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Background

Query:
aW, XY, Z) — RW,X,Y' Z
Constraint

Y ={R(W,X,Y,Z),RW'",X,Y' Z

Tableau representation
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Y= R(W, X,Y', Z")}
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Background

Applying the constrains on query g1, we obtain:
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Background

» Query Equivalence
» Query Optimization

» Logical implication

Nowadays:

» Data Exchange
» Data Repairs

» Peer Data Exchange
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Basic Notions - Dependencies

Embedded dependencies covers most of the practical constraints
needed.

VZ o(T) — 3y (T, 7)
©, ¥ represents conjunctions of atoms
tgd = 1) doesn't contain equality atoms*
egd = 1 contains only equality atoms

full tgd = 3 is the empty vector

vV v v Y

LAV = ¢ contains exactly one predicate

* - during this talk, if not mentioned otherwise, we consider only tgd's.
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Basic Notions - Instances

v

R ={Ri,Ry,...,R,} - set of relational symbols
» Const - countable set of constants

Null - countable set of labeled nulls

v

» [ instance over R, RJI C (Const U Null)@rity(#;)

v

I ground instance over R, R][- C (Const)a”ty(Rj)

v

h: dom(I) — dom(J), such that Ve € Const, h(c) = ¢ and
h(I) C J is called homomorphism from I to J,
denoted I — J
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Chasing tgd's

o: VT o(z) — Iy (T, 1)

VX @(X) = 3y y(X.y)
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Chasing tgd's

o: VT o(z) — Iy (T, 1)

Jh
VX o(X) = Iy y(Xy)
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Chasing tgd's

o: VT o(z) — Iy (T, 1)

“~.odh*
S =G
Jh

VX o(X) = Iy y(X,y)
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Chasing tgd's
o: VT o(z) — Iy (T, 1)
T ' RY)
W

3h
VX o(X) = 3y y(X.y)

8/41



Chasing tgd's
o: VT o(z) — Iy (T, 1)
T ' RY)
) e

3h
VX o(X) = 3y y(X.y)
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Example Chasing tgd's

Emp2
(Name[Position)
[Ben_[Analyst | Departments
Llohn [Admin | (DID[DName[MID
O. YN,A,P,D Emp2(N,P) — 3JE,I Employees(E,N,I).
2 P pleyees(E.N.D) Employees
Emp1
(Wame[Address [Phone [Dep
[John [345 Avenue[123-4567 [HR
|Adam [5th Street [145-2344[CS |
EmpAdd
(EID|Address |Phone )
0'1 YN, AP,D Empl(N,A,P,D) — JI,M,E Departments(I,D,M),Employees(E,N,I), EmpAdd(E,A,P).
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Example Chasing tgd's

Emp2
(Name[Position)
[Ben_[Analyst ) Departments
(X JHR T X |
G YN,A,P,D E N,P) — JEI Empl NI,
2 A mp2(N,P) mployees(E,N,I) Employoes
Emp1

(Wame[Address [Phone [Dep

[Johny [345 Avenue[123-45§7 [ WR
[Adam5th Street | [145-2344 [CS

EmpAdd
(EID|Address |Phone )

[ Xs [345 Avenue[123-4567]
Y v

\h \ LIL\.
0'1 VN,A,P,D Emp1(N,A,P,D) — JI,M,E Deparlmantl(I,D,M).,Ernployeel(E,N,I),EmpAdd(lﬂA,f’).
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Example Chasing tgd's

Emp2
(Name[Position)
[Ben_[Analyst ) Departments
(X JHR T X |
G YN,A,P,D E N,P) — JEI Empl NI,
2 A mp2(N,P) mployees(E,N,I) Employoes
Emp1

(Wame[Address [Phone [Dep

[Johny [345 Avenue[123-45§7 [ WR
|Adam{5th Street | [145-2344[CS |

EmpAdd
(EID|Address |Phone )
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\
\ \

AN \' \..
0'1 VN,A,P,D Emp1(N,A,P,D) — JI,M,E Departments(l,D,M),Employees(E,N,I), EmpAdd(E,A,P).
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Example Chasing tgd's

Gy YN,A,P,D Emp2(N,P) — JE,I Employees(E,N,I).

Emp2
(Name[Position)

(Ben_[Analyst ]
Llohn [Admin |

Emp1

[Hame

Address

Phone

[John

345 Avenue

123-4567

|Ada

Sth Street y

145-2304

0'1 VN,A,P,D Emp1(N,A,P,D) — JI,M,E Departments(

Departments
(DID[DName MID)

Xz
X7

Employees
(EID|EName [DID )
[ % [John El
am ]

EmpAdd
(EID|Address |Phone )

[ X3 [345 Avenue [123-4567|
| Xs_|5th Strept  |145-2344)
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Example Chasing tgd's

Emp2
P it
(Name[Position) Departments
(DIDDName[MID)

[ % [HR Xz
[ % |CS X7

(32 VN,A,P,D Emp2(N,P) JE,I Emplnyces(h,?; L. Employees
\ (EID[EName [DID)

\ X3 [John X

Emp1 \ Yo |Adam |
Dep Bgn X1z

(Name[Address [Phone
[John [345 Avenue[123-4567HR |
|Adam [5th Street [145-2344[CS |

EmpAdd
(EID|Address |Phone )
[ X3 [345 Avenue [123-4567|
| Xs_|5th Street _[145-2344

0'1 VN,A,P,D Emp1(N,A,P,D) — JIL,M,E Departments(I,D,M),Employees(E,N,I), EmpAdd(E,A,P).
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Example Chasing tgd's

Emp2
(Name[Position)
(Ben_JAnalyst )

[Admin ,

Llohn, [Admin

Gy YN, A,P,D Emp2(N,P) — JE,I Employees(E,N,I).

Emp1

(Wame[Address [Phone [Dep
[John [345 Avenue[123-4567 [HR
|Adam [5th Street [145-2344[CS |

Oy

Departments

(DID[DName MID)
[% [HR X2
% ICs Xz

Employees
(EID|EName [DID )
X3_[John Xa
[Xe{Adam "X
[ Xr{Ben X2

EmpAdd
(EID|Address |Phone )
[ X3 [345 Avenue [123-4567|
| Xs_|5th Street _[145-2344

VN,A,P,D Emp1(N,A,P,D) — JIL,M,E Departments(I,D,M),Employees(E,N,I), EmpAdd(E,A,P).
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Example Chasing tgd's

Emp2
(Name[Position) Depart ts
(Ben [Analyst epartmen
[ % _[HR Xz
% ICs Xz
O. YN,A,P,D Emp2(N,P) — JE,I Employees(E,N,I).
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(EID|EName [DID )
X3 |John *a
Emp1 Xg |Adam | Xs
(Wame[Address [Phone [Dep %44 |Ben X12
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Chase Algorithm

CHASE(/, X))
1 Iy:=1

2 1:=0

3 repeat

4 ALy
5 =1+ 1
6 until I;_{ # I;
7 return I;
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Replacement System

v

A pair (A, =), is a replacement system if A is a set of objects
and = is an antireflexive binary relation over A called the
transformation relation.

» by =* is denoted the reflexive transitive closure of "=".

» an element p € A is called irreducible if p =* ¢ implies p = q.

v

(A, =) is finite if for all p € A there exists n such that
p =" q in at most n steps and ¢ irreducible.

v

(A,=) is finite Church-Rosser if for all p € A if p=* ¢; and
p =" g2 and q1, g2 are irreducible, then ¢; = ¢o.
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Church-Rosser Property (cont.)

Theorem (Sethi)

(A, =) is finite Church-Rosser iff (A,=>) is finite and for any
p € Aifp= q and p = qq, then there exists ¢ € A such that
q1 =" q and q¢3 =" q.

qw\/%

q

> let Z be the set of all instances over schema R and X a set of
tgd's, then (Z, —y) is a replacement system.
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Chase Properties: multiple results

o1 : R(z,y),R(y,z) — T(x,z)
oy Sz)—3IZT(x,2)

» Chasex (1) denotes the set of all irreducible instances.
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Chase Properties: Church-Rosser for full tgd's

» If 3 is a set of full tgd's, then the replacement system
(Z,—x) has the finite Church-Rosser property.
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Chase Properties: nonterminating chase

o : R(z,y)—3IZ Ry, Z2) aR—
b Xi

o, {x/by/X1}

Y
R
ab
b X1
X1 X2

lm {x/X1,y/X2}

R
ab
b X1
X1 X2
X2 X3

!
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Chase properties: Summary

¥ g=r1cy.
there may exist J, J' € Chasex(I) such that J # J'.

the Chase algorithm may not terminate.

vV v v Y

there exist a X and instance I such that it has both a
terminating and a non terminating chase sequence.

¥ set of full tgd's = (Z, —x) is finite.

3} set of full tgd's = the chase has the Church-Rosser
property.

v

v
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Data Exchange, the problem

The data exchange setting (S, T, X, ¥)
> X, - specifies the relationship between S and T
» >, - specifies the constraints that must be satisfied by T

Instance J is a solution for (S, T, X, ;) iff:
» JTUJ ): Est U Et
» Sol(I) is the set of all solution for I
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Universal Solutions

Let I be an instance and (S, T, ¥4, ;) a data exchange settings.

J is a universal solution (Fagin et al. ICDTO03) for I iff
» J e Sol(I)
» VJ € Sol(l) = J—J

Theorem (Fagin et al. ICDTO03)

If J a finite instance from Chases,,us,(I), then J is a universal
solution for I.
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Certain Answers

If Q is a query over T the certain answer on ((S, T, X, %), I) is
defined as:
certain(Q, 1) = Nyeso)Q(J)

It turns out that universal solutions represents a good choice to get
certain answers in data exchange:

Theorem (Fagin et al. ICDT03)
If J is a universal solution for Sol(I) and @ € UCQ then

certain(Q,I) = Q(J) |*

* - by J| we mean the maximum subset of tuples from J that contains only constants.
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Universal Solution in Data Exchange

Consider source instance:

Solutions
Emp :hn
N John | Ada
Ben Universal _-{\P‘y&‘“ SelfMgr
John Mar © @
[Ben [X ] Mgr
A d d d . FJuhn
. John | John
n ependencies: | Se'é"‘gf {Adam| Ben |
. SelfMgr
John
DI Emp(z) — 3Y Mgr(z,Y).
PIM Mgr(xz,x) — Self Mgr(z).
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Universal Solution in Data Exchange

Consider source instance:

Solutions

Emp
Ben
John

And dependencies:

DI Emp(z) — 3Y Mgr(z,Y).
:
DI Mgr(xz,x) — Self Mgr(z). -
@
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Universal Solution in Data Exchange

Consider source instance:

Solutions
Emp
Ben
John Se%”“’
A d d d . . ’%J’uhn
n ependencies: \:::r:“%
SelfMgr
John
Yot Emp(z) — 3Y Mgr(z,Y). Mgr
Bel n
Yy Mgr(z,z) — SelfMgr(z). v
@
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The Core

Consider source instance:

R S
a a
b
And dependencies:
Ya:  R(zy),R(y,2) = T(z,2)
S(x) = 3IY T(z,Y)
pIM 1]
Universal Solution 1 Universal Solution 2
T T
a X a ¢

d C

The core is the smallest universal solution.
The core is unique up to isomorphism.
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No Universal Solution

Consider the instance:

R
a b
And dependencies:
z:st : R(’I’,y) HS(I‘,y)
DI S(z,y) — 3Z S(z, 2).
This gives the following infinite chase sequence:
S
a b
b 7
Zy Zs
Still there exists solutions:
S S
a b a b
b a b b
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Chase termination

Theorem (Deutsch et al. 2008)

Consider an instance I and a set 3 of tgd'’s:

» it is undecidable whether some chase sequences of I with X
terminates;

» it is undecidable whether all chase sequences of I with ¥ terminates.

Theorem (Kolaitis et al. 2006)

There exists a data exchange setting (S, T, X, X;), with the following
properties:

» 3 consists of one full tgd;
» X, consists of one egd, one full tgd and one tgd;

> the existence of solution is undecidable for this setting.

23/41



Chase termination: Weakly Acyclic Dependencies

Dependency Graph:

Departments(did, dname, mgrid) — 3N Employees(mgrid, N, did).
Employees(eid, ename, did) — 3D, M Departments(did, D, M).

Eti

>t is weakly acyclic iff there is no cycle trough an existential edge.

» if a set of tgd's is weakly acyclic all chase sequences terminate.
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Chase Termination: Safe Conditions (Meier et al. 2009)

Let ¥ be a set of tgd's. The set aff(X) defined as: (R, i) € aff(X) iff
» (R, i) contains an existential or

» (R, i) is any position in the head of a dependency with a universal x
that appears only in aff(X).

The propagation graph for ¥ is a directed graph (aff(X), E), with E as in
the dependency graph with both regular and special edges.

3 is said to be safe if (aff(X), E) doesn't contain any cycles going trough
special edges.
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Chase Termination: Stratification

01,02 € X; 01 < 09 iff Example: Instance I:
i R
» 31 instance, and or: Rlz,y) — S(z) R
» [ =09, and o2t S(z) — Rlz,z)
> I LLLN J, and
> J l?é 09.
Definition

» The chase graph for ¥ is a directed graph G(X) = (%, E), where
(0’1,0’2) € FE iff o1 < 09.

> 3 is stratified iff all cycles of G(X) are weakly acyclic.
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Chase Termination: Stratification

01,09 €Y 0y < 0y iff Example: Instance I:
» 3 [ instance, and o1: R(z,y) — S(z) R c
> ] ': o9, and o9 : S(aj) — R(x,x)
>Iﬂ>J,and o1 < 09
> J Fé 9.

Definition

» The chase graph for X is a directed graph G(X) = (X, E), where
(0'1,0'2) € F iff o1 < 09.

> X is stratified iff all cycles of G(X) are weakly acyclic.
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Chase Termination: Stratification

Theorem (Deutsch et al. 08)

For every stratified set of tgd's and for all instances I there exists a
terminating chase sequence.

» the decision problem "is X stratified?” is in coNP.

» the lower bound is open.
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Chase termination: hierarchy

[ weakly
. acyclic
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Chase termination: hierarchy

ﬁstratified

/" weakly N
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Chase termination: hierarchy
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Chase termination: hierarchy

Inductively restricted
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Chase termination: hierarchy

Inductively restricted T[2]
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Chase termination: hierarchy

Inductively restricted T[2]
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Chase termination: hierarchy

Inductively restricted
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Chase termination: examples
» Stratified but not weakly acyclic:
o: E(x,y),E(y,x) — 3Z,W E(x,Z), E(Z,W), E(W,x)
» Safe but not stratified:

g1 ¢ S(ya Z),R(CC,y,Z) — 3IW R(y7 W,I)
o2 : R(x,y,z) — S(z,2)

» Super-weak acyclic but not safe:

op : N(z)—3Y,Z E(z,Y,Z)
o2 E(337y>y)—>N(y)
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Chase termination: rewriting

Can we do better? YES

» Let T be one of the classes weakly-acyclic, stratified,
C-stratified, safe condition or super weakly acyclic tgd's.

» Greco and Spezzano (VLDB 2010) introduced a new rewriting
mapping Adn such that for all ¥ set of tgd's over schema R:

> 2 =R/(R} Adn(%)

> let AdnT the set of tgd’s such that Adn(X) is in class T.

» T C AdnT.
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Chase termination: rewriting

21 .
o1 : N(z)— 3y E(z,vy)
oz S(z), E(z,y) = N(y)
22 .
0/1 : N(z)— Nb(z) gé : Nb(z) — N(z)
oy : S(@) — S%(a) oy Ni(@) - N@)
of :  E(z,y) — E® (z,y) oo+ SP(z) — S(x)
o ¢ NYa) - 3y B (a,y) oy E"(x,y) — B(z,y)
of ¢ S%@), Bz, ) — N'(») oty ¢ BY(a,y) - B(a,y)
of o S%@), BY (2, y) — N () oy Bff(e,y) — B(e,y)
of + Nf(@)— 3y B (a,y)
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Chase flavors: Core Chase

CORE-CHASE(I, X))
1 I() =1

2 1:=0

3 J= UQ”’—’UD D
4 I, = Core(J)
5 if ;=1

6 then return ;

7 else i =17+ 1; goto 3

Theorem (Deutsch et al. 08)

» Core-Chase(I,X) computes the core of the universal solution;

> if there exists a sequence such that Chase(I,X) terminates, then
Core-Chase(I,X) terminates;

> if for (I,X) there exists a universal solution, then Core-Chase(1,X)
terminates;
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Chase flavors: Solution-aware chase

Let ¥ aset of tgd's, K CK, K =%

3h
VX 0(X) = 3y w(X,y)

Theorem (Fuxman et al. 2006)

The length of every solution-aware chase sequence of K’ with ¥ and K
is bounded by p(|K'|).
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Chase flavors: Solution-aware chase

Let ¥ aset of tgd's, K CK, K =%

-3 h*
- h*(x)=h(x)
dh

~

VX @(X) = 3y w(X.y)

Theorem (Fuxman et al. 2006)

The length of every solution-aware chase sequence of K’ with ¥ and K
is bounded by p(|K'|).
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Chase flavors: Solution-aware chase

Let ¥ aset of tgd's, K CK, K =%

“y(h'(Xy)
- ‘~~\n;§=h®
VX o(X) = 3Y W(X,y)

Theorem (Fuxman et al. 2006)

The length of every solution-aware chase sequence of K’ with ¥ and K
is bounded by p(|K'|).
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Chase flavors: Extended core-chase

Consider a disjunctive dependency:

o : VT p(T) — Iy \/ Vi(Z,7)

1<i<n
Extended Chase Step: I oh, {J1,J2, ..., Jp}
e(h(z)) €1

2. —3h’,—3i such that b’ extends h and ;(h'(z,7)) C I

3. Vi(l<i<n)I ik, Ji, where o; : VT ©(Z) — 3y ¥:(Z, 9)
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Chase flavors: Extended core-chase

EXTENDED-CORE-CHASE(I, X set of DED’s)

1 Lg:={I}

2 i:=0

3 for DED o € X, h-applicable

4 do

5 VI; € L; run in parallel
o,h ’

6 I — Kj

7 for each j

8 do

9 K;={}

10 for J € K;

11 do

12 Kj = Kj Ucore(J)

13

14 L1, = Kj

15 remove from L; 1 all M such that 3N € L;11 N — M
16 = i+1;

17 fL; =L;

18 then goto 3

19 return L;
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Chase and Date Exchange, beyond universal solutions
Data exchange settings ({S},{R, T}, Xst, 2¢):

Source instance (I): %

dependencies:

Yt S(z) — 3Y R(z,Y)
PO R(z,z) — T(z)

queries:

qi1(x) «— Ty R(x,y)
@2(z) — 3y (R(z,y) Az #y)VT(z)

» the universal model U = {S(a), R(a, X)}
> certy, (I) =dom(I)Ngi1(U) = {(a)}
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Chase and Date Exchange, beyond universal solutions
Data exchange settings ({S},{R, T}, Xst, 2¢):

Source instance (I): %

dependencies:

Yt S(z) — 3Y R(z,Y)
PO R(z,z) — T(z)

queries:

qi1(x) «— Ty R(x,y)
@2(z) — 3y (R(z,y) Az #y)VT(z)

» the universal model U = {S(a), R(a, X)}
> certg, (1) = dom(I) N g2(U) = {0}
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Chase and Date Exchange, beyond universal solutions

Data exchange settings ({S}, {R}, Xst, X¢):
S

Source instance (I): -

dependencies:
DIP S(z) — 3Y R(z,Y)
pIM R(z,z) — T(x)
query:
@2(v) — Fy (Rx,y) Az #y)VT(z)

> f]:ZStUEtU{m:y\/N(m,y),mzy,N(fUay) _)J-}

» model set for  and X is
U ={{S(a), R(a, X),N(a,X)};{S(a), R(a,a), T(a)}} ;

> certy,(I) = dom(I) N ey q2(J) = {(a)}
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Homomorphisms (cont.)

» h: dom(I) — dom(J), such that Vc € Const h(c) = ¢ and
h(I) C J is called homomorphism from I to J, denoted
I — J. (hom)

» If h is an injection then it is called injective homomorphism.
(ihom)

» If h(I) = J then h is called epimorphism or full
homomorphism. (fhom)

» If h(I) = J and h is also injective then h is called embedding.
(emb)

38/41



Chase and Date Exchange beyond universal solutions

F € {hom, ihom, fhom, emb}
Definition (Deutsch et al. 2008)

A set U of finite instances is an F'-universal model set for s set of instances K if it satisfies the following
conditions:

1
2. UCK;

3

4. —=3U' C U such that U/ —p U.

(YM € K)(3T € U)T —p M;

U is finite;

Theorem (Deutsch et al. 2008)

Let (S, T,Xs¢t, X¢t) be a data exchange setting with ¥ = £ ¢ U 3¢ a set of NDED's. Let U be a F-universal
model set for Solx,(I) and Q a query of arity r over T. If

1.

F = hom and Q € UCQ U Datalog, or

2. F =ihom and Q € MonQ, or
3.
4. F =embandQ € UCQﬁﬁé.

F = fhom and Q € UCQ™, or

then certg, (I) = dom(I)" N () Q(J)
Jeu
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Computing F-Universal model sets

Let (S, T, X4, X;) be a data exchange setting with ¥ = 3, U, a
set of NDED's.

> extend S=SU{R: Re S}U{N};

> change X to 3 by replacing each =R(&) with R(Z) and each
x # y with N(z,y);

» if F' € {ihom,emb} or N appears in 3 extend 3 with:
z=yVN(zy)andz=y N(z,y) —L
> if ' € {fhom,emb} extend ¥ with:

R(z)V R(z) and R(z), R(Z) —L
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