The chase procedure and its applications to data exchange

Adrian Onet

Concordia University Montréal, Québec, Canada

DEIS 2010

The Chase

Chase and Data Exchange

Chase termination

Chase flavors

Chase and Date Exchange, beyond universal solutions

References

Query:

$$q_1(W, X, Y, Z) \leftarrow R(W, X, Y', Z'), R(W', X, Y, Z)$$

Constraint

$$\bowtie [AB, BCD]$$

$$\Sigma = \{ R(W, X, Y, Z), R(W', X, Y', Z') \to R(W, X, Y', Z') \}$$

Tableau representation

$$\begin{array}{cccccc} \Sigma \\ \hline w & x & y & z \\ \hline w' & x & y' & z' \\ \hline w & x & y' & z' \end{array}$$

Applying the constrains on query q_1 , we obtain:

	q	2				
/	Х	y'	z'		a	•
<i>,</i> '	Χ	У	Z			2
,	Х	У	Z		X	<u>y</u>
,	Х	y'	z'	W	Χ	У

$$q_2(W, X, Y, Z) \leftarrow R(W, X, Y, Z)$$

 $q_1 \equiv_{\Sigma} q_2$

- ► Query Equivalence
- Query Optimization
- Logical implication

Nowadays:

- Data Exchange
- Data Repairs
- Peer Data Exchange

Basic Notions - Dependencies

Embedded dependencies covers most of the practical constraints needed.

$$\forall \bar{x} \ \varphi(\bar{x}) \to \exists \bar{y} \ \psi(\bar{x}, \bar{y})$$

 φ , ψ represents conjunctions of atoms

- $tgd = \psi$ doesn't contain equality atoms*
- $\mathit{egd} = \psi$ contains only equality atoms
- full $tgd = \bar{y}$ is the empty vector
- $LAV = \varphi$ contains exactly one predicate

^{* -} during this talk, if not mentioned otherwise, we consider only tgd's.

Basic Notions - Instances

- $ightharpoonup \mathbf{R} = \{R_1, R_2, \dots, R_n\}$ set of relational symbols
- Const countable set of constants
- ▶ Null countable set of labeled nulls
- ▶ I instance over \mathbf{R} , $R_j^I \subset (\mathsf{Const} \cup \mathsf{Null})^{arity(R_j)}$
- ▶ I ground instance over \mathbf{R} , $R_j^I \subset (\mathsf{Const})^{arity(R_j)}$
- ▶ $h: dom(I) \rightarrow dom(J)$, such that $\forall c \in \mathsf{Const}, \ h(c) = c$ and $h(I) \subseteq J$ is called homomorphism from I to J, denoted $I \rightarrow J$

$$\sigma: \ \forall \bar{x} \ \varphi(\bar{x}) \to \exists \bar{y} \ \psi(\bar{x}, \bar{y})$$

$$\forall \overline{x} \; \phi(\overline{x}) \to \exists \overline{y} \; \psi(\overline{x}, \overline{y})$$

$$\sigma: \ \forall \bar{x} \ \varphi(\bar{x}) \to \exists \bar{y} \ \psi(\bar{x}, \bar{y})$$

$$\sigma: \ \forall \bar{x} \ \varphi(\bar{x}) \to \exists \bar{y} \ \psi(\bar{x}, \bar{y})$$

$$\sigma: \ \forall \bar{x} \ \varphi(\bar{x}) \to \exists \bar{y} \ \psi(\bar{x}, \bar{y})$$

$$\sigma: \ \forall \bar{x} \ \varphi(\bar{x}) \to \exists \bar{y} \ \psi(\bar{x}, \bar{y})$$

$$I \xrightarrow{\sigma,h} J$$

Emp2

Name Position

Ben Analyst
John Admin

Departments

(DID|DName MID)

 $\sigma_2 \qquad \forall N,A,P,D \text{ Emp2}(N,P) \longrightarrow \exists E,I \text{ Employees}(E,N,I).$

Employees
(EID|EName|DID)

Emp1

(Name	Address	Phone	Dep
ſ	John	345 Avenue	123-4567	HR
ľ	Adam	5th Street	145-2344	CS

EmpAdd EID|Address |P|

ID Address Phone

Emp2

Name Position

Ben Analyst

John Admin

Departments

| DID| DName | MID | X1 | HR | X2 | X6 | CS | X7 |

 $\sigma_2 \qquad \forall N,A,P,D \text{ Emp2}(N,P) \longrightarrow \exists E,I \text{ Employees}(E,N,I).$

Employees

EID EName DID

X₃ John X₁
X₈ Adam X₆
X₁₁ Ben X₁₂

Emp1

Name	Address	Phone	Dep
John	345 Avenue	123-4567	HR
Adam	5th Street	145-2344	CS

EmpAdd

EID Address Phone

X₃ 345 Avenue 123-4567

X₈ 5th Street 145-2344

Chase Algorithm

```
\begin{array}{ll} \operatorname{Chase}(I,\Sigma) \\ 1 & I_0 := I \\ 2 & i := 0 \\ 3 & \mathbf{repeat} \\ 4 & I_i \xrightarrow{\sigma,h} I_{i+1} \\ 5 & i := i+1 \\ 6 & \mathbf{until} \ I_{i-1} \neq I_i \\ 7 & \mathbf{return} \ I_i \end{array}
```

Replacement System

- ▶ A pair (A, \Rightarrow) , is a replacement system if A is a set of objects and \Rightarrow is an antireflexive binary relation over A called the transformation relation.
- ▶ by \Rightarrow^* is denoted the reflexive transitive closure of " \Rightarrow ".
- ▶ an element $p \in A$ is called irreducible if $p \Rightarrow^* q$ implies p = q.
- ▶ (A, \Rightarrow) is finite if for all $p \in A$ there exists n such that $p \Rightarrow^* q$ in at most n steps and q irreducible.
- ▶ (A, \Rightarrow) is finite Church-Rosser if for all $p \in A$ if $p \Rightarrow^* q_1$ and $p \Rightarrow^* q_2$ and q_1, q_2 are irreducible, then $q_1 = q_2$.

Church-Rosser Property (cont.)

Theorem (Sethi)

 (A,\Rightarrow) is finite Church-Rosser iff (A,\Rightarrow) is finite and for any $p\in A$ if $p\Rightarrow q_1$ and $p\Rightarrow q_2$, then there exists $q\in A$ such that $q_1\Rightarrow^*q$ and $q_2\Rightarrow^*q$.

▶ let \mathcal{I} be the set of all instances over schema \mathbf{R} and Σ a set of tgd's, then $(\mathcal{I}, \to_{\Sigma})$ is a replacement system.

Chase Properties: multiple results

▶ $Chase_{\Sigma}(I)$ denotes the set of all irreducible instances.

Chase Properties: Church-Rosser for full tgd's

▶ If Σ is a set of full tgd's, then the replacement system $(\mathcal{I}, \to_{\Sigma})$ has the finite Church-Rosser property.

Chase Properties: nonterminating chase

$$\sigma : R(x,y) \to \exists Z \ R(y,Z)$$

Chase properties: Summary

- $I \xrightarrow{\sigma,h} J \Rightarrow I \subseteq J.$
- ▶ there may exist $J, J' \in Chase_{\Sigma}(I)$ such that $J \neq J'$.
- ▶ the Chase algorithm may not terminate.
- ▶ there exist a Σ and instance I such that it has both a terminating and a non terminating chase sequence.
- ▶ Σ set of full tgd's \Rightarrow $(\mathcal{I}, \rightarrow_{\Sigma})$ is finite.
- $ightharpoonup \Sigma$ set of full tgd's \Rightarrow the chase has the *Church-Rosser* property.

Data Exchange, the problem

The data exchange setting $(\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$

- $ightharpoonup \Sigma_{st}$ specifies the relationship between ${f S}$ and ${f T}$
- lackbox Σ_t specifies the constraints that must be satisfied by ${f T}$

Instance J is a solution for $(\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ iff:

- $I \cup J \models \Sigma_{st} \cup \Sigma_t$
- ightharpoonup Sol(I) is the set of all solution for I

Universal Solutions

Let I be an instance and $(\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ a data exchange settings.

J is a universal solution (Fagin et al. ICDT03) for I iff

- $J \in Sol(I)$
- $\blacktriangleright \ \forall J' \in Sol(I) \Rightarrow J \to J'$

Theorem (Fagin et al. ICDT03)

If J a finite instance from $Chase_{\Sigma_{st} \cup \Sigma_t}(I)$, then J is a universal solution for I.

Certain Answers

If Q is a query over \mathbf{T} the certain answer on $\langle (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t), I \rangle$ is defined as:

$$certain(Q, I) = \cap_{J \in Sol(I)} Q(J)$$

It turns out that universal solutions represents a good choice to get certain answers in data exchange:

Theorem (Fagin et al. ICDT03)

If J is a universal solution for Sol(I) and $Q \in UCQ$ then

$$certain(Q, I) = Q(J) \downarrow^*$$

^{* -} by $J\!\downarrow$ we mean the maximum subset of tuples from J that contains only constants.

Universal Solution in Data Exchange

Consider source instance:

Emp Ben John

And dependencies:

 $\Sigma_{st}: Emp(x) \to \exists Y \ Mgr(x, Y).$ $\Sigma_{t}: Mgr(x, x) \to Self Mgr(x).$

Universal Solution in Data Exchange

Consider source instance:

Emp Ben John

And dependencies:

 $\Sigma_{st}: Emp(x) \to \exists Y \ Mgr(x, Y).$ $\Sigma_{t}: Mgr(x, x) \to Self Mgr(x).$

Universal Solution in Data Exchange

Consider source instance:

Emp Ben John

And dependencies:

 $\Sigma_{st}: Emp(x) \to \exists Y \ Mgr(x,Y).$

 $\Sigma_t: Mgr(x,x) \to SelfMgr(x).$

The Core

Consider source instance:

And dependencies:

$$\Sigma_{st}:$$
 $R(x,y), R(y,z) \to T(x,z)$
 $S(x) \to \exists Y \ T(x,Y)$
 $\Sigma_t:$ \emptyset

Universal Solution 2
$$\frac{T}{a}$$
 c

The core is the smallest universal solution. The core is unique up to isomorphism.

No Universal Solution

Consider the instance:

$$\frac{R}{a b}$$

And dependencies:

$$\Sigma_{st}: R(x,y) \to S(x,y).$$

 $\Sigma_{t}: S(x,y) \to \exists Z \ S(x,Z).$

This gives the following infinite chase sequence:

$$\begin{array}{c|c} & \mathsf{S} \\ \hline \mathsf{a} & \mathsf{b} \\ \mathsf{b} & Z_1 \\ Z_1 & Z_2 \\ \end{array}$$

Still there exists solutions:

Chase termination

Theorem (Deutsch et al. 2008)

Consider an instance I and a set Σ of tgd's:

- it is undecidable whether some chase sequences of I with Σ terminates;
- lacktriangleright it is undecidable whether all chase sequences of I with Σ terminates.

Theorem (Kolaitis et al. 2006)

There exists a data exchange setting $(\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$, with the following properties:

- \triangleright Σ_{st} consists of one full tgd;
- $ightharpoonup \Sigma_t$ consists of one egd, one full tgd and one tgd;
- the existence of solution is undecidable for this setting.

Chase termination: Weakly Acyclic Dependencies

Dependency Graph:

 Σ_t is weakly acyclic iff there is no cycle trough an existential edge.

▶ if a set of tgd's is weakly acyclic all chase sequences terminate.

Chase Termination: Safe Conditions (Meier et al. 2009)

Let Σ be a set of tgd's. The set $\operatorname{aff}(\Sigma)$ defined as: $(R,i)\in\operatorname{aff}(\Sigma)$ iff

- ightharpoonup (R,i) contains an existential or
- (R,i) is any position in the head of a dependency with a universal x that appears only in ${\rm aff}(\Sigma)$.

The propagation graph for Σ is a directed graph $(\mathsf{aff}(\Sigma), E)$, with E as in the dependency graph with both regular and special edges.

 Σ is said to be safe if $(\mathsf{aff}(\Sigma), E)$ doesn't contain any cycles going trough special edges.

Chase Termination: Stratification

$$\sigma_1, \sigma_2 \in \Sigma$$
; $\sigma_1 \prec \sigma_2$ iff

- $ightharpoonup \exists I \text{ instance, and}$
- $ightharpoonup I \models \sigma_2$, and
- $ightharpoonup I \xrightarrow{\sigma_1,h} J$, and
- $ightharpoonup J \not\models \sigma_2.$

Example:

$$\sigma_1: R(x,y) \to S(x)$$

$$\sigma_2: S(x) \to R(x,x)$$

Instance I:

Definition

- ▶ The chase graph for Σ is a directed graph $G(\Sigma) = (\Sigma, E)$, where $(\sigma_1, \sigma_2) \in E$ iff $\sigma_1 \prec \sigma_2$.
- $ightharpoonup \Sigma$ is stratified iff all cycles of $G(\Sigma)$ are weakly acyclic.

Chase Termination: Stratification

$$\sigma_1, \sigma_2 \in \Sigma$$
; $\sigma_1 \prec \sigma_2$ iff

- $ightharpoonup \exists I \text{ instance, and}$
- $ightharpoonup I \models \sigma_2$, and
- $ightharpoonup I \xrightarrow{\sigma_1,h} J$, and
- $ightharpoonup J \not\models \sigma_2.$

Example:

$$\sigma_1: R(x,y) \to S(x)$$

$$\sigma_2:\ S(x)\to R(x,x)$$

Instance I:

$$\frac{R}{a b}$$

$$\sigma_1 \prec \sigma_2$$

Definition

- ▶ The chase graph for Σ is a directed graph $G(\Sigma) = (\Sigma, E)$, where $(\sigma_1, \sigma_2) \in E$ iff $\sigma_1 \prec \sigma_2$.
- $ightharpoonup \Sigma$ is stratified iff all cycles of $G(\Sigma)$ are weakly acyclic.

Chase Termination: Stratification

Theorem (Deutsch et al. 08)

For every stratified set of tgd's and for all instances I there exists a terminating chase sequence.

- ▶ the decision problem "is Σ stratified?" is in coNP.
- ▶ the lower bound is open.

Chase termination: examples

► Stratified but not weakly acyclic:

$$\sigma: E(x,y), E(y,x) \rightarrow \exists Z, W \ E(x,Z), E(Z,W), E(W,x)$$

► Safe but not stratified:

$$\sigma_1 : S(y,z), R(x,y,z) \to \exists W \ R(y,W,x)$$

 $\sigma_2 : R(x,y,z) \to S(x,z)$

► Super-weak acyclic but not safe:

$$\sigma_1 : N(x) \to \exists Y, Z \ E(x, Y, Z)$$

 $\sigma_2 : E(x, y, y) \to N(y)$

Chase termination: rewriting

Can we do better? YES

- ► Let **T** be one of the classes weakly-acyclic, stratified, C-stratified, safe condition or super weakly acyclic tgd's.
- ▶ Greco and Spezzano (VLDB 2010) introduced a new rewriting mapping Adn such that for all Σ set of tgd's over schema \mathbf{R} :

 - ▶ let $Adn\mathbf{T}$ the set of tgd's such that $Adn(\Sigma)$ is in class \mathbf{T} .
 - $ightharpoonup \mathbf{T} \subset Adn\mathbf{T}$.

Chase termination: rewriting

```
\Sigma_1 :  \sigma_1 \quad : \quad N(x) \to \exists y \ E(x,y) \\  \sigma_2 \quad : \quad S(x), E(x,y) \to N(y)
```

Σ_2 :

Chase flavors: Core Chase

```
\begin{array}{ll} \text{Core-Chase}(I,\Sigma) \\ 1 & I_0 := I \\ 2 & i := 0 \\ 3 & J = \bigcup_{I_i \xrightarrow{\sigma,h} D} D \\ 4 & I_{i+1} = Core(J) \\ 5 & \textbf{if} \ I_i = I_{i+1} \\ 6 & \textbf{then return} \ I_i \\ 7 & \textbf{else} \ i = i+1; \ \textbf{goto} \ 3 \end{array}
```

Theorem (Deutsch et al. 08)

- lackbox Core-Chase (I,Σ) computes the core of the universal solution;
- if there exists a sequence such that $\mathsf{Chase}(I,\Sigma)$ terminates, then $\mathsf{Core\text{-}Chase}(I,\Sigma)$ terminates;
- if for (I, Σ) there exists a universal solution, then $\mathsf{Core}\text{-}\mathsf{Chase}(I, \Sigma)$ terminates:

Chase flavors: Solution-aware chase

Let Σ a set of tgd's, $K' \subseteq K$, $K \models \Sigma$

Theorem (Fuxman et al. 2006)

The length of every solution-aware chase sequence of K' with Σ and K is bounded by p(|K'|).

Chase flavors: Solution-aware chase

Let Σ a set of tgd's, $K' \subseteq K$, $K \models \Sigma$

Theorem (Fuxman et al. 2006)

The length of every solution-aware chase sequence of K' with Σ and K is bounded by p(|K'|).

Chase flavors: Solution-aware chase

Let Σ a set of tgd's, $K' \subseteq K$, $K \models \Sigma$

Theorem (Fuxman et al. 2006)

The length of every solution-aware chase sequence of K' with Σ and K is bounded by p(|K'|).

Chase flavors: Extended core-chase

Consider a disjunctive dependency:

$$\sigma: \forall \bar{x} \ \varphi(\bar{x}) \to \exists \bar{y} \ \bigvee_{1 \le i \le n} \psi_i(\bar{x}, \bar{y})$$

Extended Chase Step: $I \xrightarrow{\sigma,h} \{J_1,J_2,\ldots,J_p\}$

- 1. $\varphi(h(\bar{x})) \subseteq I$
- 2. $\neg \exists h', \neg \exists i$ such that h' extends h and $\psi_i(h'(\bar{x}, \bar{y})) \subseteq I$
- 3. $\forall i \ (1 \leq i \leq n) \ I \xrightarrow{\sigma_i, h} J_i, \text{ where } \sigma_i : \forall \bar{x} \ \varphi(\bar{x}) \to \exists \bar{y} \ \psi_i(\bar{x}, \bar{y})$

Chase flavors: Extended core-chase

```
EXTENDED-CORE-CHASE(I, \Sigma set of DED's)
     L_0 := \{I\}
   2 i := 0
      for DED \sigma \in \Sigma, h-applicable
            do
   5
                \forall I_i \in L_i run in parallel
                I_i \xrightarrow{\sigma,h} K'_i
                for each i
  8
                     do
                        K_i = \{\}
                        for J \in K_i'
 10
 11
                                K_i = K_i \cup core(J)
 12
 13
      L_{i+1} = K_i
      remove from L_{i+1} all M such that \exists N \in L_{i+1} \ N \to M
     i := i+1;
 16
      if L_i = L_{i-1}
          then goto 3
 18
      return L_i
```

Chase and Date Exchange, beyond universal solutions

Data exchange settings $(\{S\}, \{R, T\}, \Sigma_{st}, \Sigma_t)$:

Source instance (
$$I$$
):

dependencies:

$$\Sigma_{st}: S(x) \to \exists Y \ R(x,Y)$$

 $\Sigma_{t}: R(x,x) \to T(x)$

queries:

$$q_1(x) \leftarrow \exists y \ R(x,y)$$

 $q_2(x) \leftarrow \exists y \ (R(x,y) \land x \neq y) \lor T(x)$

- ▶ the universal model $U = \{S(a), R(a, X)\}$
- $ightharpoonup cert_{q_1}(I) = dom(I) \cap q_1(U) = \{(a)\}$

Chase and Date Exchange, beyond universal solutions

Data exchange settings $(\{S\}, \{R, T\}, \Sigma_{st}, \Sigma_t)$:

Source instance (
$$I$$
):

dependencies:

$$\Sigma_{st}: S(x) \to \exists Y \ R(x,Y)$$

 $\Sigma_{t}: R(x,x) \to T(x)$

queries:

$$q_1(x) \leftarrow \exists y \ R(x,y)$$

 $q_2(x) \leftarrow \exists y \ (R(x,y) \land x \neq y) \lor T(x)$

- ▶ the universal model $U = \{S(a), R(a, X)\}$
- $cert_{q_2}(I) = dom(I) \cap q_2(U) = \{\emptyset\}$

Chase and Date Exchange, beyond universal solutions

Data exchange settings $(\{S\}, \{R\}, \Sigma_{st}, \Sigma_t)$:

Source instance (I):
$$\frac{S}{a}$$

dependencies:

$$\Sigma_{st}: S(x) \to \exists Y \ R(x,Y)$$

 $\Sigma_{t}: R(x,x) \to T(x)$

query:

$$q_2(x) \leftarrow \exists y \ (R(x,y) \land x \neq y) \lor T(x)$$

- $\hat{\Sigma} = \Sigma_{st} \cup \Sigma_t \cup \{x = y \lor N(x, y); x = y, N(x, y) \to \bot\}$
- ▶ model set for I and $\hat{\Sigma}$ is $U = \{\{S(a), R(a,X), N(a,X)\}; \{S(a), R(a,a), T(a)\}\} ;$
- ▶ $cert_{q_2}(I) = dom(I) \cap \bigcap_{J \in U} q_2(J) = \{(a)\}$

Homomorphisms (cont.)

- ▶ $h: dom(I) \rightarrow dom(J)$, such that $\forall c \in \mathsf{Const}\ h(c) = c$ and $h(I) \subseteq J$ is called *homomorphism* from I to J, denoted $I \rightarrow J$. (hom)
- ▶ If h is an injection then it is called *injective homomorphism*. (ihom)
- ▶ If h(I) = J then h is called *epimorphism* or *full homomorphism*. (fhom)
- ▶ If h(I) = J and h is also injective then h is called *embedding*. (emb)

Chase and Date Exchange beyond universal solutions

$F \in \{\text{hom}, \text{ihom}, \text{fhom}, \text{emb}\}$

Definition (Deutsch et al. 2008)

A set U of finite instances is an F-universal model set for s set of instances K if it satisfies the following conditions:

- 1. $(\forall M \in K)(\exists T \in U)T \rightarrow_F M$;
- 2. $U \subseteq K$;
- 3. U is finite;
- 4. $\neg \exists U' \subset U$ such that $U' \rightarrow_F U$.

Theorem (Deutsch et al. 2008)

Let $(S, T, \Sigma_{st}, \Sigma_t)$ be a data exchange setting with $\Sigma = \Sigma_{st} \cup \Sigma_t$ a set of NDED's. Let U be a F-universal model set for $Sol_{\Sigma}(I)$ and Q a query of arity r over T. If

- 1. $F = \mathbf{hom}$ and $Q \in UCQ \cup Datalog$, or
- 2. $F = \mathbf{ihom}$ and $Q \in MonQ$, or
- 3. $F = \mathbf{fhom} \text{ and } Q \in UCQ^{\neg}, \text{ or }$
- 4. $F = emb \text{ and } Q \in UCQ^{\neg, \neq}$.

then
$$cert_Q^\Sigma(I) = dom(I)^r \cap \bigcap_{J \in U} Q(J)$$

Computing F-Universal model sets

Let $(S, T, \Sigma_{st}, \Sigma_t)$ be a data exchange setting with $\Sigma = \Sigma_{st} \cup \Sigma_t$ a set of NDED's.

- extend $\hat{\mathbf{S}} = \mathbf{S} \cup \{\hat{R}: R \in \mathbf{S}\} \cup \{N\};$
- ▶ change Σ to $\hat{\Sigma}$ by replacing each $\neg R(\bar{x})$ with $\hat{R}(\bar{x})$ and each $x \neq y$ with N(x,y);
- ▶ if $F \in \{\mathbf{ihom}, \mathbf{emb}\}$ or N appears in $\hat{\Sigma}$ extend $\hat{\Sigma}$ with:

$$x = y \lor N(x,y)$$
 and $x = y, N(x,y) \rightarrow \perp$

• if $F \in \{\mathbf{fhom}, \mathbf{emb}\}$ extend $\hat{\Sigma}$ with:

$$R(\bar{x}) \lor \hat{R}(\bar{x}) \text{ and } R(\bar{x}), \hat{R}(\bar{x}) \to \perp$$

Selected Bibliography

- 1. S.Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.
- A.V. Aho, C. Beeri, and J.D. Ullman. The theory of joins in relational databases. ACM Trans. Database Syst., 4(3), 1979.
- 3. C. Beeri, and M.Y. Vardi. A proof procedure for data dependencies. J. ACM, 31(4), 1984.
- A. Calì, G. Gottlob, and M. Kifer. Taming the Infinite Chase: Query Answering under Expressive Relational Constraints. Description Logics, 2008.
- 5. A. Deutsch, A. Nash, and J. Remmel. The chase revisited. PODS08.
- 6. R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data exchange: Semantics and query answering. ICDT03.
- 7. R. Fagin, P. G. Kolaitis, L. Popa. Data exchange: getting the core. PODS03.
- 8. A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan, Peer data exchange. PODS05.
- G. Grahne, A. O. Mendelzon. Tableau Techniques for Querying Information Sources through Global Schemas. ICDT99.
- 10. G. Grahne, A. Onet. Data correspondence, exchange and repair. ICDT10.
- 11. S. Greco, F. Spezzano. Chase Termination: A Constraints Rewriting Approach. VLDB10.
- 12. P. G. Kolaitis, J. Panttaja, W. C. Tan. The complexity of data exchange. PODS06.
- 13. A. Hernich, N. Schweikardt. CWA-solutions for data exchange settings with target dependencies. PODS07.
- 14. L. Libkin. Data exchange and incomplete information. PODS06.
- 15. David Maier. The Theory of Relational Databases. Computer Science Press 1983.
- D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing Implications of Data Dependencies. ACM Trans. Database Syst. 4(4), 1979.
- 17. B. Marnette. Generalized schema-mappings: from termination to tractability. PODS09.
- 18. M. Meier, M. Schmidt, and G. Lausen. On Chase Termination Beyond Stratification. PVLDB 2(1), 2009.
- 19. R. Sethi: Testing for the Church-Rosser Property. J. ACM 21(4): 671-679 (1974).