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Departamento de Ciencia de la Computación

Pontificia Universidad Católica de Chile
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How do we recover exchanged data?

What is a good inverse mapping?
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Inverting Schema Mappings

Research questions:

◮ What is a good semantics for inverting schema mappings?

◮ How can we test invertibility of schema mappings?

◮ Can we compute an inverse?

◮ What is the language needed to express an inverse?
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Preliminaries

A mapping M from S to T is a set of pairs (I , J) s.t.:

◮ I is an instance of S (source schema), and

◮ J is an instance of T (target schema)

Recall that SolM(I ) = {J | (I , J) ∈ M}.

Mappings usually defined in terms of a set Σ of formulas:

◮ M = {(I , J) | (I , J) |= Σ}

We assume that:

◮ source instances contain only constant values

◮ target instances may contain null values.

(we drop this assumption at the end of this talk)



How to define the inverse of a mapping?

Ron Fagin (PODS’06)

“A mapping composed with its inverse should equal the identity”

We know how to compose, but what is a natural identity?

◮ Let S = {R ,S , . . .}, and Ŝ = {R̂, Ŝ , . . .} a copy of S.

◮ Let Id be the mapping from S to Ŝ specified by

ΣId = { R(x̄) → R̂(x̄) | R ∈ S} (copying setting)

◮ Id is a very natural identity when one focuses on st-tgds.
Id is not exactly the identity for binary relations:

Id = {(I , K̂ ) ∈ S × Ŝ | I ⊆ K}.



Fagin-inverse (Fagin, PODS’06)

Definition (F06)

Let M be a mapping from S to T, and M′ from T to Ŝ.
M′ is a Fagin-inverse of M if

M◦M′ = Id

Example

M: R(x , y) → T (x , y)

M′: T (x , y) → R̂(x , y)

M◦M′: R(x , y) → R̂(x , y)

M′ is a Fagin-inverse of M.



Fagin-inverse: Examples

Example

M: R(x , y) → T (x , x , y)

M1: T (x , x , y) → R̂(x , y)

M2: T (x , u, y) → R̂(x , y)

M3: T (u, x , y) → R̂(x , y)

M◦M1: R(x , y) → R̂(x , y)

M◦M2: R(x , y) → R̂(x , y)

M◦M3: R(x , y) → R̂(x , y)

They are all inverses of M.



Fagin-inverse: More examples

Example

M: R(x) → T (x)
R(x) → S(x)
P(x) → T (x)
P(x) → U(x)

M′: S(x) → R̂(x)

U(x) → P̂(x)

M′ is a Fagin-inverse of M.



Fagin-inverse: More examples

Example

M: R(x) → T (x)
R(x) → S(x)
P(x) → T (x)
P(x) → U(x)

M′: T (x) → R̂(x)

U(x) → P̂(x)

M◦M′: R(x) → R̂(x)

P(x) → R̂(x)

P(x) → P̂(x)

M′ is not a Fagin-inverse of M.



Fagin-inverse: More examples

Example

M: R(x , y) → T (x , y)
P(x) → T (x , x) ∧ S(x)

R(x , x) → U(x)

M′: T (x , y) ∧ x 6= y → R̂(x , y)

U(x) → R̂(x , x)

S(x) → P̂(x)

M′ is a Fagin-inverse of M.



Several st-tgds mappings do not have Fagin-inverses.

Example

M1: R(x , y) → S(x)

M2: R(x , y) → S(x) ∧ T (y)

M3: R(x) → S(x)
P(x) → S(x)

Do they have Fagin-inverse? intuitively, they do not.
How do we formally prove that a mapping is (not) Fagin-invertible?



The unique-solutions property

Definition (F06)

M has the unique-solutions property if for every I1 and I2

SolM(I1) = SolM(I2) implies I1 = I2.

Theorem (F06)

Let M be specified by st-tgds. If M is Fagin-invertible then M
has the unique-solutions property.

We have a very simple necessary condition!



Using the unique-solutions property

Example

M1: R(x , y) → S(x)

M2: R(x , y) → S(x) ∧ T (y)

M3: R(x) → S(x)
P(x) → S(x)

have no Fagin-inverse.

They do not satisfy the unique-solutions property.

◮ M1: I1 = {R(1, 2)}, I2 = {R(1, 3)}.

◮ M2: I1 = {R(1, 2),R(3, 4)}, I2 = {R(1, 4),R(3, 2)}.

◮ M3: I1 = {R(1)}, I2 = {P(1)}.

Unfortunately, the unique-solutions property is not sufficient.



How can we check Fagin-invertibility?

Definition (Fagin et al., PODS’07)

M has the subset property if for every I1 and I2

SolM(I1) ⊆ SolM(I2) implies I2 ⊆ I1.

Theorem (FKPT07)

Let M be specified by st-tgds. M is Fagin-invertible if and only if
M has the subset property.



What can we do if a Fagin-inverse does not exist?

Example

M1: R(x , y) → S(x)
M2: R(x , y) → S(x) ∧ T (y)
M3: R(x) ∧ P(y) → U(x , y)

They are not Fagin-invertible, but
we still can find good reverse mappings

Example

M′
2: S(x) → ∃u R(x , u)

T (y) → ∃v R(v , y)

Two main proposals for relaxed notions of inverse of mappings:

◮ Fagin et al., PODS’07: Quasi-inverse

◮ Arenas et al., PODS’08: Maximum-recovery
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Quasi-inverses of schema mappings

Fagin et al. (FKPT07)

“When inverting mappings, do not differentiate instances
that has the same space of solutions”

Given a mapping M define the equivalence relation:

I1 ∼M I2 ⇐⇒ SolM(I1) = SolM(I2)

Informaly:

M′ is a quasi-inverse of M if the equation

M◦M′ = Id

holds modulo the equivalence relation ∼M.



Quasi-inverses of schema mappings

Definition

Let D be a binary relation on instances of a schema S, and M a
mapping with source schema S. Define D[∼M] as

D[∼M] = {(I , J) | exists K and L such that
I ∼M K , J ∼M L, and (K ,L) ∈ D }

From now on, we do not differentiate between S and Ŝ,
thus we redefine Id as

Id = {(I , J) | I and J are instances of S and I ⊆ J}

Definition (FKPT07)

M′ is a quasi-inverse of M if

(M◦M′)[∼M] = Id[∼M]



Non Fagin-invertible mappings can have quasi-inverses

Example

M: R(x , y) → S(x)

M′: S(x) → ∃u R(x , u)

M′ is a quasi-inverse of M.

Consider I1 = {R(1, 2)} and I2 = {R(1, 3)}

◮ (I1, I2) ∈ M ◦M′,

◮ (I1, I2) /∈ Id, thus M′ is not a Fagin-inverse of M,

◮ (I1, I2) ∈ Id[∼M], since I1 ∼M I2 and (I1, I1) ∈ Id.



Non Fagin-invertible mappings can have quasi-inverses

Example

M: R(x) → S(x)
P(x) → S(x)

M1: S(x) → R(x) ∨ P(x)

M′ is a quasi-inverse of M.

Consider I1 = {R(1)} and I2 = {P(1)}

◮ (I1, I2) ∈ M ◦M′,

◮ (I1, I2) ∈ Id[∼M], since I1 ∼M I2 and (I1, I1) ∈ Id.



Necessary and sufficient condition for quasi-inverses

(FKPT07) define the ∼M-subset property, as a relaxation of the
subset property.

Theorem (FKPT07)

Let M be specified by st-tgds. M is quasi-invertible if and only if
M has the ∼M-subset property.

If M is Fagin-invertible, then ∼M coincides with =, thus:

Theorem (FKPT07)

If M is Fagin-invertible, then

quasi-inverses and Fagin-inverses coincide.



Not every st-tgd mapping is quasi-invertible

Example

M: E (x , z) ∧ E (z, y) → F (x , y) ∧ M(z)

Does not satisfy the ∼M-subset property ⇒ is not quasi-invertible.

But we have a natural reverse mapping in this case:

M′: F (x , y) → ∃u E (x , u) ∧ E (u, y)
M(z) → ∃v∃w E (v , z) ∧ E (z,w)

◮ This was the main motivation of Arenas et al. (APR08) to
propose a new notion of inverse.
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Recovery: specifies how to recover sound information.

Idea 1: (Arenas et al., PODS’08)

◮ data may be lost in the exchange through M.

◮ we want an M′ that at least recovers sound data w.r.t. M.

M′ is called a recovery of M.

Example

Emp(name, lives in,works in) Shuttle(name, destination)

M: Emp(x , y , z) ∧ y 6= z −→ Shuttle(x , z)

M1: Shuttle(x , z) −→ ∃U∃V Emp(x ,U,V ) X

M2: Shuttle(x , z) −→ ∃U Emp(x ,U, z) X
M3: Shuttle(x , z) −→ ∃V Emp(x , z,V ) ×



Maximum recovery, the most informative recovery

Can we compare alternative recoveries?

Example

M: Emp(x , y , z) ∧ y 6= z −→ Shuttle(x , z)

M1: Shuttle(x , z) −→ ∃U∃V Emp(x ,U,V )
M2: Shuttle(x , z) −→ ∃U Emp(x ,U, z)
M4: Shuttle(x , z) −→ ∃U Emp(x ,U, z) ∧ U 6= z

M2 is better than M1

M4 is better than M2 and M1

Idea 2: (APR08)

◮ Choose a recovery M′ of M that is better than every other.

M′ is a maximum recovery of M.



Recovery: formalization

◮ Let Id be the identity over a schema S, that is

Id = {(I , I ) | I is an instance of S}

◮ Notice the difference between Id and Id.

Definition (APR08)

M′ is a recovery of M iff Id ⊆ M◦M′

Intuitively: M′ is a recovery of M if for every instance I
I is a possible solution for itself under M◦M′.



Maximum recovery: formalization

Being a recovery is just a sound condition.

Definition (APR08)

M′ is a maximum recovery of M iff

◮ M′ is a recovery of M, and

◮ for every possible recovery M′′ of M we have

Id ⊆ M◦M′ ⊆ M ◦M′′

Intuitively:

We want M◦M′ to be
as close as possible to the identity mapping.



Characterizing maximum recoveries

How can we check that M′ is a maximum recovery of M?
The definition implies a quantification over all possible recoveries!

Theorem (APR08)

M′ is a maximum recovery of M iff

M◦M′ ◦M = M

Example

M: E (x , z) ∧ E (z, y) → F (x , y) ∧ M(z)

M′: F (x , y) → ∃u E (x , u) ∧ E (u, y)
M(z) → ∃v∃w E (v , z) ∧ E (z,w)

it can be checked that M◦M′ ◦M = M,
thus M′ is a maximum recovery of M.



How can we check if a mapping has a maximum recovery?

Definition

J is a witness solution for I under M if for every other instance I ′,

J ∈ SolM(I ′) =⇒ SolM(I ) ⊆ SolM(I ′).

M
I

I ′

J

Theorem

M has a maximum recovery iff
every source instance has a witness solution.



Every st-tgd mapping has a maximum recovery

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

Proof idea

For st-tgds, every universal solution is a witness solution.



Relationship with previous notions

Theorem (APR08)

If M is specified by st-tgds and is Fagin-invertible then

M′ is a Fagin-inverse of M iff
M′ is a maximum recovery of M.

For quasi-inverses:

◮ there are quasi-inverses that are not recoveries.
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How do we compute an inverse? we need some tools first

Source rewriting

Consider a mapping M from S to T, and a target query QT.

◮ QS is a source rewriting of QT if

certainM(QT, I ) = QS(I )

Well-known fact:

For mappings specified by st-tgds and target queries in CQ, a
source rewriting always exists and can be expressed in UCQ=.

M: P(x) → T (x , x)
R(x , y) → T (x , y)

QT(x , y) : T (x , y)
QS(x , y) : (P(x) ∧ x = y) ∨ R(x , y)



An algorithm for computing inverses

Algorithm

Let M be a mapping from S to T specified by a set Σ of st-tgds:

◮ Let Σ′ = ∅.
◮ For every dependency ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , z̄) in Σ:

- Compute a source rewriting α(x̄) of ∃z̄ ψ(x̄ , z̄).
- Add to Σ′ the dependency

ψ(x̄ , z̄) ∧ Const(x̄) → α(x̄).

◮ Return the mapping M′ from T to S specified by Σ′.

Theorem (APR08)

The algorithm produces a maximum recovery of M.
It produces Fagin(quasi)-inverses if M is Fagin(quasi)-invertible.



What is the language needed to specify inverses?

The output of the algorithm uses:

◮ UCQ= in the right-hand side of dependencies

◮ predicate Const(·) in the left-hand side

Are these features strictly necessary?

Theorem (FKPT07)

Predicate Const(·) is necessary for Fagin-inverses of st-tgds:

Example

M: P(x) → ∃y T (y) ∧ S(x)
R(x) → T (x)

M′: T (x) ∧ Const(x) → R(x)
S(x) → P(x)

M does not have a Fagin-inverse without Const(·).



What is the language needed to specify inverses?

Theorem (FKPT07, APR08)

Disjunctions in the right-hand side are necessary for quasi-inverses
and maximum recoveries.

For Fagin-inverses we can do better:

Theorem (FKPT07)

Fagin-inverses do not need disjunctions in the right-hand side.

Proof idea

(FKPT07) provide an algorithm that produces a Fagin-inverse
specified by tgds + Const(·) + inequalities in the left-hand side.



The language of inverses is not suitable for data exchange

The language for quasi-inverses and maximum recoveries is not
suitable for data exchange.

◮ how can we chase with disjunctions to materialize an instance?

We would like a natural notion of inverse for st-tgds
that can be expressed in a language with good properties.

Fagin-inverses have this last property, but rarely exists...
Do we have an alternative?
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Relaxation w.r.t. a query language, Arenas et al. VLDB’09

Let L be a query language

Definition (APRR09)

M′ is an L-recovery of M iff

certainM◦M′(Q, I ) ⊆ Q(I )

for every source query Q ∈ L and instance I .

Definition (APRR09)

M′ is an L-maximum recovery of M iff
for every L-recovery M′′ of M we have

certainM◦M′′(Q, I ) ⊆ certainM◦M′(Q, I ) ⊆ Q(I )

for every source query Q ∈ L and instance I .



CQ-maximum recovery

Example
M: P(x , y) → T (x , y)

R(x) → T (x , x)

M′: T (x , y) ∧ x 6= y → P(x , y)

M′ is a CQ-maximum recovery of M.



CQ-maximum recoveries has good properties

Theorem (APRR09)

Every mapping specified by st-tgds + 6=, has a CQ-maximum
recovery specified by ts-tgds + 6= + Const(·).

Proof idea

Eliminate the disjunctions in maximum recoveries:

◮ (APRR09) introduce the notion of product of queries.
◮ Then replace (ψ1(x̄) ∨ ψ2(x̄)) by (ψ1(x̄)×ψ2(x̄)).

◮ “Sort of” closure property

◮ The language of CQ is maximal for the above result.
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What if source instances contain null values?

Do the technical results still hold whit nulls in the source?

◮ For st-tgds, the existence of max-recoveries is guaranteed
since every universal solution is a witness solution.

◮ If we do not have a clear distinction between constant and
nulls, universal solutions are no longer witness solutions.

Example

M: P(x) → ∃y T (y)
R(x) → T (x)

For I = {P(1)} the instance J = {T (n)} is no longer a witness solution:

◮ J is a solution also for I ′ = {R(n)}, but SolM(I ) 6⊆ SolM(I ′).

◮ M does not have a maximum recovery when nulls are considered in
the source.



Extended mappings

Fagin et al., PODS’09 propose an alternative way to manage
mappings with nulls in source instances.

Fagin et al. (FKPT09)

“Do not use nulls in source as constants, but as replaceable values”

Write I1 → I2 to state that there is a homomorphism from I1 to I2.

(FKPT09): Given a mapping M with nulls in source and target,
define the extended mapping e(M) as

e(M) = {(I , J) | there exists I ′ and J ′ such that

I → I ′, (I ′, J ′) ∈ M, and J ′ → J}



Maximum extended recovery

Definition (FKPT09)

◮ M′ is an extended-recovery of M if

Id ⊆ e(M) ◦ e(M′)

◮ M′ is a maximum extended-recovery of M if for every
extended recovery M′′ of M we have

Id ⊆ e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′)

Theorem (FKPT09)

Every mapping specified by st-tgds considering nulls in source
instances has a maximum extended recovery.



Maximum extended recovery

Example

M: P(x , y) → ∃z S(x , z) ∧ S(z, y)

M′: S(x , z) ∧ S(z, y) → P(x , y)

M′ is a maximum extended recovery of M,
but not a maximum recovery of M



The language of maximum extended recoveries

Theorem (FKPT09)

Mappings specified by full st-tgds always have a maximum
extended recovery specified by tgds + 6= + disjunctions

Proof idea

(FKPT09) show that the algorithm in (FKTP07) for computing
quasi-inverses of full st-tgds also works in this case.

It is an open problem to identify the exact language needed to
express maximum extended recoveries of (general) st-tgds.



Concluding Remarks

◮ The research on inverting mappings has uncovered an
interesting theory

◮ Challenging theoretical problems
◮ Complexity and decidability
◮ Algebraic properties, interplay with composition
◮ Is there a language closed under inversion?
◮ What about different data formats? Inverse for

XML-mappings?

◮ Several issues remain, most importantly practical issues

Ron Fagin PODS’06

“The first step in a fascinating journey!”
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