
Core Computation for Data Exchange

Vadim Savenkov

Vienna University of Technology

DEIS 2010
November 9, 2010

Talk Outline

1. Preliminaries

2. Computing the core

Preliminaries: Labeled nulls and homomorphisms

Consider a database model based on v-relations: unknown values
are labeled, and the same label can have several occurrences in a
database, unlike the usual SQL nulls (“Codd” tables).

J
dom(J) = const(J) ∪ var(J)

const(J) ∩ var(J) = ∅

A basic data exchange framework.

I
no nulls

J
contains labeled nulls

Σst
Σt

Definition
A homomorphism h between two instances I and J maps dom(I)
on dom(J) such that ∀c ∈ const(I) h(c) = c, and whenever
R(x̄) ∈ I it holds that R(h(x̄)) ∈ J .

Embedded implicational dependencies

Tuple-generating dependencies

I Employee(Name,Project, Salary)→
∃Id∃Dep (Staff (Id ,Name,Dep) ∧Wage(Id ,Salary))

I Source-to-target (st) tgds: How the data must be transferred.
I Target tgds: generalize inclusion / join dependencies.
I Naive chase: ∀〈Name, Salary〉 add the instantiation of the

conclusion atoms to the db. Replace existential variables by fresh
distinct labeled nulls.

Equality-generating dependencies

I Staff (Id ,Name1,Dep1) ∧ Staff (Id ,Name2,Dep2)→ Dep1 = Dep2

I Generalize functional dependencies.

Chase delivers a canonical universal solution.

Example
τ 1

st : BasicUnit(C)→ Course(Idc,C).
τ 2

st : Tutorial(C ,T)→ Course(Idc,C),Tutor(Idt,T),Teaches(Idt, Itc).

BasicUnit(’C#’) ⇒ Course(C1, ’C#’)
Tutorial(’C#’, ’Joe’) ⇒ Course(C2, ’C#’), Tutor(T1, ’Joe’), Teaches(T1, C2)

Formalizing “redundancy”
Endomorphism is a homomorphism from an instance onto itself. If an
endomorphism maps an instance onto its proper subset, it is called proper
endomorphism. Nulls that can be eliminated by proper endomorphisms
are redundnant.

Definition
Let J be an instance. Core of J (denoted core(J)) is an endomorphic
image of J , for which no proper endomorphism exists.

Cores and endomorphisms
Fundamental paper “Core of a graph” by Hell and Nesetril [1992]

I Cores of any relational structure are isomorphic ⇒ “the core”
I Homomorphically equivalent structures have isomorphic cores.

• Contrast with: typically, there is infinitely many universal
solutions for each source instance. (Just add tuples of distinct
fresh labeled nulls.) All universal solutions are hom. equivalent.

• Thus, a single core captures the whole infinite set USol(I,M).

Bet
Let Σ be set of tgds and egds, J be an instance satisfying Σ and J ′
an endomorphic image of J . Does it hold that J ′ |= Σ?

Consider Σ = {R(u,w),R(w ,w),R(w , v)→ R(u, v)} and
J ={(x , z),(x , a), (z , y), (a, z),(a, a)}. Let h = {z → a, y → z} be
endomorphism, then h(J) = {(x , a),(a, z), (a, a)} 6|= Σ holds.
However, core(J) = {(x , a), (a, a)} |= Σ.

Cores and embedded dependencies

Property ([Hell and Nesetril, 1992])
Let A be a relational structure and C its core. Then, there exists a
homomorphism h : A→ C , such that for all v ∈ dom(C),
h(v) = v .

x

y z

s

v
w

x

y z

s

v
w

Consider a homomorphism r : A→ C .
Restricted to dom(C), r is one-to-one
(otherwise, C would not be a core).

Let Gr be a graph whose vertices are
elements of dom(C), and an edge
(x , y) denotes r(x) = y . Every edge of
such graph belongs to a cycle. For
cycle of length n, vertices that occur in
it are mapped to themselves by r n.

Moreover, r n is still a homomorphism
and thus must be one-to-one on C .
Now, consider the graph Grn , etc.

Definition
Idempotent endomorphism, i.e. r such that r(r(x)) = r(x), for all x is
called a retraction. Any endomorphism can be transformed into a
retraction simply by iterating it long enough.
As we just showed, core of a structure is a retract.

Theorem (Fagin, Kolaitis, and Popa [2005b])
Let M = (S,T,Σst ∪ Σt) be a mapping where Σst is a set of
source-to-target tgds, and Σt consists of target tgds and egds. Then, if
J ∈ Sol(I,M), and J ′ is a retract of J, then also J ′ ∈ Sol(I,M).

Proof (Excerpt).
Consider a target tgd τ : φ(x̄)→ (∃ȳ)ψ(x̄ , ȳ) in Σt . To show: J ′ |= τ .
Assume that for some ā, J ′ |= φ(ā). Then, by J |= τ , ∃b̄ ∈ dom(J) such
that J |= ψ(ā, b̄). J ′ being a retract, means there exists h : J → J ′ such
that ∀v ∈ var(J ′) h(v) = v .
Hence, J ′ |= ψ(h(ā), h(b̄)). Since h(ā) = ā, we have J ′ |= ψ(ā, h(b̄)) and
thus, also J ′ |= τ .

Timeline
2003 “Getting to the core” paper by Fagin, Kolaitis, and Popa at PODS

(TODS version: 2005). Introduced cores in the context of data
exchange. ST tgds + target egds.

2005 In his PODS paper, Gottlob addresses full target tgds (very tricky!).

2006 “Computing cores in polynomial time” paper by Gottlob and Nash
(JACM version: 2010) Weakly-acyclic sets of target tgds + egds
(simulated by full tgds).

2008 Pichler and S. add direct support for target egds along with weakly
acyclic sets of tgds. (LPAR, TCS version: 2010)

2009 (i) SIGMOD paper by Mecca, Papotti and Raunich, and “Laconic
Schema Mappings“ @ VLDB by ten Cate, Chiticariu, Kolaitis, and
Tan. Computing cores directly, as part of the chase; no target
constraints. (ii) PODS paper by Marnette presents a robust
core-based semantics for data exchange.

2010 Marnette, Mecca and Papotti consider direct core computation
under target functional dependencies. (VLDB).

Core Computation as a Postprocessing Step

First chase, then reduce

I J

core(J)

1. chase Σst 2. chase Σt

3. reduce

+ Most general approach (handles also target constraints)
- Performance

Greedy algorithm [Fagin et al., 2005b], target egds
Input: Source instance I, st tgds Σst , target egds Σt
Output: A core of a universal solution for I under Σst ∪ Σt

(1) Chase I with Σst ⇒ Canonical pre-universal instance J̃ .

(2) Chase J̃ with Σt
If the chase fails ⇒ stop and return “failure”;
otherwise, let J be a canonical universal solution.

(3) Initialize J∗ to be J .

(4) While there is a fact R(x̄) ∈ J∗ such that
〈I, J∗ − {R(x̄)}〉 |= Σst , set J∗ to be J∗ − {R(x̄)}.

(5) Return J∗.

Question
As is, works only with target egds. Why?
- source instance has to be available

Descent to the core via proper retractions

I As we have shown, a retract of a solution is itself a solution.
I Moreover, the core of a structure is unique (up to

isomorhpism).
⇒ Compute an ever shrinking sequence of proper retractions:

J , r1(J), r2(r1(J)), ...

Retracts are solutions, so no need to test 〈I, rn(J)〉 |= Σ

I How to find a proper retraction? Iterate a proper
endomorphism.

I How to find a proper endomorphism? For general structures,
we are likely to need exhaustive search.

• CoreIdentification is DP-complete [Fagin et al., 2005b]
• CoreRecognition is coNP-complete [Fagin et al., 2005b]

I What about solutions in data exchange?

Blocks algorithm: idea

Key idea
Blocks are mutually independent partitions of var(J).

Gaifman Graph GJ of instnance J
Undirected graph (V ,E) where V represents var(J) and
(v1, v2) ∈ E whenever there is R(v̄) ∈ J such that v1, v2 ∈ v̄ .
Blocks correspond to connected components of GJ .

Example
R(x , y),R(y , z),R(v ,w)
R(1, 2),R(2, 3),R(4, 5)

Blocks algorithm: idea (2)

Each homomorphism h : J → K can be represented as a union of
hBi : J [Bi]→ K for blocks Bi of J .
Recall how the canonical universal solution is created during the
chase of the source instance I:

– For each st tgd φ(x̄)→ (∃ȳ)ψ(x̄ , ȳ)

For each ā, such that I |= φ(ā), ψ(ā, ȳ) is instantiated by
replacing the elements of ȳ with fresh labeled nulls.

Question
If Σt = ∅ and J was created by chasing Σ = Σst . What can be
said about the block size of J?

Blocks algorithm: no target constraints

Input: Source instance I, mapping Σst
Output: A core of a universal solution for I under Σst

(1) Chase I with Σst ⇒ Canonical universal solution J .

(2) Compute the blocks Bi of J , and initialize J ′ to be J

(3) Check if hi : J ′[Bi]→ J ′ exists, s.t. h(x) = h(y) for some
x ∈ Bi and y 6= x .

(4) Set J ′ = h(J ′), where h extends hi to dom(I) as identity
mapping

(5) Return to step (3).

Blocks algorithm: target egds

A nice property allows to lift the blocks algorithm to target egds.

Rigidity Lemma [Fagin et al., 2005b]
Let J̃ be the canonical preuniversal instance for some source I and
mapping Σst ∪ Σt where Σt consists of egds. Moreover, let x and
y be nulls from different blocks of J̃ . If, in the course of the chase
of J̃ with Σt , an equality x = y is enforced, the term [x](= [y])
standing for both x and y in the canonical universal solution J , is
rigid: any endomorphism of J maps [x] on itself.

Example
J = {R(1, x),R(y , 2),R(1, 3),R(3, 2)}
Σt = {R(1, x),R(y , 2)→ x = y}
Effectively, target egds can be simply ignored.

Target tgds? Weak acyclicity
Dependency graph [Fagin, Kolaitis, Miller, and Popa, 2005a]
of the mapping M = (S,T,Σ)
Directed graph (V ,E ∪ E∗). V represents attributes of T. (a1, a2) ∈ E
whenever a tgd copies a value from a1 into a2. Special edges:
(a1, a2) ∈ E∗ whenever a1 occurs in the antecedent of a tgd in which a2
is occupied by an existentially quanitfied variable.
Dependency graphs of weakly-acyclic sets of tgds have no cycles through
special edges.

1. Course(Idc,C)→ Tutor(Idt,T),Teaches(Idt, Idc).

2. Teaches(Idt, Idc)→ NeedsLab(Idt, L).

Tutortutor

idt

Course

course

idc
Teaches

id_tutor

id_course

NeedsLab

id_tutor

lab

*

*

 * *

FindCore algorithm [Gottlob and Nash, 2008]: Idea

Idea
I Take a variable x and a term y , and test if any proper

endomorphism can stitch them together.
I Testing for endomorphism existence should use some subset of

the full instance which has bounded block size.

Parents, Ancestors, Siblings
I Parent variables: xp is a parent of x , if the tgd that created x

fired on the tuple p̄, and xp ∈ p̄.
I Ancestor relation as a transitive closure of parent. Every null

has bounded number of ancestors (by weak acyclicity).
I Siblings of x are nulls created by the same tgd, at the same

chase step as x .

Example

Single st tgd S(x1, x2)→ ∃Y1∃Y2 R(x1, x2,Y1,Y2) and two target tgds:

τ1 : R(x1, x2, y1, y2) ∧ R(x2, x3, y3, y4)→ R(x1, x3, y1, y4)

τ2 : R(x , x , y1, y2)→ ∃Z Q(y1, y2,Z)

I = {S(1, 2), S(2, 3), S(3, 1)}

J̃ = {R(1, 2, y1, y2),R(2, 3, y3, y4),R(3, 1, y5, y6)}

J ′ = chase(J̃ , {τ1}) = J̃ ∪ {R(2, 1, y3, y6), R(1, 3, y1, y4),R(1, 1, y1, y6)}

chase(J ′, {τ2}) = J ′ ∪ {Q(y1, y6, z1)}

Note: y3 and y4 were needed to derive z1, but they don’t belong to its
ancestors.

FindCore algorithm [Gottlob and Nash, 2008]
Input: Source instance I, st tgds Σst , weakly-acyclic set of target tgds Σt
Output: A core of a universal solution for I under Σst ∪ Σt

(1) Let J̃ denote the canonical pre-universal instance, and J be the
canonical universal solution obtained by chasing J̃ with Σt .

(2) Set J∗ = J .

(3) Let Txy be J̃ (fixed block size) together with an instance induced by
the ancestors of x , y and their siblings (fixed number of variables).
Test if a homomorphism h0 : Txy → J∗ exists, such that
h0(x) = h0(y)

(4) By “replaying” the chase, h0 can always be extended to h : J → J∗.

(5) Transform h to a retraction r , so that r(J) is a solution. Set
J∗ = r(J).

(6) Repeat until no further variables can be eliminated.

(7) Return J∗.

Target egds by simulation

“Equality predicate” E
I For each egd φ(x̄)→ xi = xj , consider φ(x̄)→ E(xi , xj)

I E(x , y)→ E(y , x), E(x , y) ∧ E(y , z)→ E(x , z)

I For each target relation R, and each position i in R:

• R(..., xi , ...)→ E (xi , xi)
• R(x1, ...xi , ...xn) ∧ E (xi , y)→ R(x1, ..., y , ...xn)

I “Nice” (non-predefined) chase order required.

Example
Preuniversal instance J̃ = {R(x , y),P(y , x)}, Σt = {R(z, v),P(v , z)→ z = v}

Simulating set Σ̄t of 11 full tgds. chase(J̃ , Σ̄t) = {R(x , y),R(x , x),R(y , x),
R(y , y),P(y , x),P(y , y),P(x , y),P(x , x), E(x , x),E(x , y),E(y , x),E(y , y)}

Core: {R(x , x),P(x , x)} resp. {R(y , y),P(y , y)}.

Support egds directly

I Egds unify variables and merge “families” of nulls.
I Switch to facts instead of variables [Pichler and S., 2010].

Redefine the parent relation.
I Need to be careful to keep the size of the fact ”family” fixed

in presence of non-special cycles in dependency graph.

New parent relation on tuples:

Parametrized Complexity

Block size is the key complexity parameter of core computation.

Theorem (Gottlob and Nash [2008])
The following search problems are fixed parameter intractable with
respect to parameters blocksize(J) and k, respectively:

P1: CoreIdentification: Given an instance J, compute
core(J).

P2: Given a mapping M = (S,T,Σst ∪ Σt) where Σt = ∅ and
where the maximum number of variables occurring in a tgd of
Σst is bounded by parameter k, and a source instance I,
compute the core of a universal solution for S.

Laconic schema mappings

Why create redundant tuples in the first place?

Compute the core directly

I core(J)
chase Σst

For settings without target constraints, direct core computation
has been proposed [Mecca, Papotti, and Raunich, 2009; ten Cate,
Chiticariu, Kolaitis, and Tan, 2009].

Definition
Schema mapping is laconic, if chasing it (naively) produces a core.
Naive chase: fire each st tgd for each distinct tuple satisfying its antecedent.

Example (frightening) [Fagin et al., 2005b]

Consider two st tgds, and a source instance I = {R(1, 1, 2, 3)}:
R(a, b, c, d)→ (∃x1, x2, x3, x4, x5)

S(x5, b, x1, x2, a)

∧S(x5, c, x3, x4, a)

∧S(d , c, x3, x4, b)

R(a, b, c, d)→ (∃x1, x2, x3, x4, x5)

S(d , a, a, x1, b)

∧S(x5, a, a, x1, a)

∧S(x5, c, x2, x3, x4)

S(N5, 1,N1,N2, 1)

S(N5, 2,N3,N4, 1)

S(3, 2,N3,N4, 2)

S(3, 1, 1,N ′1, 1)

S(N ′5, 1, 1,N ′1, 1)

S(N ′5, 2,N ′2,N ′3,N ′4)

If fired together, st tgds above generate non-core atoms on I.
However, if fired alone, none of the tgds produce redundant atoms.

Idea of reformulation as a laconic mapping

R(a, a, c, d)→ (∃x1, x2) S(d , c, x1, x2, b)

R(a, a, c, d)→ (∃y1) S(d , a, a, y1, b)

R(a, b, c, d)∧ a 6= b ∧ b 6= c → (∃x1, x2, x3, x4, x5) S(x5, b, x1, x2, a)
∧S(x5, c, x3, x4, a)
∧S(d , c, x3, x4, b)

R(a, b, b, d) ∧ a 6= b → (∃x1, x2, x3) S(x3, b, x1, x2, a)
∧S(d , c, x1, x2, b)

R(a, b, c, d) ∧ a 6= b → (∃x1, x2, x3, x4, x5) S(x5, b, x1, x2, a)
∧S(x5, c, x3, x4, a)
∧S(d , c, x3, x4, b)

More examples [ten Cate et al., 2009]

No self-joins in the conclusion of tgds
I S1(x , y)→ (∃z) P(x , z) ∧ Q(z , y)

I S2(x , v)→ P(x , v)

I S3(v , y)→ Q(v , y)

I Laconic variant of the first tgd:
S1(x , y) ∧ ¬S2(x , v) ∧ ¬S3(v , y)→ (∃z) P(x , z) ∧ Q(z , y)

Tgds with self-joins in the conclusion
I R(x , y)→ (∃z) S(x , z) ∧ S(y , z)

I Laconic variant:
(R(x , y) ∨ R(y , x)) ∧ x ≤ y → (∃z) S(x , z) ∧ S(y , z)

Laconic mappings [ten Cate et al., 2009]
I Both negation and order on the source domain are necessary.
I Rewritten mappings can be exponential in the number of

dependencies of the original, non-laconic mapping.

Skolemized form, suitable for SQL implementation
S(x1, x2, x3)→ ∃y R(x1, y) S(x1, x2, x3)→ R(x1, f (x1, x2, x3))

S(1, 3, 4) ⇒ R(1, ’f(1,3,4)’)

Embracing target constraints

I No complete solution, unless target constraints can be fully
“captured” by the st tgds. (E.g.: bounded chase property.)

I Best-effort approaches are available and can be helpful in practice.

Target functional dependencies [Marnette, Mecca, and
Papotti, 2010]

I A FO implementation ΣFO
st of the mapping M = {S,T,Σst ∪ Σt}

where Σt consists of FDs, is a set of st tgds (having UCQs with
negation in the antecedents).

• If chase(I,ΣFO
st) |= Σt , then ΣFO

st succeeds on I, and fails
otherwise.

I Soundness: If ΣFO
st succeeds on I, then chase(I,ΣFO

st) is a universal
solution. E.g., ΣFO

st does not “invent” target artefacts.
I Completeness: ΣFO

st succeeds on I iff M has solutions on I.

Direct Core Computation with target FDs

Theorem (Marnette et al. [2010])
There is a scenario M = (S,T,Σst ∪ Σt) where Σt is a set of FDs
over T such that no complete FO-implementation exists for M.

Proof sketch.
S: relation E (x , y) encodes the edges (x , y) of a directed graph.
T: relation R(v ,m) marks each vertex v with a conntected
component identifier m.
Σ = {E (x , y)→ ∃Z R(x ,Z) ∧ R(y ,Z)

R(x , z1) ∧ R(x , z2)→ z1 = z2}
I CQ qt(x , y) = ∃Z R(x ,Z) ∧ R(y ,Z) finds connected vertices.
I Complete FO-implementation possible ⇒ a perfect FO rewriting of

qt over S must be obtainable using known techniques.
Contradiction: reachability is not FO expressible.

Example #1: Sound implementation ΣFO
st

Original mapping
Student(name, bday)→ Person(name, bday ,Y1,Y2)
Employee(name, salary)→ Person(name,Y1, salaryY2)
Driver(name, plate)→ Person(n,Y1,Y2,Z) ∧ Car(Z , plate)
Target FDs:
PK (Person) : name, Car .〈id〉 → plate, Car .〈plate〉 → id

I Student(n, bd) ∧ Employee(n, s)→ Person(n, bd , s, f (n))

I Student(n, bd) ∧ Driver(n, p)→ Person(n, bd , s, f (n))

I Employee(n, s) ∧ Driver(n, p)→
Person(n, g(n), s, f (n)) ∧ Car(f (n), plate)

I Student(n, bd) ∧ Employee(n, s) ∧ Driver(n, p)→
Person(n, bd , h(n), f (n)) ∧ Car(f (n), plate)

I ... orignal st tgds enhanced with negated CQs in the antecedents.

Example #2: No complete implementation

Recall the graph connectedness example:

Σ = {E (x , y)→ ∃Z R(x ,Z) ∧ R(y ,Z)
R(x , z1) ∧ R(x , z2)→ z1 = z2}

Sound implementations
Σ1

st = {E(x , y) ∧ E(y , v)→ ∃Z R(x ,Z) ∧ R(y ,Z) ∧ R(y ,Z)}

Σ2
st = Σ1

st ∪ {E(x , y) ∧ E(y , v) ∧ E(v ,w)→ ∃Z R(x ,Z) ∧ R(y ,Z)
∧R(y ,Z) ∧ R(w ,Z)}

Σ3
st = Σ2

st ∪ ...

For each n, easy to construct a case when Σn
st fails (leads to

violation of a FD) though Σ has solutions.

Direct core computation in presence of target FDs

Theorem (Marnette et al. [2010])
Given a sound FO implementation ΣFO

st of M, it is decidable to
check its completeness: Test if chase with ΣFO

st can produce an
instance violating some target FD in M.
Direct core computation:

1. Work target FDs in st tgds (by combining conclusions of st
tgds and chasing them with FDs) to produce a sound FO
implementation (best effort).

2. Test FO implementation for completeness.
3. If complete, make the FO implementation laconic, by adapting

the rewriting ideas shown before (technical).

Summary

I Core is in many cases the best universal solution to
materialize in the target database.

I For core computation, the crucial complexity parameter is the
block size of the instance. W.r.t. the block size,
CoreIdentification is fixed-parameter intractable.

I Core computation is tractable for target egds and
weakly-acyclic sets of target tgds.

I In absence of target constraints, core can be computed
directly by chasing rewritten mappings. Rewritten mappings
require more expressive language (negation, linear order) and
can be exponential in size.

I Direct core computation in presence of target constraints is
possible on the best effort basis.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics
and query answering. Theoretical Computer Science, 336(1):89 – 124,
2005a.

R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core.
ACM Trans. Database Syst., 30(1):174–210, 2005b.

G. Gottlob. Computing cores for data exchange: new algorithms and practical
solutions. In PODS, pages 148–159, 2005.

G. Gottlob and A. Nash. Data exchange: computing cores in polynomial time.
In PODS, pages 40–49, 2006.

G. Gottlob and A. Nash. Efficient core computation in data exchange. J. ACM,
55(2):1–49, 2008.

P. Hell and J. Nesetril. The core of a graph. Discrete Mathematics, 109(1-3):
117 – 126, 1992.

B. Marnette. Generalized schema-mappings: from termination to tractability.
In PODS, pages 13–22, 2009.

B. Marnette, G. Mecca, and P. Papotti. Scalable data exchange with functional
dependencies. PVLDB, 3(1):105–116, 2010.

G. Mecca, P. Papotti, and S. Raunich. Core schema mappings. In SIGMOD
Conference, pages 655–668, 2009.

B. ten Cate, L. Chiticariu, P. G. Kolaitis, and W. C. Tan. Laconic schema
mappings: Computing the core with sql queries. PVLDB, 2(1):1006–1017,
2009.

	Preliminaries
	Computing the core
	Core Computation as a Postprocessing Step
	Computing the core directly

	References

