Peer Data Management Systems Concepts and Approaches

Armin Roth

HPI, Potsdam, Germany

Nov. 10, 2010

Armin Roth (HPI, Potsdam, Germany)

Peer Data Management Systems

Nov. 10, 2010 1 / 28

3

★ 3 → < 3</p>

Agenda

- Large-scale Information Sharing
- 2 PDMS Architecture
- 3 System Characteristics
- 4 Comparison of Approaches
- Conclusion + Future Research5

Large-scale Information Sharing

Large-scale Information Sharing

Armin Roth (HPI, Potsdam, Germany)

Peer Data Management Systems

▶ ◀ ≧ ▶ ≧ ∽ ९. Nov. 10, 2010 3 / 28 PDMS Architecture

PDMS

- Heterogeneity
- Peer Autonomy
- Mediator: Queries passed to neighbors
- Flexibility
- High Redundancy
- Information Loss

(日) (同) (三) (三)

PDMS Architecture

Distributed Information Systems

[OV99]

(日) (周) (三) (三)

- 32

PDMS Architecture

General System Model

- PDMS set \mathcal{P} of peers P_i with $P_i = \{G_i, S_i, \mathcal{L}_i, \mathcal{M}_i\}$:
 - Peer schema G_i
 - Local schema S_i
 - Local mappings \mathcal{L}_i
 - Peer mappings \mathcal{M}_i
- Peer mappings m ∈ M_i ∪ M_j are assertions

$$\phi_{G_i} \rightsquigarrow \phi_{G_j} \text{ resp. } \phi_{G_j} \rightsquigarrow \phi_{G_i}$$

with queries ϕ_{G_i} and ϕ_{G_j} of
different arity

- ∢ ∃ ▶

3

- - - E - N

Peer Mappings

- Different peers P_i , P_j heterogeneous in
 - Data model
 - Schema
 - Query language
 - Data schema interplay [BCHL05]
 - Intens./extens. completeness
- Language of mapping assertions $\phi_{G_i} \rightsquigarrow \phi_{G_j}$ must bridge all these types of heterogeneity [MBDH02]

Example

Armin Roth (HPI, Potsdam, Germany)

Peer Data Management Systems

Nov. 10, 2010 8 / 28

3

Semantics of PDMS Query Answering [CGLR04]

- \bullet Special case: all queries in mapping assertions \in CQ
- Semantics of an *individual* peer: FOL theory T_{P_i}
- \bullet (Global) source database ${\cal D}$
- Set of all models of PDMS \mathcal{P} wrt. \mathcal{D} :

 $sem^{\mathcal{D}}(\mathcal{P}) = \{ \mathcal{I} \mid \mathcal{I} \text{ is a model of all } \mathcal{T}_{P_i} \text{ based on } \mathcal{D} \land \\ \mathcal{I} \text{ satisfies all } \mathcal{M}_i \}$

• Meaning of ${\cal I}$ satisfying ${\cal M}_i$ varies in different approaches for peer mappings

イロト 不得 とくほ とくほう 二日

Applications for PDMS

- Fusion of organisations
- Semantic Web [HIMT03, HHNR05]
- Disaster Management [HIST03]
- Groupware [ANR07]
- In general:

Large, loosely coupled integrated information systems

System Characteristics

System Model [HRZ⁺08]

Category	Possible Alternatives
Data model	Relational
	XML (incl. web services)
	RDF
Topology	Arbitrary
	Arbitrary without cycles
Mapping language	GLaV
	Subset of FOL
	Mapping tables
	Data schema interplay (e.g., HePToX)

Armin Roth (HPI, Potsdam, Germany)

Peer Data Management Systems

Nov. 10, 2010

3

(日) (周) (三) (三)

11 / 28

Semantics

- Expressiveness and interpretation of mapping language determines semantics of
 - query answering
 - data exchange
- 2 principal approaches
 - Global reasoning: Mappings are interpreted as material logical implication
 - 2 Local reasoning: Only exchange of certain answers

A B F A B F

Autonomy/Modularity

- Important category in distributed systems with many stakeholders
- Types:
 - Design autonomy (modeling, naming)
 - Communication autonomy (decide about cooperations)
 - Execution autonomy (scheduling of requests)
- Influenced by
 - Semantics
 - Functional requirements
 - (e.g., update propagation, global catalog)

Armin Roth (HPI, Potsdam, Germany)

Piazza [HIST03]

Data model	Relational, XML
Mapping language	GLaV, definitional mappings
Query language	CQ
Peer autonomy	Global catalog
Semantics of	Open-world wrt. certain peer
query answering	
Query optimization	Containment-based pruning
	at query planning time

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Hyper [CGL⁺04, CGLR04]

Data model	Relational
Mapping language	GLaV
Query language	CQ
Peer autonomy	Preserved
Semantics of	Based on epistemic logic,
query answering	exchange of certain answers
Query optimization	none
Other	Inconsistency tolerance

3

(日) (周) (三) (三)

Hyperion [AKK⁺03, KAM03]

Data model	Relational (others also possible)
Mapping language	Generalization of GLaV
Query language	CQ, value search
Peer autonomy	Preserved
Semantics of	Open-world and closed-world possible
query answering	
Query optimization	unknown
Other	Update propagation

3

(日) (周) (三) (三)

Hyperion

- Highly dynamic and scalable
- Schema mapping expressions
- Mapping tables:
 - Correspondences between data values
 - Many-to-many mappings
 - Automatically inferring new entries
 - Respect autonomy of the peers
 - Supports value search (point queries)

Hyperion: Semantics of Mapping Tables

- Mapping table: X → Y with sets of attribute values resp. variables X, Y (many-to-many)
- Semantics of practical interest: *closed-open-world*, *closed-closed-world*
- Influences combination of mapping tables

	Open-	Closed-
	world	world
present	Any	indicated
$\mathcal X ext{-value}$	$\mathcal Y ext{-value}$	$\mathcal Y ext{-values}$
missing	Any	no
$\mathcal X ext{-value}$	$\mathcal Y$ -value	$\mathcal Y$ -value

Hyperion: Example

GDB id	SwissProt id	MIN id
GDB:120231	P21359	162200
GDB:120231	O00662	193520
GDB:120232	P35240	101000

GDB id	SwissProt id
GDB:120231	O00662

GDB id	MIM id
GDB:120233	162030

Armin Roth (HPI, Potsdam, Germany)

æ

(日) (周) (三) (三)

Logical Relational Model [SGMB03]

- Domain relation: any subset of $dom_i \times dom_j$
- Relational space: set of local databases and a domain relation
- Coordination formula:
 CF ::= i : φ | CF → CF | CF ∧ CF | CF ∨ CF | ∃i : x.CF | ∀i : x.CF (i ∈ set of peers)
- Example:

 $\forall (\text{Doc} : fn, In, pn, gender, pr).$ (Doc : Patient(1234, fn, In, pn, gender, pr) \rightarrow Hospital : $\exists (hid, n, a)$.Patient(hid, 1234, n, gender, a, Davis, pr) \land n = concat(fn, In)))

• Query answering: coordination formulas as deductive rules

イロト 不得 とくほ とくほう 二日

Logical Relational Model

Data model	Relational
Mapping language	Coordination formulas: Subset of FOL
	(implication, conjunction, disjunction,
	universal and existential quantification
	wrt. different domains)
Query language	Equal to mapping language
Peer autonomy	Preserved (recursive local reasoning)
Semantics of	Local reasoning
query answering	(satisfyability of coordination formulas)
Query optimization	unknown
Other	Update propagation
	(using coordination formulas)

3

(日) (同) (三) (三)

Humboldt Peers [Rot07]

Data model	Relational	
Mapping language	extensionally sound GaV:	
	$\forall ar{x} \forall ar{y}(\phi_{\mathcal{S}}(ar{x},ar{y}) ightarrow \exists ar{z} \; g(ar{x},ar{z}))$	
	extensionally sound LaV:	
	$\forall ar{x} \forall ar{y}(s(ar{x},ar{y}) ightarrow \exists ar{z} \ \phi_G(ar{x},ar{z}))$	
Query language	CQ with semi-interval selections	
Peer autonomy	Highly preserved	
Semantics of	Exchange of certain answers	
query answering		
Query optimization	Completeness-driven pruning, limitation	
	of resource consumption	
Other	Cardinality estimation based on query	
	feedback	

Armin Roth (HPI, Potsdam, Germany)

3

(日) (周) (三) (三)

Active XML [ABM08]

Data model	XML with web service invocations
Mapping language	web services
Query language	XQuery, XPath
Peer autonomy	Limited
Semantics of	Reasoning encapsulated by web services
query answering	
Query optimization	Several techniques considering embedded
	web service calls

æ

(日) (周) (三) (三)

Conclusion

- PDMS: flexible architecture for large-scale information sharing
- Main system characteristics: mapping and query languages, peer autonomy, semantics
- Semantics depend on interpretation of mappings
- Comparison of existing PDMS approaches

Future Research

- Reduce redundancy in query answering
- Considering data quality in query answering
- Building and optimizing of network of peers and mappings
- Dealing with different/varying data models and query languages
- Approximative query processing and non-standard query operators (e.g., top-k)

References I

[ABM08] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML project: an overview. VLDB J., 17(5):1019–1040, 2008.

 [AKK⁺03] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and J. Mylopoulos.
 The Hyperion project: From data integration to data coordination. ACM SIGMOD Record, 32(3):53–58, 2003.

[ANR07] Alexander Albrecht, Felix Naumann, and Armin Roth.
 Networked PIM using PDMS.
 In Proc. of the Workshop on Networking Meets Databases (NetDB), 2007.

[BCHL05] A. Bonifati, Q. Chang, T. Ho, and L.V.S. Lakshmanan. HepToX: Heterogeneous peer to peer XML databases. Technical report, U. of British Columbia and Icar CNR, Italy, 2005.

[CGL⁺04] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and G. Vetere. Hyper: A framework for peer-to-peer data integration on grids. In Proc. of the Int. Conference on Semantics of a Networked World: Semantics for Grid Databases (ICSNW 2004), 2004.

Armin Roth (HPI, Potsdam, Germany)

3

イロト イポト イヨト イヨト

References II

[CGLR04] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Logical foundations of peer-to-peer data integration. In Proc. of the Symposium on Principles of Database Systems (PODS), 2004.

[HHNR05] Ralf Heese, Sven Herschel, Felix Naumann, and Armin Roth. Self-extending peer data management. In Proc. of the Conf. Datenbanksysteme in Business, Technologie und Web (BTW), Karlsruhe, Germany, 2005.

[HIMT03] Alon Y. Halevy, Zachary Ives, Peter Mork, and Igor Tatarinov. Piazza: Data management infrastructure for semantic web applications. In Proc. of the Int. World Wide Web Conf. (WWW), 2003.

[HIST03] Alon Y. Halevy, Zachary Ives, Dan Suciu, and Igor Tatarinov. Schema mediation in peer data management systems. In Proc. of the Int. Conf. on Data Engineering (ICDE), 2003.

[HRZ⁺08] Katja Hose, Armin Roth, Andr
ü
¹/₂ Zeitz, Kai-Uwe Sattler, and Felix Naumann. A research agenda for query processing in large-scale peer data management systems.

Information Systems, 33(7-8):597-610, 2008.

Armin Roth (HPI, Potsdam, Germany)

イロト 不得下 イヨト イヨト 二日

References III

- [KAM03] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer systems: Semantics and algorithmic issues. In SIGMOD 2003, pages 325–336, 2003.
- [MBDH02] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y. Halevy. Representing and reasoning about mappings between domain models. In Proc. of the National Conf. on Artificial Intelligence (AAAI), 2002.
- [OV99] M. T. Özsu and P. Valduriez. *Principles of distributed database systems.* Prentice Hall, 2nd edition, 1999.
- [Rot07] Armin Roth. Completeness-driven query answering in peer data management systems. In Proc. of the VLDB 2007 PhD Workshop, 2007.

[SGMB03] L. Serafini, F. Giunchiglia, J. Mylopoulos, and P. A. Bernstein. Local relational model: A logical formalization of database coordination. In Proc. of CONTEXT, 2003.

イロト 不得下 イヨト イヨト