
XML Documents

a

a a

b c b

Document object model (DOM)

In this talk, we are interested on streaming XML documents.

<a> <a> <a> <c> </c> . . .

a a b b̄ ā a c c̄ b . . .

Two main questions

XML Validation with respect to a DTD:

r → a+

a → a+ | b+ | ǫ

b → ǫ

How much memory do we require to validate a streaming XML

Document with respect to a DTD?

XML Filtering for XPath queries:

/descendant::a[child::b]/child::c

How much memory do we require to evaluate an XPath query over

a streaming XML Document?

First problem: XML validation

Example

d1 :

r → a∗

a → b∗

b → ǫ

L(d1) = r (a (b b̄)∗ ā)∗ r̄ X

d2 :
r → a

a → a | ǫ

L(d2) = { r (an ān) r̄ | n ∈ N} ×

XML validation main results

Theorem [SV02]

A streaming XML Document can be validated with constant memory

with respect to a DTD iff the DTD is non-recursive.

Theorem [SV02], [GKS07]

The memory required to validate a streaming XML Document t with

respect to a DTD is in

Θ(Depth(t))

Second problem: XML filtering

Let t be a streaming XML document and Q an XPath query.

One scan:

t : r a b b̄ ā a a ā ā . . .

(1-time) ⇑

Multiple scans:

t : r a b b̄ ā a a ā ā . . .

(k-times) ⇑

Indexed streams:

Indexed node: (Begin, End, Level)

a: (2, 5, 2) (6, 9, 2) (7, 8, 3) . . .

(1-time) ⇑

XML filtering main results

Let t be a streaming XML Documents and Q a Core XPath query.

Theorem

One scan [GKS07]:

The memory required to evaluate Q over t is in Θ(Depth(t)).

Multiple scans [GKS07]:

The memory required m to evaluate Q over t with s scans satisfy:

s ·m ∈ Ω(Depth(t))

Indexed streams [SBY08]:

The memory required to evaluate Q

over indexed XML streams of t is in Θ(Depth(t)).

Stream-based processing of
XML documents

Cristian Riveros
M. Benedikt

Oxford University
Thurs 12 Nov 2010

Notation

XML validation

XML filtering

Outline

Some notation

Two fixed alphabets: Σ and Σ̄.

Tags alphabet: ∆ = Σ ∪ Σ̄.

We consider the set of well formed XML documents:

Docs = {t ∈ ∆∗ | t is a well-formed XML document}

We use the following notation:
◮ t = XML document.
◮ d = DTD.
◮ Q = an XPath query.

Notation

XML validation

XML filtering

Outline

Validation with respect to

a DTD (Document Type Definition)

Definition

A DTD d = (r,R) over ∆∗ is a tuple where:

r ∈ Σ is the root label, and

R = {a→ Ra | a ∈ Σ} with Ra a regular expression over Σ.

We define L(d) the set of all XML documents that satisfies d :

L(d) = {t ∈ Docs | t |= d}

Example

r → a∗

a → b∗

b → ǫ

Two possible flavors of XML Validation

Well-formed⇒ t ∈ Docs

Example

r a b b̄ ā a ā r̄ → well-formed

r a b b̄ ā a r̄ → not well-formed

Valid with respect to a DTD d ⇒ t ∈ L(d)

Definition

strong-validation = well-formed + valid

weak-validation = valid

A restrictive subset of DTDs: non-recursive DTDs

Let d = (r ,R) be a DTD over Σ.

Definition

We define the implication graph Gd = (V ,E) of d where:

V = Σ is the set of nodes, and

(a, b) ∈ E if b occurs in Ra for a→ Ra a rule in R.

Example

d :
r → a∗

a → a | ǫ
Gd : r a

d is non-recursive iff Gd is acyclic.

Non-recursive DTDs characterize strong-validation

Theorem [SV02]

A streaming XML Document can be strongly validated with

constant memory with respect to a DTD iff the DTD is non-recursive.

Proof idea.

(⇒) By pumping argument.

(⇐)

For each b→ Rb construct the automaton Ab such that:

L(Ab) = L(b′ · Rb · b̄
′
)

Construct A0 = Ar , . . . ,Ai , inductively.

Since d is non recursive, this process is sure to terminate.

Weak-validation

Definition

d can be weakly validated with constant memory if there exists some

regular language R such that:

L(d) = Docs ∩ L(R)

Example

d :
r → a∗

a → a | ǫ

L(d) = Docs ∩ L(r a∗ā∗ r̄)

Not all XML documents can be weakly validated

with constant memory

Example

d2 :

r → a · b · a

a → a | ǫ

b → ǫ

L(d2) = { r (an ān) b b̄ (am ām) r̄ | n,m ∈ N}

d2 cannot be weakly validated with constant memory.

Weak-validation with constant memory

is an open problem

A characterization for fully recursive DTDs was proved in [SV02].

fully recursive DTD (DTD

Progress has been made in [SS07].

A general characterization for weak-validation

with constant memory is still open.

Formal memory model

Let s : ∆∗ → N (scan) and m : ∆∗ → N (memory).

Definition

A language L ⊆ ∆∗ is in the class ST(s,m), or L ∈ ST(s,m), if there

exists a streaming algorithm that decides L such that for every

w ∈ ∆∗:

the number of scans is less than s(w) , and

the memory used is in O(m(w)).

Example

For a non-recursive DTD d :

L(d) ∈ ST(1, 1)

The memory required to validate a DTD

is in Θ(Depth(t))

Let Depth(t) be the document depth of t .

Theorem [SV02, GKS07]

For every DTD d :

L(d) ∈ ST(1,Depth)

There exists a DTD d , such that for every m ∈ o(Depth(t)):

L(d) /∈ ST(1,m)

Proof: L(d) ∈ ST(1,Depth)

Proof idea (Upper bound)

Let k be a stack and t an XML document.

For each a→ Ra, let Aa = (Qa,Σ, δa, ia,Fa) be a FSA.

if t.NextTag = r then
k .push([r, ir])

else
return false

end if

for g ← t.NextTag do
[b, q]→ k .pop

if g ∈ Σ then
k .push([b, δb(q, a)])

k .push([a, ia])

else if q /∈ Fb then
return false

end if
end for
return true

Notation

XML validation

XML filtering

Outline

We consider (Core) XPath as the query language

Example

a

a a

b c b

Q1 = /descendant :: a[child :: b]/child :: c

= //a[b]/c

Q2 = /descendant :: a[descendant :: c]

= //a[//c]

XML filtering definition

We define a boolean XPath query QB :

QB(t) = 1 iff Q(t) 6= ∅

Definition

Given a boolean XPath query Q, XML filtering is the problem to

evaluate Q(t).

L(Q) = {t ∈ Docs | Q(t) = 1}

We only need to find one node that satisfies Q.

The memory required to evaluate an XPath Query

is in Θ(Depth(t))

Theorem [GKS07]

For every XPath query Q:

L(Q) ∈ ST(1,Depth)

There exists an XPath query Q, such that for every

m ∈ o(Depth(t)):

L(Q) /∈ ST(1,m)

Proof idea (Upper bound)

Every Core XPath query is equivalent to a unary MSO query.

Every MSO query is recognizable by a unranked tree

automaton.

Use a stack based algorithm.

XML filtering with multiple scans

Theorem [GKS07]

There exists an XPath query Q such that for every functions s and m:

L(Q) /∈ ST(s,m) if s(t) ·m(t) ∈ o(Depth(t))

Proof idea.

We use communication complexity.

Communication complexity strategy

Proof idea.

By contradiction, suppose that L(Q) ∈ ST(s,m) for every Q.

Let N = {1, . . . , n} and F : 2N × 2N → {0, 1} such that:

com-complex(F) = Ω(n).

We define QF and txy with Depth(txy) ∈ Θ(n) such that:

QF (txy) = 1 iff F(x , y) = 1

txy =

x (Alice)
︷ ︸︸ ︷

r a b b̄ · · · a ā b

y (Bob)
︷ ︸︸ ︷

b̄ a ā · · · b b̄ ā r̄

com-complex(F) ≤ s(txy) ·m(txy) ∈ o(n) ⇒⇐

Proof idea of XML filtering lower bound

Let FNonDisj : 2N × 2N → {0, 1} such that

FNonDisj(X ,Y) = 1⇔ X ∩ Y 6= ∅

Lemma

com-complex(FNonDisj) ∈ Ω(n)

Let {xi}i≤n and {yi}i≤n be boolean variables such that:

xi = 1 → i ∈ X

yi = 1 → i ∈ Y

Given X ,Y ⊆ {1, . . . , n}, we define txy .

Proof idea of XML filtering lower bound

We define:

QNonDisj = //center [right/1]/left/1

Notice that:

QNonDisj(txy) = 1 iff FNonDisj(x , y) = 1

Thus, if s(txy) ·m(txy) ∈ o(Depth(txy)) then:

com-complex(FNonDisj) ∈ o(n) ⇒⇐

More comments about XML filtering

Theorem [BYFJ07]

For every Redundancy-free XPath query Q and for every function

m ∈ o(log(Depth(t))):

L(Q) /∈ ST(1,m)

A Redundancy-free XPath query is:

star-restricted,

conjunctive,

univariate,

leaf-only-value-restricted, and

strongly subsumption-free.

Indexed XML streams

One stream for each label.

Index for each node:

Index = (Begin,End , Level)

Example

left = (2, 4, 2) (6, 8, 3) (10, 12, 4) . . .

center = (1, 8n, 1) (5, 8n − 4, 2) (9, 8n − 8, 3) . . .

right = (4n + 1, 4n + 3, n + 1) (4n + 5, 4n + 7, n) . . .

Motivation:

create an index over the XML document in order to reduce the

cost of query evaluation.

For indexed XML streams,

Ω(Depth(t)) memory is still required

Theorem [SBY08]

There is an XPath query Q such that every XML filtering algorithm

over multiple indexed XML streams of t needs Ω(Depth(t)) of

memory.

Proof idea.

Same principles of communication complexity.

Other communication model is needed.
◮ Token-based mesh communication (TMC)

Proof idea of XML filtering lower bound

for indexed XML streams

Let FR : {0, 1}n × {0, 1}n → {0, 1}:

FR(x , y) = 1 iff xi = (yR)i = 1 for some i

Where yR is the reverse of y .

Lemma

FR cannot be computed by a deterministic algorithm that performs one

pass over each stream and that uses less than n − log(n + 1)− 3.

Proof idea of XML filtering lower bound

for indexed XML streams

For x , y ∈ {0, 1}n, let ui ∈ {a, c} and vi ∈ {b, c}:

ui = a iff xi = 1

vi = b iff yi = 1

Define an indexed XML document txy and query QR :

QR = //a/b

Notice that:

QR(txy) = 1 iff FR(x , y) = 1

Conclusions

Strongly validation with constant memory is only possible for

non-recursive DTDs.

A characterization for weak-validation with constant memory is

an open problem.

The memory needed for streaming XML validation and filtering is

in Θ(Depth(t)).

Bibliography

◮ Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski.
On the memory requirements of xpath evaluation over xml streams.
J. Comput. Syst. Sci., 73(3):391–441, 2007.

◮ Martin Grohe, Christoph Koch, and Nicole Schweikardt.
Tight lower bounds for query processing on streaming and external memory
data.
Theor. Comput. Sci., 380(1-2):199–217, 2007.

◮ Mirit Shalem and Ziv Bar-Yossef.
The space complexity of processing xml twig queries over indexed
documents.
In ICDE, pages 824–832, 2008.

◮ Luc Segoufin and Cristina Sirangelo.
Constant-memory validation of streaming xml documents against dtds.
In ICDT, pages 299–313, 2007.

◮ Luc Segoufin and Victor Vianu.
Validating streaming xml documents.
In PODS, pages 53–64, 2002.

	Notation
	XML validation
	XML filtering

