XML Documents

e e Document object model (DOM)

® © ®

In this talk, we are interested on streaming XML documents.

<a><a><a><c></c> ...
a a b b a ac c b...

Two main questions

XML Validation with respect to a DTD:

at
at |b™|e

oo =
L1l

™

How much memory do we require to validate a streaming XML
Document with respect to a DTD?

XML Filtering for XPath queries:

/descendant::a[child::b]/child::c

How much memory do we require to evaluate an XPath query over
a streaming XML Document?

First problem: XML validation

Example

— a’

d: a — b*

b — ¢
L(d1)=r (a (b b)* &) T V

ds - r — a

a — ale

Ld)={r (@ a) T [neN} x

XML validation main results

Theorem [SV02]
A streaming XML Document can be validated with constant memory
with respect to a DTD iff the DTD is non-recursive.

Theorem [SV02], [GKSO07]
The memory required to validate a streaming XML Document t with

respectto a DTD is in
O(Depth(t))

Second problem: XML filtering

Lett be a XML document and Q an XPath query.
One scan:
ttrabbaaaaa
(1-time) 1
Multiple scans:
ttrabbaaaaa

(k-times) 1t
Indexed streams:

Indexed node: (Begin, End, Level)

a (2,5,2) (6,9,2) (7,8,3) ...
(2-time) i

XML filtering main results

Let t be a streaming XML Documents and Q a Core XPath query.

Theorem
One scan [GKSO07]:

The memory required to evaluate Q over t is in ©(Depth(t)).

Multiple scans [GKSO07]:

The memory required m to evaluate Q over t with s scans satisfy:

s -m € Q(Depth(t))

Indexed streams [SBYO08]:

The memory required to evaluate Q
over indexed XML streams of t is in ©(Depth(t)).

Stream-based processing of
XML documents

Cristian Riveros

Oxford University

OQutline

Notation

Some notation

Two fixed alphabets: ¥ and ¥.
Tags alphabet: A =Y U L.
We consider the set of well formed XML documents:

Docs = {t € A" | t is a well-formed XML document}

We use the following notation:
t = XML document.
d = DTD.
Q = an XPath query.

OQutline

XML validation

Validation with respect to

a DTD (Document Type Definition)
Definition
ADTDd = (r,R) over A" is a tuple where:

r € X is the root label, and

R = {a — Ra | a € X} with R, a regular expression over X.

We define £(d) the set of all XML documents that satisfies d:

L(d)={teDocs|t}=d}

Example

T o =
111
o T o

Two possible flavors of XML Validation

Well-formed = t € Docs

Example

rabbaaar — well-formed
a — not well-formed

Valid with respecttoa DTD d =t € £(d)

Definition
strong-validation = well-formed + valid

weak-validation = valid

A restrictive subset of DTDs: non-recursive DTDs

Letd = (r,R) be a DTD over X.
Definition
We define the implication graph Gq = (V, E) of d where:

V = ¥ is the set of nodes, and

(a,b) € E if b occurs in R, for a — Ra arule in R.

Example

.
d: Gy :
a — ale ¢ © @0

d is non-recursive iff G4 is acyclic.

Non-recursive DTDs characterize strong-validation

Theorem [SV02]

A streaming XML Document can be strongly validated with
with respect to a DTD iff the DTD is non-recursive.

Proof idea.
(=) By pumping argument.
(<)

For each b — Ry, construct the automaton .Ab such that:

[’(‘Ab) = [,(b/ ‘Rp - 6,)

Construct Ao = A, ..., A, inductively.

Since d is non recursive, this process is sure to terminate. O

Weak-validation

Definition
d can be with constant memory if there exists some
regular language R such that:

L(d) = Docs N L(R)

Example

r — a*
a — ale

L(d) =Docs N L(ra*a™r)

Not all XML documents can be weakly validated
with constant memory

Example

a-b-a
dz: a|
€

oo -
Lodd

L(d)={r (@ @) bb (@ a") r |nmeN}

dz cannot be weakly validated with constant memory.

Weak-validation with constant memory
IS an open problem

A characterization for fully recursive DTDs was proved in [SV02].
fully recursive DTD C DTD
Progress has been made in [SSO07].

A general characterization for weak-validation
with constant memory is still open.

Formal memory model

Lets: A" — N(yand m: A — N().

Definition
Alanguage L C A* is in the class ST(s,m), or L € ST(s, m), if there
exists a streaming algorithm that decides L such that for every

w e A"
the number of is less than s(w) , and
the used is in O(m(w)).
Example

For a non-recursive DTD d:

L(d) € ST(1,1)

The memory required to validate a DTD
is in ©(Depth(t))

Let Depth(t) be the document depth of t.

Theorem [SV02, GKS07]
For every DTD d:

L(d) € ST(1, Depth)

There exists a DTD d, such that for every m € o(Depth(t)):

L(d) ¢ ST(1,m)

Proof: £(d) € ST(1, Depth)

Proof idea (Upper bound)
Let k be a stack and t an XML document.

For each a — Rg, let Ag = (Qa, X, da, ia, Fa) be a FSA.

if t.NextTag = r then for g < t.NextTag do
k.push([r, ir]) [b,q] — k.pop
else if g € X then
return false k.push([b, d,(a, a)])
end if k.push([a, ia])

elseif q ¢ Fp then
return false
end if
end for
return true

OQutline

XML filtering

We consider (Core) XPath as the query language

Example
(@)
@ ()
® © ®
Q1 /descendant :: afchild :: b]/child :: ¢

//alb]/e
/descendant :: a[descendant :: c]

//al/ /]

XML filtering definition

We define a boolean XPath query Qg:

Qa(t) =1 iff Q(t)#0

Definition
Given a boolean XPath query Q, XML filtering is the problem to
evaluate Q(t).

£(Q) = {t € Docs | Q(t) = 1}

We only need to find one node that satisfies Q.

The memory required to evaluate an XPath Query
is in ©(Depth(t))

Theorem [GKSO07]
For every XPath query Q:

L(Q) € ST(1, Depth)

There exists an XPath query Q, such that for every
m € o(Depth(t)):
£(Q) ¢ ST(1,m)

Proof idea (Upper bound)
Every Core XPath query is equivalent to a unary MSO query.

Every MSO query is recognizable by a unranked tree
automaton.

Use a stack based algorithm.

XML filtering with multiple scans

Theorem [GKS07]
There exists an XPath query Q such that for every functions s and m:

L(Q) ¢ ST(s,m) if s(t)-m(t) € o(Depth(t))

Proof idea.
We use communication complexity.

Communication complexity strategy

Proof idea.
By contradiction, suppose that £(Q) € ST(s, m) for every Q.
LetN = {1,...,n}and F : 2" x 2V — {0, 1} such that:

com-complex(F) = Q(n).
We define Qe and ty, with Depth(ty) € ©(n) such that:
Qr(ty) =1 iff F(x,y)=1

X (Alice) y (Bob)

tw=rabb ---aabbaa---bbar

com-complex(F) < s(ty) -m(ty) € o(n) =<«

Proof idea of XML filtering lower bound

Let Fronpis : 2" x 2V — {0, 1} such that
)

FNonDisj(X,Y) =l XNY #£ 0

Lemma

com-complex(Fnonpisj) € 2(n)

Let {xi }i<n and {yi }i<n be boolean variables such that:

xi=1 — ieX
yvi=1 — ieyY

Given X,Y C {1,...,n}, we define ty.

Proof idea of XML filtering lower bound

We define:
Qnonpisy = //center[right /1] /left /1

Notice that:
QNonDisj (txy) =1 iff FNonDisj(X7y) =1

Thus, if sty) - M(txy) € o(Depth(ty)) then:

com-complex(Fnonpisj) € 0(n) =<«

More comments about XML filtering

Theorem [BYFJO7]
For every Redundancy-free XPath query Q and for every function
m € o(log(Depth(t))):

L(Q) ¢ ST(1,m)

A Redundancy-free XPath query is:
star-restricted,
conjunctive,
univariate,
leaf-only-value-restricted, and

strongly subsumption-free.

Indexed XML streams

One stream for each label.

Index for each node:

Index = (Begin, End, Level)
Example

left

(2,4,2) (6,8,3) (10,12,4).. ..
center = (1,8n,1)(5,8n—4,2)(9,8n—38,3)...
right (4n+1,4n+3,n+1) (4n+5,4n+7,n)...

Motivation:

create an index over the XML document in order to reduce the
cost of query evaluation.

For indexed XML streams,
Q(Depth(t)) memory is still required

Theorem [SBY08]

There is an XPath query Q such that every XML filtering algorithm
over multiple indexed XML streams of t needs Q(Depth(t)) of
memory.

Proof idea.

Same principles of communication complexity.
Other communication model is needed.
Token-based mesh communication (TMC)

Proof idea of XML filtering lower bound
for indexed XML streams

Let Fr : {0,1}" x {0,1}" — {0,1}:
Fr(x,y) =1 iff x = (y") =1forsomei

Where yR is the reverse of y.

Lemma

Fr cannot be computed by a deterministic algorithm that performs one
pass over each stream and that uses less than n — log(n + 1) — 3.

Proof idea of XML filtering lower bound
for indexed XML streams

Forx,y € {0,1}", letu; € {a,c} and v; € {b,c}:

U =a iff X =1

vi=b iff yi=1

Define an indexed XML document tyy, and query Qg:
Qr =//a/b
Notice that:

Qr(ty) =1 iff Fr(x,y)=1

Conclusions

Strongly validation with constant memory is only possible for
non-recursive DTDs.

A characterization for weak-validation with constant memory is
an open problem.

The memory needed for streaming XML validation and filtering is
in ©(Depth(t)).

Bibliography

Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski.
On the memory requirements of xpath evaluation over xml streams.
J. Comput. Syst. Sci., 73(3):391-441, 2007.

Martin Grohe, Christoph Koch, and Nicole Schweikardt.

Tight lower bounds for query processing on streaming and external memory
data.

Theor. Comput. Sci., 380(1-2):199-217, 2007.

Mirit Shalem and Ziv Bar-Yossef.

The space complexity of processing xml twig queries over indexed
documents.

In ICDE, pages 824-832, 2008.

Luc Segoufin and Cristina Sirangelo.
Constant-memory validation of streaming xml documents against dtds.
In ICDT, pages 299-313, 2007.

Luc Segoufin and Victor Vianu.
Validating streaming xml documents.
In PODS, pages 53-64, 2002.

	Notation
	XML validation
	XML filtering

