2 n−i+1 n−1 n

I potential head positions: (i, j) with 1 6 i, j 6 n
I start: (1, 1)

I end: (n, n)

1 2 3 n

1

2

3

n

S

T

I For each input D(I, I) there exists exactly one i ∈ {1, . . , n} such that
the heads visit position (i, n−i+1).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 28/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (3/5)
Goal now: “cut-and-paste argument”
Find I, J ⊆ {1, . . , n} such that computations on D(I, I) and D(J, J) can be combined
to an accepting computation on D(I′, J ′) for I′ and J ′ with I′ ∩ J ′ 6= ∅.

=⇒ accept a “no”-instance!

(1) Ex. i ∈ {1, . . , n} and X1 ⊆ {I : I ⊆ {1, . . , n}} such that
I for each I ∈ X1, head position (i, n−i+1) is visited,
I |X1| > 2n

n .

(2) Ex. X2 ⊆ X1 such that
I for all I, J ∈ X2: i ∈ I ⇐⇒ i ∈ J,
I |X2| > |X1|

2 >
2n

2n .

(3) Ex. memory configuration c and X3 ⊆ X2 such that
I for all I ∈ X3: memory configuration c when at head position (i, n−i+1),
I |X3| > |X2|

m > 2n

2nm .

Note: |X3| > 1 ⇐⇒ m < 2n

2n ⇐⇒ s = log m < n − log n − 1.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 29/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (3/5)
Goal now: “cut-and-paste argument”
Find I, J ⊆ {1, . . , n} such that computations on D(I, I) and D(J, J) can be combined
to an accepting computation on D(I′, J ′) for I′ and J ′ with I′ ∩ J ′ 6= ∅.

=⇒ accept a “no”-instance!

(1) Ex. i ∈ {1, . . , n} and X1 ⊆ {I : I ⊆ {1, . . , n}} such that
I for each I ∈ X1, head position (i, n−i+1) is visited,
I |X1| > 2n

n .

(2) Ex. X2 ⊆ X1 such that
I for all I, J ∈ X2: i ∈ I ⇐⇒ i ∈ J,
I |X2| > |X1|

2 >
2n

2n .

(3) Ex. memory configuration c and X3 ⊆ X2 such that
I for all I ∈ X3: memory configuration c when at head position (i, n−i+1),
I |X3| > |X2|

m > 2n

2nm .

Note: |X3| > 1 ⇐⇒ m < 2n

2n ⇐⇒ s = log m < n − log n − 1.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 29/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (3/5)
Goal now: “cut-and-paste argument”
Find I, J ⊆ {1, . . , n} such that computations on D(I, I) and D(J, J) can be combined
to an accepting computation on D(I′, J ′) for I′ and J ′ with I′ ∩ J ′ 6= ∅.

=⇒ accept a “no”-instance!

(1) Ex. i ∈ {1, . . , n} and X1 ⊆ {I : I ⊆ {1, . . , n}} such that
I for each I ∈ X1, head position (i, n−i+1) is visited,
I |X1| > 2n

n .

(2) Ex. X2 ⊆ X1 such that
I for all I, J ∈ X2: i ∈ I ⇐⇒ i ∈ J,
I |X2| > |X1|

2 >
2n

2n .

(3) Ex. memory configuration c and X3 ⊆ X2 such that
I for all I ∈ X3: memory configuration c when at head position (i, n−i+1),
I |X3| > |X2|

m > 2n

2nm .

Note: |X3| > 1 ⇐⇒ m < 2n

2n ⇐⇒ s = log m < n − log n − 1.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 29/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (3/5)
Goal now: “cut-and-paste argument”
Find I, J ⊆ {1, . . , n} such that computations on D(I, I) and D(J, J) can be combined
to an accepting computation on D(I′, J ′) for I′ and J ′ with I′ ∩ J ′ 6= ∅.

=⇒ accept a “no”-instance!

(1) Ex. i ∈ {1, . . , n} and X1 ⊆ {I : I ⊆ {1, . . , n}} such that
I for each I ∈ X1, head position (i, n−i+1) is visited,
I |X1| > 2n

n .

(2) Ex. X2 ⊆ X1 such that
I for all I, J ∈ X2: i ∈ I ⇐⇒ i ∈ J,
I |X2| > |X1|

2 >
2n

2n .

(3) Ex. memory configuration c and X3 ⊆ X2 such that
I for all I ∈ X3: memory configuration c when at head position (i, n−i+1),
I |X3| > |X2|

m > 2n

2nm .

Note: |X3| > 1 ⇐⇒ m < 2n

2n ⇐⇒ s = log m < n − log n − 1.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 29/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (3/5)
Goal now: “cut-and-paste argument”
Find I, J ⊆ {1, . . , n} such that computations on D(I, I) and D(J, J) can be combined
to an accepting computation on D(I′, J ′) for I′ and J ′ with I′ ∩ J ′ 6= ∅.

=⇒ accept a “no”-instance!

(1) Ex. i ∈ {1, . . , n} and X1 ⊆ {I : I ⊆ {1, . . , n}} such that
I for each I ∈ X1, head position (i, n−i+1) is visited,
I |X1| > 2n

n .

(2) Ex. X2 ⊆ X1 such that
I for all I, J ∈ X2: i ∈ I ⇐⇒ i ∈ J,
I |X2| > |X1|

2 >
2n

2n .

(3) Ex. memory configuration c and X3 ⊆ X2 such that
I for all I ∈ X3: memory configuration c when at head position (i, n−i+1),
I |X3| > |X2|

m > 2n

2nm .

Note: |X3| > 1 ⇐⇒ m < 2n

2n ⇐⇒ s = log m < n − log n − 1.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 29/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (3/5)
Goal now: “cut-and-paste argument”
Find I, J ⊆ {1, . . , n} such that computations on D(I, I) and D(J, J) can be combined
to an accepting computation on D(I′, J ′) for I′ and J ′ with I′ ∩ J ′ 6= ∅.

=⇒ accept a “no”-instance!

(1) Ex. i ∈ {1, . . , n} and X1 ⊆ {I : I ⊆ {1, . . , n}} such that
I for each I ∈ X1, head position (i, n−i+1) is visited,
I |X1| > 2n

n .

(2) Ex. X2 ⊆ X1 such that
I for all I, J ∈ X2: i ∈ I ⇐⇒ i ∈ J,
I |X2| > |X1|

2 >
2n

2n .

(3) Ex. memory configuration c and X3 ⊆ X2 such that
I for all I ∈ X3: memory configuration c when at head position (i, n−i+1),
I |X3| > |X2|

m > 2n

2nm .

Note: |X3| > 1 ⇐= m < 2n

2n ⇐⇒ s = log m < n − log n − 1.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 29/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (4/5)
Let I, J ∈ X3 with I 6= J.

Same situation on input D(I, I) and on input D(J, J):

��

��

memory
buffer

input S: 1 nn−12 3 i

input T:
same memory

configuration c

1 2 3 n−i+1 n−1 n

I Cut-and-paste argument =⇒ Same situation on inputs D(I1, I2) and D(I′1, I
′
2)

I I1 =
(
I ∩ {1, . . , i−1}

)
∪
(
I ∩ {i}

)
∪
(
J ∩ {i+1, . . , n}

)
I2 =

(
I ∩ {i+1, . . , n}

)
∪
(
I ∩ {i}

)
∪
(
J ∩ {1, . . , i−1}

)
I I′1 =

(
J ∩ {1, . . , i−1}

)
∪
(
J ∩ {i}

)
∪
(
I ∩ {i+1, . . , n}

)
I′2 =

(
J ∩ {i+1, . . , n}

)
∪
(
J ∩ {i}

)
∪
(
I ∩ {1, . . , i−1}

)
Since I 6= J, D(I1, I2) or D(I′1, I

′
2) is a “no”-instance.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 30/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (4/5)
Let I, J ∈ X3 with I 6= J.

Same situation on input D(I, I) and on input D(J, J):

��

��

memory
buffer

input S: 1 nn−12 3 i

input T:
same memory

configuration c

1 2 3 n−i+1 n−1 n

I Cut-and-paste argument =⇒ Same situation on inputs D(I1, I2) and D(I′1, I
′
2)

I I1 =
(
I ∩ {1, . . , i−1}

)
∪
(
I ∩ {i}

)
∪
(
J ∩ {i+1, . . , n}

)
I2 =

(
I ∩ {i+1, . . , n}

)
∪
(
I ∩ {i}

)
∪
(
J ∩ {1, . . , i−1}

)
I I′1 =

(
J ∩ {1, . . , i−1}

)
∪
(
J ∩ {i}

)
∪
(
I ∩ {i+1, . . , n}

)
I′2 =

(
J ∩ {i+1, . . , n}

)
∪
(
J ∩ {i}

)
∪
(
I ∩ {1, . . , i−1}

)
Since I 6= J, D(I1, I2) or D(I′1, I

′
2) is a “no”-instance.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 30/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (4/5)
Let I, J ∈ X3 with I 6= J.

Same situation on input D(I, I) and on input D(J, J):

��

��

memory
buffer

input S: 1 nn−12 3 i

input T:
same memory

configuration c

1 2 3 n−i+1 n−1 n

I Cut-and-paste argument =⇒ Same situation on inputs D(I1, I2) and D(I′1, I
′
2)

I I1 =
(
I ∩ {1, . . , i−1}

)
∪
(
I ∩ {i}

)
∪
(
J ∩ {i+1, . . , n}

)
I2 =

(
I ∩ {i+1, . . , n}

)
∪
(
I ∩ {i}

)
∪
(
J ∩ {1, . . , i−1}

)
I I′1 =

(
J ∩ {1, . . , i−1}

)
∪
(
J ∩ {i}

)
∪
(
I ∩ {i+1, . . , n}

)
I′2 =

(
J ∩ {i+1, . . , n}

)
∪
(
J ∩ {i}

)
∪
(
I ∩ {1, . . , i−1}

)
Since I 6= J, D(I1, I2) or D(I′1, I

′
2) is a “no”-instance.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 30/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A lower bound proof for DISJn (5/5)

We have proved

Theorem: (Bar Yossef, Shalem, ICDE’08)
DISJn cannot be solved by a deterministic algorithm that performs one pass over
each stream and that uses less than n − log n − 1 bits of memory.

The proof given by Bar-Yossef and Shalem (ICDE 2008) is different.
For their proof, they introduce a particular kind of communication model: the
token-based mesh communication model.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 31/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over several streams in parallel

General scenario: mp2s-automaton A with parameters (D,m, kf , kb)

��

��

��

�� memory
buffer

input S:

input T:

Parameters:
I 2 input streams: S = s1, s2, . . . , sn and T = t1, t2, . . . , tn of elements in D.
I m : number of possible memory configurations;

s := log m size of the memory buffer (number of bits).
I kf forward heads on each input stream,

kb backward heads on each input stream
I Depending on (a) the current memory state and (b) the elements in S and T at

the current head positions, a deterministic transition function determines (1) the
next memory state and (2) which of the heads should be advanced to the next
position.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 32/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over several streams in parallel

General scenario: mp2s-automaton A with parameters (D,m, kf , kb)

��

��

��

�� memory
buffer

input S:

input T:

Parameters:
I 2 input streams: S = s1, s2, . . . , sn and T = t1, t2, . . . , tn of elements in D.
I m : number of possible memory configurations;

s := log m size of the memory buffer (number of bits).
I kf forward heads on each input stream,

kb backward heads on each input stream
I Depending on (a) the current memory state and (b) the elements in S and T at

the current head positions, a deterministic transition function determines (1) the
next memory state and (2) which of the heads should be advanced to the next
position.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 32/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Several passes over several streams in parallel

General scenario: mp2s-automaton A with parameters (D,m, kf , kb)

��

��

��

�� memory
buffer

input S:

input T:

Parameters:
I 2 input streams: S = s1, s2, . . . , sn and T = t1, t2, . . . , tn of elements in D.
I m : number of possible memory configurations;

s := log m size of the memory buffer (number of bits).
I kf forward heads on each input stream,

kb backward heads on each input stream
I Depending on (a) the current memory state and (b) the elements in S and T at

the current head positions, a deterministic transition function determines (1) the
next memory state and (2) which of the heads should be advanced to the next
position.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 32/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Solving DISJn with an mp2s-automaton: upper bound

Proposition:
DISJn can be solved by an mp2s-automaton with parameters (Dn, n+2,

√
n, 0).

(I.e.: memory buffer of log(n+2) bits,
√

n forward heads, no backward heads)

Proof:

Phase 1:
Move heads on S such that they partition S into blocks of length

√
n.

(use n+1−
√

n states)

Phase 2:

For j = 1, . . . ,
√

n do

(1) Let j-th head on T pass the entire stream and compare each
element of T with the

√
n elements at head positions in S.

(2) Advance each head on S one step to the right.

(use 2 states)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 33/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Solving DISJn with an mp2s-automaton: upper bound

Proposition:
DISJn can be solved by an mp2s-automaton with parameters (Dn, n+2,

√
n, 0).

(I.e.: memory buffer of log(n+2) bits,
√

n forward heads, no backward heads)

Proof:

Phase 1:
Move heads on S such that they partition S into blocks of length

√
n.

(use n+1−
√

n states)

Phase 2:

For j = 1, . . . ,
√

n do

(1) Let j-th head on T pass the entire stream and compare each
element of T with the

√
n elements at head positions in S.

(2) Advance each head on S one step to the right.

(use 2 states)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 33/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Solving DISJn with an mp2s-automaton: upper bound

Proposition:
DISJn can be solved by an mp2s-automaton with parameters (Dn, n+2,

√
n, 0).

(I.e.: memory buffer of log(n+2) bits,
√

n forward heads, no backward heads)

Proof:

Phase 1:
Move heads on S such that they partition S into blocks of length

√
n.

(use n+1−
√

n states)

Phase 2:

For j = 1, . . . ,
√

n do

(1) Let j-th head on T pass the entire stream and compare each
element of T with the

√
n elements at head positions in S.

(2) Advance each head on S one step to the right.

(use 2 states)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 33/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Solving DISJn with an mp2s-automaton: lower bound

Theorem: (S, STACS’09)

For all n,m, kf , kb such that, for k = 2kf + 2kb and v = (k2
f + k2

b + 1)·(2kf kb + 1),

k2 · v · log(n+1) + k · v · log m + v · (1 + lg v) 6 n,

the problem DISJn cannot be solved by any mp2s-automaton with parameters
(Dn,m, kf , kb).

Proof:

I Similar to the shown proof where only one forward head is available on each
stream.

I Divide input streams into blocks and choose a block that is “not checked” by any
pair of cursors.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 34/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT’07

I an abstract model for database query processing
I formal model: based on Abstract State Machines

Informal Description of a FCM:
I works on a relational database

(tables, not sets) (read-only access)
I on each table:

a fixed number of cursors
I cursors are one-way,

but can move asynchronously
I internal memory:

I finite state control
I fixed number of registers which

can store bitstrings
I manipulation of output row and internal

memory: via built-in bitstring functions
on data elements and bitstrings

Cursor 3

Cursor 2

Cursor 1

Cursor 1

Cursor 2

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 35/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT’07

I an abstract model for database query processing
I formal model: based on Abstract State Machines

Informal Description of a FCM:
I works on a relational database

(tables, not sets) (read-only access)
I on each table:

a fixed number of cursors
I cursors are one-way,

but can move asynchronously
I internal memory:

I finite state control
I fixed number of registers which

can store bitstrings
I manipulation of output row and internal

memory: via built-in bitstring functions
on data elements and bitstrings

Cursor 3

Cursor 2

Cursor 1

Cursor 1

Cursor 2

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 35/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT’07

I an abstract model for database query processing
I formal model: based on Abstract State Machines

Informal Description of a FCM:
I works on a relational database

(tables, not sets) (read-only access)
I on each table:

a fixed number of cursors
I cursors are one-way,

but can move asynchronously
I internal memory:

I finite state control
I fixed number of registers which

can store bitstrings
I manipulation of output row and internal

memory: via built-in bitstring functions
on data elements and bitstrings

Cursor 3

Cursor 2

Cursor 1

Cursor 1

Cursor 2

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 35/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT’07

I an abstract model for database query processing
I formal model: based on Abstract State Machines

Informal Description of a FCM:
I works on a relational database

(tables, not sets) (read-only access)
I on each table:

a fixed number of cursors
I cursors are one-way,

but can move asynchronously
I internal memory:

I finite state control
I fixed number of registers which

can store bitstrings
I manipulation of output row and internal

memory: via built-in bitstring functions
on data elements and bitstrings

Cursor 3

Cursor 2

Cursor 1

Cursor 1

Cursor 2

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 35/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Finite Cursor Machines
Introduced by Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT’07

I an abstract model for database query processing
I formal model: based on Abstract State Machines

Informal Description of a FCM:
I works on a relational database

(tables, not sets) (read-only access)
I on each table:

a fixed number of cursors
I cursors are one-way,

but can move asynchronously
I internal memory:

I finite state control
I fixed number of registers which

can store bitstrings
I manipulation of output row and internal

memory: via built-in bitstring functions
on data elements and bitstrings

Cursor 3

Cursor 2

Cursor 1

Cursor 1

Cursor 2

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 35/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Easy Observations
Consider the operators from Relational Algebra

I Selection σi=j (R) can be implemented by a FCM
I Union R1 ∪ R2 and Projection πJ (R) can be implemented by a FCM,

provided that input tables are ordered
I Joins are NOT computable by FCMs, because the output size of a join can be

quadratic, and FCMs can output only a linear number of different tuples
I Window Joins for a fixed window size w can be computed by an FCM (which has

w cursors on each relation)
I Semijoins R nθ S can be computed by an FCM, provided that input tables are

ordered R nθ S := {t ∈ R : there is an s ∈ S such that θ(t , s)}

Corollary:
Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)

Question: Are intermediate sorting steps really necessary?
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 36/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Easy Observations
Consider the operators from Relational Algebra

I Selection σi=j (R) can be implemented by a FCM
I Union R1 ∪ R2 and Projection πJ (R) can be implemented by a FCM,

provided that input tables are ordered
I Joins are NOT computable by FCMs, because the output size of a join can be

quadratic, and FCMs can output only a linear number of different tuples
I Window Joins for a fixed window size w can be computed by an FCM (which has

w cursors on each relation)
I Semijoins R nθ S can be computed by an FCM, provided that input tables are

ordered R nθ S := {t ∈ R : there is an s ∈ S such that θ(t , s)}

Corollary:
Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)

Question: Are intermediate sorting steps really necessary?
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 36/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Easy Observations
Consider the operators from Relational Algebra

I Selection σi=j (R) can be implemented by a FCM
I Union R1 ∪ R2 and Projection πJ (R) can be implemented by a FCM,

provided that input tables are ordered
I Joins are NOT computable by FCMs, because the output size of a join can be

quadratic, and FCMs can output only a linear number of different tuples
I Window Joins for a fixed window size w can be computed by an FCM (which has

w cursors on each relation)
I Semijoins R nθ S can be computed by an FCM, provided that input tables are

ordered R nθ S := {t ∈ R : there is an s ∈ S such that θ(t , s)}

Corollary:
Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)

Question: Are intermediate sorting steps really necessary?
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 36/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Easy Observations
Consider the operators from Relational Algebra

I Selection σi=j (R) can be implemented by a FCM
I Union R1 ∪ R2 and Projection πJ (R) can be implemented by a FCM,

provided that input tables are ordered
I Joins are NOT computable by FCMs, because the output size of a join can be

quadratic, and FCMs can output only a linear number of different tuples
I Window Joins for a fixed window size w can be computed by an FCM (which has

w cursors on each relation)
I Semijoins R nθ S can be computed by an FCM, provided that input tables are

ordered R nθ S := {t ∈ R : there is an s ∈ S such that θ(t , s)}

Corollary:
Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)

Question: Are intermediate sorting steps really necessary?
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 36/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Easy Observations
Consider the operators from Relational Algebra

I Selection σi=j (R) can be implemented by a FCM
I Union R1 ∪ R2 and Projection πJ (R) can be implemented by a FCM,

provided that input tables are ordered
I Joins are NOT computable by FCMs, because the output size of a join can be

quadratic, and FCMs can output only a linear number of different tuples
I Window Joins for a fixed window size w can be computed by an FCM (which has

w cursors on each relation)
I Semijoins R nθ S can be computed by an FCM, provided that input tables are

ordered R nθ S := {t ∈ R : there is an s ∈ S such that θ(t , s)}

Corollary:
Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)

Question: Are intermediate sorting steps really necessary?
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 36/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Easy Observations
Consider the operators from Relational Algebra

I Selection σi=j (R) can be implemented by a FCM
I Union R1 ∪ R2 and Projection πJ (R) can be implemented by a FCM,

provided that input tables are ordered
I Joins are NOT computable by FCMs, because the output size of a join can be

quadratic, and FCMs can output only a linear number of different tuples
I Window Joins for a fixed window size w can be computed by an FCM (which has

w cursors on each relation)
I Semijoins R nθ S can be computed by an FCM, provided that input tables are

ordered R nθ S := {t ∈ R : there is an s ∈ S such that θ(t , s)}

Corollary:
Each Semijoin Algebra query can be computed by query plan composed of
FCMs and sorting operations. (a.k.a: “classical” 2-pass query processing)

Question: Are intermediate sorting steps really necessary?
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 36/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Question:
Are intermediate sorting steps really necessary?

Answer: Yes! . . .

Theorem: (Grohe, Gurevich, Leinders, S., Tyszkiewicz, Van den Bussche, ICDT’07)

The query

Is R nx1=y1 (S nx2=y1 T) nonempty?

where R and T are unary and S in binary, is not computable by an FCM (even if
the FCM is allowed to have as input all sorted versions of the input relations).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 37/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

An Open Question

Is there a Boolean query from Relational Algebra
(or, equivalently, a sentence of first-order logic),
that cannot be computed by any composition of

FCMs and sorting operations?

Conjecture: Yes

. . . since otherwise FO would have data complexity of time n · log n

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 38/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

An Open Question

Is there a Boolean query from Relational Algebra
(or, equivalently, a sentence of first-order logic),
that cannot be computed by any composition of

FCMs and sorting operations?

Conjecture: Yes

. . . since otherwise FO would have data complexity of time n · log n

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 38/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 39/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Read/write streams
Scenario:

��

��

��

memory
buffer

Parameters:
I t read/write streams
I one head on each stream; each head can write onto (and append) the stream
I r : maximum number of head reversals
I s : size of “internal memory” (number of bits)

I input on first read/write stream
I if necessary: output on last read/write stream
I formal model: based on Turing machines.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 40/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Read/write streams
Scenario:

��

��

��

memory
buffer

Parameters:
I t read/write streams
I one head on each stream; each head can write onto (and append) the stream
I r : maximum number of head reversals
I s : size of “internal memory” (number of bits)

I input on first read/write stream
I if necessary: output on last read/write stream
I formal model: based on Turing machines.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 40/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Complexity classes

ST(r , s, t) :

class of all problems that can be solved by a deterministic algorithm using

I t read/write streams,

I at most r head reversals, and

I a memory buffer of size s.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 41/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The sorting problem
SORTING Input length N = m · (n + 1)

Input: bit-strings x1, . . . , xm ∈ {0, 1}n (for arbitrary m, n)

Output: x1, . . . , xm sorted in ascending order

Already seen in this talk :

Theorem: (Grohe, Koch, S., ICALP’05)
SORTING can be solved by a (p, s)-bounded computation ⇐⇒ (p · s) ∈ Ω(N)

Thus: SORTING ∈ ST(r , s,1) ⇐⇒ r(N)·s(N) ∈ Ω
(
N
)
.

Theorem: (Chen, Yap, 1991)
SORTING ∈ ST(O(log N),O(1),2)

Proof method: refinement of Merge-Sort.

Question: Is this optimal? I.e..: What about o(log n) head reversals?
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 42/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

The sorting problem
SORTING Input length N = m · (n + 1)

Input: bit-strings x1, . . . , xm ∈ {0, 1}n (for arbitrary m, n)

Output: x1, . . . , xm sorted in ascending order

Already seen in this talk :

Theorem: (Grohe, Koch, S., ICALP’05)
SORTING can be solved by a (p, s)-bounded computation ⇐⇒ (p · s) ∈ Ω(N)

Thus: SORTING ∈ ST(r , s,1) ⇐⇒ r(N)·s(N) ∈ Ω
(
N
)
.

Theorem: (Chen, Yap, 1991)
SORTING ∈ ST(O(log N),O(1),2)

Proof method: refinement of Merge-Sort.

Question: Is this optimal? I.e..: What about o(log n) head reversals?
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 42/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Lower bound for sorting with > 2 r/w streams

Problem:
An additional read/write stream can be used to move around large parts of the input
(with just 2 head reversals).

 communication complexity does not help to prove lower bounds

Intuition:
Still, the order of the input strings cannot be changed so easily.

Fact:
For sufficiently small r(N), s(N), even with t > 2 read/write streams,
sorting by solely comparing and moving around the input strings is impossible.

(For comparison-exchange algorithms, according lower bounds are well-known.)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 43/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Lower bound for sorting with > 2 r/w streams

Problem:
An additional read/write stream can be used to move around large parts of the input
(with just 2 head reversals).

 communication complexity does not help to prove lower bounds

Intuition:
Still, the order of the input strings cannot be changed so easily.

Fact:
For sufficiently small r(N), s(N), even with t > 2 read/write streams,
sorting by solely comparing and moving around the input strings is impossible.

(For comparison-exchange algorithms, according lower bounds are well-known.)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 43/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Lower bound for sorting with > 2 r/w streams
Problem:
Algorithms for read/write streams are based on Turing machines.
They can perform much more complicated operations than just compare and move
around input strings.

Example:
During a first scan of the input, compute the sum of the input numbers modulo a
large prime.
(In this way, already a single scan suffices to produce a number that depends in a
non-trivial way on the entire input.)

...

Do some magic!
— Recall the data stream algorithms for MISSING NUMBER
or MULTISET-EQUALITY !

...
Write the sorted sequence onto the output read/write stream.
NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 44/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Lower Bound for Sorting

Theorem: (Grohe, S., PODS’05)
SORTING 6∈ ST

(
o(log N),N1−ε,O(1)

)
(for every ε > 0)

Proof method:

1. New machine model: List Machines

• can only compare and move around input strings (weaker than TMs)

• non-uniform & lots of states and tape symbols (stronger than TMs)

2. Show that list machines can simulate algorithms on read/write streams.

3. Prove that list machines cannot sort (. . . use combinatorics).

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 45/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Randomised ST-Classes: RST and co-RST

Definition of RST: analogous to the class RP (randomised polynomial time):

An RST-algorithm produces

• no “false positives”, i.e., it rejects “no”-instances with prob. 1

• “false negatives” with prob. < 0.1, i.e. it accepts “yes”-inst. with prob. > 0.9

A co-RST-algorithm has complementary probabilities for accepting resp. rejecting:

• no “false negatives”, i.e. it accepts “yes”-instances with prob. 1

• “false positives” with prob. < 0.1, i.e. it rejects “no”-inst. with prob. > 0.9

Theorem: (Grohe, Hernich, S., PODS’06)

MULTISET-EQUALITY


6∈ RST(o(log N),N1−ε,O(1)) (for every ε > 0)
∈ co-RST(2,O(log N), 1)

∈ ST(O(log N),O(1), 2)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 46/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Randomised ST-Classes: RST and co-RST

Definition of RST: analogous to the class RP (randomised polynomial time):

An RST-algorithm produces

• no “false positives”, i.e., it rejects “no”-instances with prob. 1

• “false negatives” with prob. < 0.1, i.e. it accepts “yes”-inst. with prob. > 0.9

A co-RST-algorithm has complementary probabilities for accepting resp. rejecting:

• no “false negatives”, i.e. it accepts “yes”-instances with prob. 1

• “false positives” with prob. < 0.1, i.e. it rejects “no”-inst. with prob. > 0.9

Theorem: (Grohe, Hernich, S., PODS’06)

MULTISET-EQUALITY


6∈ RST(o(log N),N1−ε,O(1)) (for every ε > 0)
∈ co-RST(2,O(log N), 1)

∈ ST(O(log N),O(1), 2)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 46/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Randomised ST-Classes: RST and co-RST

Definition of RST: analogous to the class RP (randomised polynomial time):

An RST-algorithm produces

• no “false positives”, i.e., it rejects “no”-instances with prob. 1

• “false negatives” with prob. < 0.1, i.e. it accepts “yes”-inst. with prob. > 0.9

A co-RST-algorithm has complementary probabilities for accepting resp. rejecting:

• no “false negatives”, i.e. it accepts “yes”-instances with prob. 1

• “false positives” with prob. < 0.1, i.e. it rejects “no”-inst. with prob. > 0.9

Theorem: (Grohe, Hernich, S., PODS’06)

MULTISET-EQUALITY


6∈ RST(o(log N),N1−ε,O(1)) (for every ε > 0)
∈ co-RST(2,O(log N), 1)

∈ ST(O(log N),O(1), 2)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 46/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Consequences

Separation of deterministic, randomised, and nondeterministic ST(· · ·)-classes:

NST(R,S,O(1))
| ← MULTISET-EQUALITY ∈ NST(3,O(log N), 2)

RST(R,S,O(1))
| ← MULTISET-EQUALITY ∈ co-RST(2,O(log N), 1)

ST(R,S,O(1))

for all R ⊆ o(log n) and O(log n) ⊆ S ⊆ O(N1−ε)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 47/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

ST-Classes with 2-Sided Bounded Error

Definition of BPST: analogous to the class BPP
(two-sided bounded error probabilistic polynomial time):

An BPST-machine produces

• “false positives” with prob. < 0.1, i.e., it rejects “no”-instances with prob. > 0.9

• “false negatives” with prob. < 0.1, it accepts “yes”-instances with prob. > 0.9

Theorem: (Beame, Jayram, Rudra, STOC’07)

SET-DISJOINTNESS 6∈ BPST
(

o
(

log N
log log N

)
,N1−ε,O(1)

)
(for every ε > 0)

Theorem: (Beame, Huynh-Ngoc, FOCS’08)

Approximating the frequency moments Fk with a randomised read/write stream
algorithm with o(log N) head reversals requires (almost) as much internal
memory as a “conventional” one-pass data stream algorithm.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 48/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

ST-Classes with 2-Sided Bounded Error

Definition of BPST: analogous to the class BPP
(two-sided bounded error probabilistic polynomial time):

An BPST-machine produces

• “false positives” with prob. < 0.1, i.e., it rejects “no”-instances with prob. > 0.9

• “false negatives” with prob. < 0.1, it accepts “yes”-instances with prob. > 0.9

Theorem: (Beame, Jayram, Rudra, STOC’07)

SET-DISJOINTNESS 6∈ BPST
(

o
(

log N
log log N

)
,N1−ε,O(1)

)
(for every ε > 0)

Theorem: (Beame, Huynh-Ngoc, FOCS’08)

Approximating the frequency moments Fk with a randomised read/write stream
algorithm with o(log N) head reversals requires (almost) as much internal
memory as a “conventional” one-pass data stream algorithm.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 48/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

ST-Classes with 2-Sided Bounded Error

Definition of BPST: analogous to the class BPP
(two-sided bounded error probabilistic polynomial time):

An BPST-machine produces

• “false positives” with prob. < 0.1, i.e., it rejects “no”-instances with prob. > 0.9

• “false negatives” with prob. < 0.1, it accepts “yes”-instances with prob. > 0.9

Theorem: (Beame, Jayram, Rudra, STOC’07)

SET-DISJOINTNESS 6∈ BPST
(

o
(

log N
log log N

)
,N1−ε,O(1)

)
(for every ε > 0)

Theorem: (Beame, Huynh-Ngoc, FOCS’08)

Approximating the frequency moments Fk with a randomised read/write stream
algorithm with o(log N) head reversals requires (almost) as much internal
memory as a “conventional” one-pass data stream algorithm.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 48/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 49/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Overview

One pass over a single stream

Several passes over a single stream

Several passes over several streams in parallel

Read/write streams

Future tasks

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 50/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

A few directions for future research

I Consider randomized versions of mp2s-automata:
Design efficient randomized approximation algorithms for particular problems
and develop techniques for proving lower bounds in the randomized model.

I Study the extension of the read/write stream model in which intermediate sorting
steps are available.
This is the StrSort model by Aggarwal, Datar, Rajagopalan, Ruhl, FOCS’04.

I An open question concerning finite cursor machines:
Is there a sentence from first-order logic that cannot be evaluated by a
composition of finite cursor machines and sorting operations?
(Conjecture: yes!)

I An open question from complexity theory:
Can the sorting problem be solved by a linear time multi-tape Turing machine?

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 51/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Data stream talks during DEIS’10

I Data stream management systems and query languages Sandra Geisler
(Tuesday, 8:45–9:45)

I Basic algorithmic techniques for processing data streams Mariano Zelke
(Tuesday, 9:45–10:45)

I Querying and mining data streams Elena Ikonomovska
(Wednesday, 11:15–12:15)

I Stream-based processing of XML documents Cristian Riveros
(Thursday, 11:15–12:15)

I Distributed processing of data streams and large data sets Marwan Hassani
(Thursday 1:45–2:45)

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 52/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Exercise # 4

Let s be a number with 0 < s < 1.
The goal is to find a data stream algorithm that processes an input stream

x1, x2, x3, . . . , xn

of elements from {1, . . . ,m} and outputs a set M of input elements such
that M contains (at least) all those elements that occur for > s · n times in
the input stream.

Note:
I The output has to be a set — i.e., it is not allowed to output elements

more than once. (In particular, this means that you cannot simply output
the entire input stream.)

I The problem can be solved by a deterministic data stream algorithm
using O(1

s · log m· log n) memory bits.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 53/55

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

References

References to the literature can be found in the following surveys:
I N. Schweikardt. Machine models and lower bounds for query processing. In Proc. PODS’07, pp. 41–52.
I N. Schweikardt. Machine models for query processing. SIGMOD Record 38(2), pp. 18–28, 2009.

Solutions to the exercises can be found in the following articles:

#1: S. Ganguly, A. Majumder: Deterministic K-set structure. Information Processing Letters 109(1), pp.
27–31, 2008.

#2: M. Grohe, A. Hernich, N. Schweikardt: Lower bounds for processing data with few random accesses to
external memory. Journal of the ACM 56(3), 2009. — See Theorem 3.5.

#3: M. Henzinger, P. Raghavan, S. Rajagopalan: Computing on data streams. In External Memory
Algorithms, J.M. Abello and J.S. Vitter (eds.). DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 50. AMS, New York, pp. 107–118, 1999. — See Theorem 6.

#4: G. Schnitger: Lecture notes on “Internet Algorithmen” (in German). Goethe-Universität Frankfurt am
Main, 2009. http://www.thi.informatik.uni-frankfurt.de/Internet0809/skript.pdf
— See Algorithm 4.20 on page 72.

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 54/55

http://www.thi.informatik.uni-frankfurt.de/Internet0809/skript.pdf

ONE PASS/ONE STREAM MULTI-PASS/ONE STREAM MULTI-PASS/MULTIPLE STREAMS READ/WRITE STREAMS FUTURE TASKS

Thank You!

NICOLE SCHWEIKARDT LOWER BOUNDS FOR MULTI-PASS PROCESSING OF MULTIPLE DATA STREAMS 55/55

	One pass over a single stream
	Several passes over a single stream
	Several passes over several streams in parallel
	Read/write streams
	Future tasks

