
A Tutorial on Data Integration

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica Antonio Ruberti,
Sapienza Università di Roma

DEIS’10 - Data Exchange, Integration, and Streaming
November 7-12, 2010, Schloss Dagstuhl,

GI-Dagstuhl Seminar 10452

M. Lenzerini A tutorial on Data Integration 1 / 132

Structure of the course

1 Introduction to data integration

Motivations
Logical formalization
Mappings

2 Query answering for relational data

Approaches to query answering
Canonical database
Query rewriting
Counterexamples
Query containment

3 Beyond relational data

Semi-structured data integration
Ontology-based data integration

M. Lenzerini A tutorial on Data Integration 2 / 132

Structure of the course

1 Introduction to data integration

Motivations
Logical formalization
Mappings

2 Query answering for relational data

Approaches to query answering
Canonical database
Query rewriting
Counterexamples
Query containment

3 Beyond relational data

Semi-structured data integration
Ontology-based data integration

M. Lenzerini A tutorial on Data Integration 2 / 132

Structure of the course

1 Introduction to data integration

Motivations
Logical formalization
Mappings

2 Query answering for relational data

Approaches to query answering
Canonical database
Query rewriting
Counterexamples
Query containment

3 Beyond relational data

Semi-structured data integration
Ontology-based data integration

M. Lenzerini A tutorial on Data Integration 2 / 132

Motivations Data integration: Logical formalization Mappings

Part 1: Introduction to data integration

Part I

Introduction to data integration

M. Lenzerini A tutorial on Data Integration 3 / 132

Motivations Data integration: Logical formalization Mappings

Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 4 / 132

Motivations Data integration: Logical formalization Mappings

Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 5 / 132

Motivations Data integration: Logical formalization Mappings

What is data integration? Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 6 / 132

Motivations Data integration: Logical formalization Mappings

What is data integration? Part 1: Introduction to data integration

Integration in data management: evolution

client

application

data layer

Data manager

Centralized system with three-tier architecture

“Implicit” integration: integration supported by the Data Base
Management System (DBMS), i.e., the data manager

M. Lenzerini A tutorial on Data Integration 7 / 132

Motivations Data integration: Logical formalization Mappings

What is data integration? Part 1: Introduction to data integration

Integration in data management: evolution

client

application

Data manager Data manager

Centralized system with three-tier architecture and multiple stores

Application-hidden integration: integration “embedded” within
application

M. Lenzerini A tutorial on Data Integration 8 / 132

Motivations Data integration: Logical formalization Mappings

What is data integration? Part 1: Introduction to data integration

Integration in data management: evolution

client	

applica*on	

data	
 layer	

Data	
 manager	
 Data	
 manager	
 Data	
 manager	

Global	
 schema	

Data	
 Integrator	

Centralized system with four-tier architecture and multiple,
distributed stores

(Centralized) data integration: the global schema is mapped to the
different data sources, which are heterogeneous, distributed and
autonomous

M. Lenzerini A tutorial on Data Integration 9 / 132

Motivations Data integration: Logical formalization Mappings

What is data integration? Part 1: Introduction to data integration

Integration in data management: evolution

client

application

Global schema

Data manager Data manager
client

application

Global schema

Data manager Data manager

client

application

Global schema

Data manager Data manager

Decentralized system

Peer-to-peer data integration: distributed data integration realized
with no unique, central global schema

M. Lenzerini A tutorial on Data Integration 10 / 132

Motivations Data integration: Logical formalization Mappings

Variants of data integration Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 11 / 132

Motivations Data integration: Logical formalization Mappings

Variants of data integration Part 1: Introduction to data integration

Approaches to data integration

Centralized, virtual data integration . . . is the main topic of this
tutorial

Data warehousing . . . not dealt with in this tutorial

P2P data integration . . . not dealt with in this tutorial

M. Lenzerini A tutorial on Data Integration 12 / 132

Motivations Data integration: Logical formalization Mappings

Variants of data integration Part 1: Introduction to data integration

Centralized data integration

Centralized data integration is the problem of providing unified and
transparent view to a collection of data stored in multiple, autonomous,
and heterogeneous data sources.

The unified view is achieved through a global (or target) schema, linked
to the data sources by means of mappings.

Answer(Q) Query

Global Schema

Sources

M. Lenzerini A tutorial on Data Integration 13 / 132

Motivations Data integration: Logical formalization Mappings

Variants of data integration Part 1: Introduction to data integration

Data warehousing

materialization of the global database

allows for OLAP without accessing the sources

similar to data exchange

Materialize

Global Schema

Sources

M. Lenzerini A tutorial on Data Integration 14 / 132

Motivations Data integration: Logical formalization Mappings

Variants of data integration Part 1: Introduction to data integration

Peer-to-peer data integration

P2P mapping

1

Peer

4P

P

Peer schema

Local source

P3

P5

External source

Local mapping

2P

Talk 10 – Armin Roth, “Peer data management systems”
Talk 11 – Sebastian Skritek, “Theory of Peer Data Management”

M. Lenzerini A tutorial on Data Integration 15 / 132

Motivations Data integration: Logical formalization Mappings

Issues in data integration Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 16 / 132

Motivations Data integration: Logical formalization Mappings

Issues in data integration Part 1: Introduction to data integration

Main issues in data integration

1 Data extraction, cleaning, and reconciliation
Talk 9 – Ekaterini Ioannou, “Data cleaning for data integration”

2 How to discover and specify the mappings between sources and
global schema
Talk 22 – Marie Jacob, “Learning and discovering queries and
mappings”

3 How to model and specify the global schema

4 How to answer queries expressed on the global schema
Talk 2 – Piotr Wieczorek, “Query answering in data integration”

5 How to deal with limitations in mechanisms for accessing sources

6 How to optimize query answering

7 . . .

M. Lenzerini A tutorial on Data Integration 17 / 132

Motivations Data integration: Logical formalization Mappings

Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 18 / 132

Motivations Data integration: Logical formalization Mappings

Syntax and semantics of a data integration system Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 19 / 132

Motivations Data integration: Logical formalization Mappings

Syntax and semantics of a data integration system Part 1: Introduction to data integration

Formal framework for data integration

Definition

A data integration system I is a triple 〈G,S,M〉, where

G is the global schema
a logical theory over an alphabet AG

S is the source schema
an alphabet AS disjoint from AG

M is the mapping between S and G
We consider different approaches to the specification of mappings

M. Lenzerini A tutorial on Data Integration 20 / 132

Motivations Data integration: Logical formalization Mappings

Syntax and semantics of a data integration system Part 1: Introduction to data integration

Semantics of a data integration system

Which are the dbs that satisfy I, i.e., the logical models of I?

We refer only to dbs over a fixed infinite domain ∆ of elements

We start from the data present in the sources: these are modeled
through a (finite) source database C over ∆ (also called source
model), fixing the extension of the predicates of AS
The dbs for I are logical interpretations for AG , called global dbs

Definition

The semantics of I relative to C is:
semC(I) = { B | B is a global database that satisfies G

and that satisfies M wrt C }

To satisfy G means to satisfy all axioms of G, i.e., being a model of G
What it means to satisfy M wrt C depends on the nature of M

M. Lenzerini A tutorial on Data Integration 21 / 132

Motivations Data integration: Logical formalization Mappings

Syntax and semantics of a data integration system Part 1: Introduction to data integration

Semantics of a data integration system

Which are the dbs that satisfy I, i.e., the logical models of I?

We refer only to dbs over a fixed infinite domain ∆ of elements

We start from the data present in the sources: these are modeled
through a (finite) source database C over ∆ (also called source
model), fixing the extension of the predicates of AS
The dbs for I are logical interpretations for AG , called global dbs

Definition

The semantics of I relative to C is:
semC(I) = { B | B is a global database that satisfies G

and that satisfies M wrt C }

To satisfy G means to satisfy all axioms of G, i.e., being a model of G
What it means to satisfy M wrt C depends on the nature of M

M. Lenzerini A tutorial on Data Integration 21 / 132

Motivations Data integration: Logical formalization Mappings

Syntax and semantics of a data integration system Part 1: Introduction to data integration

Comparison between data integration and data exchange

Data integration system I = 〈G,S,M〉
Data exchange setting M = 〈S, T ,Σ〉

I = 〈G,S,M〉 M = 〈S, T ,Σ〉
S S
G T
M Σ

finite source database C finite source instance I

global database target instance is finite
with no variable and may contain variables

global database satisfying
G and M wrt C solution J

M. Lenzerini A tutorial on Data Integration 22 / 132

Motivations Data integration: Logical formalization Mappings

Queries to a data integration system Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 23 / 132

Motivations Data integration: Logical formalization Mappings

Queries to a data integration system Part 1: Introduction to data integration

Queries to a data integration system I

The domain ∆ is fixed, and we do not distinguish an element of ∆
from the constant denoting it ; standard names

Queries to I are expressions (of a certain arity) over the alphabet
AG ; the evaluation of a query of arity n to I relative to a source
database C returns a set of tuples of elements ∆, each of arity n

When “evaluating” q over I = 〈G,S,M〉, we have to consider that
for a given source database C, there may be many global databases
B satisfying G and M wrt C, i.e., many global databases B in
semC(I)
We consider those answers to q that hold for all global databases in
semC(I)
; certain answers

M. Lenzerini A tutorial on Data Integration 24 / 132

Motivations Data integration: Logical formalization Mappings

Queries to a data integration system Part 1: Introduction to data integration

Semantics of queries to I

Definition

Given q, I, and C, the set of certain answers to q wrt I and C is

cert(q, I, C) =
⋂
{ qB | ∀ B ∈ semC(I) }

Query answering in information integration means to compute the
certain answers, i.e., it corresponds to logical implication

Complexity is measured mainly wrt the size of the source db C,
i.e., we consider data complexity

When we want to look at query answering as a decision problem,
we consider the problem of deciding whether a given tuple ~c is a
certain answer to q wrt I and C, i.e., whether ~c ∈ cert(q, I, C)

M. Lenzerini A tutorial on Data Integration 25 / 132

Motivations Data integration: Logical formalization Mappings

Queries to a data integration system Part 1: Introduction to data integration

Databases with incomplete information, or knowledge bases

Traditional database: one model of a first-order theory.
Query answering means evaluating a formula in the model

Database with incomplete information, or knowledge base: set of
models (specified, for example, as a restricted first-order theory).
Query answering means computing the tuples that satisfy the query
in all the models in the set

There is a strong connection between query answering in information
integration and query answering in databases with incomplete
information under constraints (or, query answering in knowledge bases)

M. Lenzerini A tutorial on Data Integration 26 / 132

Motivations Data integration: Logical formalization Mappings

Queries to a data integration system Part 1: Introduction to data integration

Databases with incomplete information, or knowledge bases

Traditional database: one model of a first-order theory.
Query answering means evaluating a formula in the model

Database with incomplete information, or knowledge base: set of
models (specified, for example, as a restricted first-order theory).
Query answering means computing the tuples that satisfy the query
in all the models in the set

There is a strong connection between query answering in information
integration and query answering in databases with incomplete
information under constraints (or, query answering in knowledge bases)

M. Lenzerini A tutorial on Data Integration 26 / 132

Motivations Data integration: Logical formalization Mappings

Queries to a data integration system Part 1: Introduction to data integration

Query answering: problem space

Global schema
Relational data

without constraints (i.e., empty theory)
with constraints

Non-relational data
Graph-databases
Talk 18 – Paolo Guagliardo “View-based query processing”
XML-data
Talk 14 – Lucja Kot, “XML data integration”
Ontologies
Talk 8 – Yazmin A. Ibanez, “Description logics for data integration”

Mapping
GAV, LAV, or GLAV

Semantics
arbitrary vs. finite databases
Standard logic vs. Inconsistency-tolerant semantics
Talk 7 – Slawomir Staworko, “Consistent query answering”

M. Lenzerini A tutorial on Data Integration 27 / 132

Motivations Data integration: Logical formalization Mappings

Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 28 / 132

Motivations Data integration: Logical formalization Mappings

Types of mappings Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 29 / 132

Motivations Data integration: Logical formalization Mappings

Types of mappings Part 1: Introduction to data integration

The mapping

In this tutorial, we mainly consider sound mappings, i.e., mapping
assertions stating that the presence of certain data in the sources
implies the presence of certain data in the virtual global database.

How is the mapping M between S and G specified?

Are the sources defined in terms of the global schema?
Approach called source-centric, or local-as-view, or LAV

Is the global schema defined in terms of the sources?
Approach called global-schema-centric, or global-as-view, or GAV

A mixed approach?
Approach called GLAV

M. Lenzerini A tutorial on Data Integration 30 / 132

Motivations Data integration: Logical formalization Mappings

Types of mappings Part 1: Introduction to data integration

GAV vs. LAV – Example

Global schema:
movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

Source 1:
r1(Title,Year ,Director) since 1960, european directors

Source 2:
r2(Title,Critique) since 1990

Query: Title and critique of movies in 1998
{ (t, r) | ∃d. movie(t, 1998, d) ∧ review(t, r) }, abbreviated
{ (t, r) | movie(t, 1998, d), review(t, r) }

M. Lenzerini A tutorial on Data Integration 31 / 132

Motivations Data integration: Logical formalization Mappings

GAV mappings Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 32 / 132

Motivations Data integration: Logical formalization Mappings

GAV mappings Part 1: Introduction to data integration

Formalization of GAV

In GAV (with sound sources), the mapping M is a set of assertions:

∀~x. φS(~x)→ g(~x)

one for each element g in AG , with φS a query over S of the arity of g

Given a source db C, a db B for G satisfies M wrt C if for each g ∈ G:
φCS ⊆ gB

Given a source database C, M provides direct information about which
data in C satisfy the elements of the global schema

Elements in the global schema G can be considered as views over the
sources. This is why this approach is called “global as view”

M. Lenzerini A tutorial on Data Integration 33 / 132

Motivations Data integration: Logical formalization Mappings

GAV mappings Part 1: Introduction to data integration

GAV – Example

Global schema: movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

GAV: to each relation in the global schema, M associates a view over
the sources:

∀t, y, d r1(t, y, d)→ movie(t, y, d)
∀d, t, y r1(t, y, d)→ european(d)
∀t, r r2(t, r)→ review(t, r)

M. Lenzerini A tutorial on Data Integration 34 / 132

Motivations Data integration: Logical formalization Mappings

GAV mappings Part 1: Introduction to data integration

GAV – Example of query processing

The query
{ (t, r) | movie(t, 1998, d), review(t, r) }

is processed by expanding each atom according to its associated
definition in M, so as to come up with a query over the source relations

In particular:

{ (t, r) | movie(t, 1998, d), review(t, r) }

↓ ↓

{ (t, r) | r1(t, 1998, d), r2(t, r) }

M. Lenzerini A tutorial on Data Integration 35 / 132

Motivations Data integration: Logical formalization Mappings

GAV mappings Part 1: Introduction to data integration

GAV – Example of constraints

Global schema containing constraints:
movie(Title,Year ,Director)
european(Director)
review(Title,Critique)
∀x, c review(x , c) → ∃y, d movie(x , y , d)

GAV mappings:
∀t, y, d r1(t, y, d)→ movie(t, y, d)
∀d, t, y r1(t, y, d)→ european(d)
∀t, r r2(t, r)→ review(t, r)

M. Lenzerini A tutorial on Data Integration 36 / 132

Motivations Data integration: Logical formalization Mappings

LAV mappings Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 37 / 132

Motivations Data integration: Logical formalization Mappings

LAV mappings Part 1: Introduction to data integration

Formalization of LAV

In LAV (with sound sources), the mapping M is a set of assertions:

∀~x. s(~x)→ φG(~x)

one for each source element s in AS , with φG a query over G of the
arity of s.

Given source db C, a db B for G satisfies M wrt C if for each s ∈ S:
sC ⊆ φBG

The mapping M and the source database C do not provide direct
information about which data satisfy the global schema

Sources, i.e., elements in S, can be considered as views over the global
schema. This is why this approach is called “local-as-views”.

M. Lenzerini A tutorial on Data Integration 38 / 132

Motivations Data integration: Logical formalization Mappings

LAV mappings Part 1: Introduction to data integration

LAV – Example

Global schema: movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

LAV: to each source relation, M associates a view over the global
schema:

r1(t, y, d) → { (t, y, d) | movie(t, y, d), european(d), y ≥ 1960 }
r2(t, r) → { (t, r) | movie(t, y, d), review(t, r), y ≥ 1990 }

The query { (t, r) | movie(t, 1998, d), review(t, r) } is processed by
means of an inference mechanism that aims at re-expressing the atoms
of the global schema in terms of atoms at the sources.
In this case:

{ (t, r) | r2(t, r), r1(t, 1998, d) }

M. Lenzerini A tutorial on Data Integration 39 / 132

Motivations Data integration: Logical formalization Mappings

LAV mappings Part 1: Introduction to data integration

GAV and LAV – Comparison

GAV: (e.g., Carnot, SIMS, Tsimmis, IBIS, Momis, DisAtDis, . . .)

Quality depends on how well we have compiled the sources into the
global schema through the mapping

Whenever a source changes or a new one is added, the global
schema needs to be reconsidered

Query processing can be based on some sort of unfolding (query
answering looks easier – without constraints)

LAV: (e.g., Information Manifold, DWQ, Picsel)

Quality depends on how well we have characterized the sources

High modularity and extensibility (if the global schema is well
designed, when a source changes, only its definition is affected)

Query processing needs reasoning (query answering complex)

M. Lenzerini A tutorial on Data Integration 40 / 132

Motivations Data integration: Logical formalization Mappings

GLAV mappings Part 1: Introduction to data integration

Outline

1 Motivations
What is data integration?
Variants of data integration
Issues in data integration

2 Data integration: Logical formalization
Syntax and semantics of a data integration system
Queries to a data integration system

3 Mappings
Types of mappings
GAV mappings
LAV mappings
GLAV mappings

M. Lenzerini A tutorial on Data Integration 41 / 132

Motivations Data integration: Logical formalization Mappings

GLAV mappings Part 1: Introduction to data integration

Beyond GAV and LAV: GLAV

In GLAV (with sound sources), the mapping M is a set of assertions:

∀~x. φS(~x)→ φG(~x)

with φS a query over S, and φG a query over G of the same arity as φS

Given source db C, a db B for G satisfies M wrt C if for each
∀~x. φS(~x)→ φG(~x) in M:

φCS ⊆ φBG

As for LAV, the mapping M does not provide direct information about
which data satisfy the global schema, and, therefore, to answer a query
q over G, we have to infer how to use M in order to access the source
database C

M. Lenzerini A tutorial on Data Integration 42 / 132

Motivations Data integration: Logical formalization Mappings

GLAV mappings Part 1: Introduction to data integration

GLAV – Example

Global schema: work(Person,Project), area(Project ,Field)

Source 1: hasjob(Person,Field)
Source 2: teaches(Professor ,Course), in(Course,Field)
Source 3: get(Researcher ,Grant), for(Grant ,Project)

GLAV mapping:

{(r, f) | hasjob(r, f)} → {(r, f) | work(r, p), area(p, f)}
{(r, f) | teaches(r, c), in(c, f)} → {(r, f) | work(r, p), area(p, f)}
{(r, p) | get(r, g), for(g, p)} → {(r, f) | work(r, p)}

M. Lenzerini A tutorial on Data Integration 43 / 132

Motivations Data integration: Logical formalization Mappings

GLAV mappings Part 1: Introduction to data integration

Exact mappings

Although we consider only sound mappings in this tutorial, exact
mappings have also been studied in data integration.

An exact GLAV mapping assertion have the form:

∀~x. φS(~x)↔ φG(~x)

with φS a query over S, and φG a query over G of the same arity as φS

Given source db C, a db B for G satisfies the exact mapping assertion
∀~x. φS(~x)↔ φG(~x) if

φCS = φBG

GAV and LAV exact mapping assertions are defined in the obvious way

M. Lenzerini A tutorial on Data Integration 44 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Part II

Query answering for relational data

M. Lenzerini A tutorial on Data Integration 45 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 46 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 47 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Query answering in different settings

The problem of query answering comes in different forms, depending on

Global schema
relational

without constraints (i.e., empty theory)
with constraints

non-relational data

Mapping
GAV
LAV (or GLAV)

Queries
user queries
queries in the mapping

If not otherwise stated, we will assume that both the user queries and
the queries in the mappings are conjunctive queries

M. Lenzerini A tutorial on Data Integration 48 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Incompleteness and inconsistency

Query answering heavily depends upon whether
incompleteness/inconsistency shows up

Incompleteness: the cardinality of semC(I) is greater than 1
Inconsistency: the cardinality of semC(I) is 0

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV very limited no

no (G)LAV yes no

yes GAV yes yes

yes (G)LAV yes yes

M. Lenzerini A tutorial on Data Integration 49 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Main approaches to query answering

Based on canonical database

Based on query rewriting

Based on counterexample

Based on query containment

M. Lenzerini A tutorial on Data Integration 50 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 51 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

The notion of canonical database Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 52 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

The notion of canonical database Part 2: Query answering for relational data

The canonical database

Given data integration system I, and source database C, a canonical
database (or, canonical model) for I and C is global database
B ∈ semC(I), possibly with variables, such that for each query q on AG ,
and each tuple ~t, ~t ∈ cert(q, I, C) if and only if ~t ∈ qB (or, ~t ∈ qB1 for a
suitable query q1)

Note the similarity with the notion of universal solution in data exchange

In what follows, we discuss the approach based on canonical database
by referring to GAV without constraints, and by limiting the attention to
positive user queries

M. Lenzerini A tutorial on Data Integration 53 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV without constraints Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 54 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV without constraints Part 2: Query answering for relational data

GAV without constraints – Retrieved global database

Definition

Given a GAV data integration system I = 〈G,S,M〉, and a source
database C for S, we call retrieved global database (for I wrt C),
denoted M(C), the global database obtained by “applying” the queries
in the mapping, and “transferring” to the elements of G the
corresponding tuples retrieved from C

Note that, since mappings are of type GAV, the tuples to be
“tranferred” to the global schema are definite (they do not contain
existentially quantified elements)

M. Lenzerini A tutorial on Data Integration 55 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV without constraints Part 2: Query answering for relational data

GAV without constraints – Example

Consider I = 〈G,S,M〉, with

Global schema G: student(Code,Name,City)
university(Code,Name)
enrolled(Scode,Ucode)

Source schema S: relations s1(Scode,Sname,City ,Age),
s2(Ucode,Uname), s3(Scode,Ucode)

Mapping M:

∀c, n, ci s1(c, n, ci , a) → student(c, n, ci)
∀c, n s2(c, n) → university(c, n)
∀s, u s3(s, u) → enrolled(s, u)

M. Lenzerini A tutorial on Data Integration 56 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV without constraints Part 2: Query answering for relational data

Example of retrieved global database

sC1
12 anne florence 21
15 bill oslo 24

sC2
AF bocconi
BN ucla

sC3
12 AF
16 BN

��
�
��
�
��
�*

PP
PP

PP
PP

PP
PP

Pi

�
�
�
���

university
Code Name
AF bocconi
BN ucla

student
Code Name City
12 anne florence
15 bill oslo

enrolled
Scode Ucode
12 AF
16 BN

Example of source database C and corresponding retrieved global
database M(C)

M. Lenzerini A tutorial on Data Integration 57 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV without constraints Part 2: Query answering for relational data

GAV without constraints – Canonical database

GAV mapping assertions have the form ∀~x. φS(~x)→ g(~x) where φS is a
query over the source relations, and g is an element of G

In general, given a source database C, there are several databases in
semC(I)

However, it is easy to see that, when G has no axiom, M(C) is the
intersection of all such databases, and therefore, is finite, and is the only
“minimal” model of I

For positive queries, M(C) is a canonical database of I wrt C: If q is a
positive query, then ~t ∈ cert(q, I, C) iff ~t ∈ qM(C)

M. Lenzerini A tutorial on Data Integration 58 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV without constraints Part 2: Query answering for relational data

Exercise 1

Is the following problem decidable?

Given a GAV data integration system I without constraints, a source
database C, a first order logic query q over AG , compute the certain
answers cert(q, I, C)

M. Lenzerini A tutorial on Data Integration 59 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV without constraints Part 2: Query answering for relational data

Extensions to other cases

(G)LAV without constraints
the chase constructs a universal solution (with variables)

GAV and (G)LAV with constraints
a finite universal solution may not exist

M. Lenzerini A tutorial on Data Integration 60 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 61 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

What is a rewriting Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 62 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

What is a rewriting Part 2: Query answering for relational data

Query answering based on query rewriting

Given data integration system I, and a user query q, compute a query
q1 over AS , and then compute qC1

Thus, query answering is divided in two steps:

1 Reformulate the user query in terms of a new query over the
alphabet of AS , called source rewriting, or simply rewriting
expressed in a given query language

2 Evaluate the rewriting over the source database C

M. Lenzerini A tutorial on Data Integration 63 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

What is a rewriting Part 2: Query answering for relational data

Query rewriting

(under OWA)
Query

(under CWA)

evaluation

rew(q, I)

ans(q, I, C)

I

C

Reformulationq

The language of rew(q, I) is chosen a priori!

M. Lenzerini A tutorial on Data Integration 64 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

What is a rewriting Part 2: Query answering for relational data

What is a rewriting?

Definition

A query q1 over the alphabet AS is a sound rewriting of q with respect
to I if for all source database C and for all global database
B ∈ semC(I), we have that qC1 ⊆ qB

From the above definition, it follows that a sound rewriting computes
only certain answers: indeed, if q1 is a sound rewriting, then for all
source database C,

qC1 ⊆
⋂
{qB | ∀ B ∈ semC(I)}

M. Lenzerini A tutorial on Data Integration 65 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 66 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

Perfect rewriting

What is the relationship between answering by rewriting and certain
answers? [Calvanese & al. ICDT’05]:
Let us consider the “best possible” rewriting

Define cert [q,I](·) to be the function that, with q and I fixed, given
source database C, computes the certain answers cert(q, I, C)

cert [q,I] can be seen as a query on the alphabet AS
cert [q,I] is a (sound) rewriting of q wrt I, i.e., it computes only
certain answers

No sound rewriting exists that is better than cert [q,I], i.e., if r is a
sound rewriting of q wrt I, then r ⊆ cert [q,I]

Hence, cert [q,I] is called the perfect rewriting of q wrt I

M. Lenzerini A tutorial on Data Integration 67 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

Perfect rewriting

What is the relationship between answering by rewriting and certain
answers? [Calvanese & al. ICDT’05]:
Let us consider the “best possible” rewriting

Define cert [q,I](·) to be the function that, with q and I fixed, given
source database C, computes the certain answers cert(q, I, C)

cert [q,I] can be seen as a query on the alphabet AS
cert [q,I] is a (sound) rewriting of q wrt I, i.e., it computes only
certain answers

No sound rewriting exists that is better than cert [q,I], i.e., if r is a
sound rewriting of q wrt I, then r ⊆ cert [q,I]

Hence, cert [q,I] is called the perfect rewriting of q wrt I

M. Lenzerini A tutorial on Data Integration 67 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

Perfect rewriting

What is the relationship between answering by rewriting and certain
answers? [Calvanese & al. ICDT’05]:
Let us consider the “best possible” rewriting

Define cert [q,I](·) to be the function that, with q and I fixed, given
source database C, computes the certain answers cert(q, I, C)

cert [q,I] can be seen as a query on the alphabet AS
cert [q,I] is a (sound) rewriting of q wrt I, i.e., it computes only
certain answers

No sound rewriting exists that is better than cert [q,I], i.e., if r is a
sound rewriting of q wrt I, then r ⊆ cert [q,I]

Hence, cert [q,I] is called the perfect rewriting of q wrt I

M. Lenzerini A tutorial on Data Integration 67 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

Query answering: reformulation + evaluation

(under OWA)
Query

(under CWA)

evaluation

cert [q,I]

cert(q, I, C)

I

C

Perfect
reformulation

q

In principle, we need an arbitrary query language to express cert [q,I]

M. Lenzerini A tutorial on Data Integration 68 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

More about rewriting

We are interested in rewritings r of q wrt I that are:

sound, i.e., compute only tuples in cert(q, I, C) for every C (i.e.,
r ⊆ cert [q,I])

expressed in a given query language L
sound, and maximal for a class of queries L
perfect

A sound rewriting r of q wrt I is maximal for L if for all r′ ∈ L,
r′ ⊆ cert [q,I] implies r 6⊂ r′

M. Lenzerini A tutorial on Data Integration 69 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

More about rewriting

We are interested in rewritings r of q wrt I that are:

sound, i.e., compute only tuples in cert(q, I, C) for every C (i.e.,
r ⊆ cert [q,I])

expressed in a given query language L
sound, and maximal for a class of queries L
perfect

A sound rewriting r of q wrt I is maximal for L if for all r′ ∈ L,
r′ ⊆ cert [q,I] implies r 6⊂ r′

M. Lenzerini A tutorial on Data Integration 69 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

More about rewriting

We are interested in rewritings r of q wrt I that are:

sound, i.e., compute only tuples in cert(q, I, C) for every C (i.e.,
r ⊆ cert [q,I])

expressed in a given query language L
sound, and maximal for a class of queries L
perfect

A sound rewriting r of q wrt I is maximal for L if for all r′ ∈ L,
r′ ⊆ cert [q,I] implies r 6⊂ r′

M. Lenzerini A tutorial on Data Integration 69 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

More about rewriting

We are interested in rewritings r of q wrt I that are:

sound, i.e., compute only tuples in cert(q, I, C) for every C (i.e.,
r ⊆ cert [q,I])

expressed in a given query language L
sound, and maximal for a class of queries L
perfect

A sound rewriting r of q wrt I is maximal for L if for all r′ ∈ L,
r′ ⊆ cert [q,I] implies r 6⊂ r′

M. Lenzerini A tutorial on Data Integration 69 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

More about rewriting

We are interested in rewritings r of q wrt I that are:

sound, i.e., compute only tuples in cert(q, I, C) for every C (i.e.,
r ⊆ cert [q,I])

expressed in a given query language L
sound, and maximal for a class of queries L
perfect

A sound rewriting r of q wrt I is maximal for L if for all r′ ∈ L,
r′ ⊆ cert [q,I] implies r 6⊂ r′

M. Lenzerini A tutorial on Data Integration 69 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Perfect rewriting Part 2: Query answering for relational data

Properties of the perfect rewriting

Can the perfect rewriting be expressed in a certain query language?

For a given class of queries, what is the relationship between a
maximal rewriting and the perfect rewriting?

From a semantical point of view
From a computational point of view

Which is the computational complexity of finding the perfect
rewriting, and how big is it?

Which is the computational complexity of evaluating the perfect
rewriting?

M. Lenzerini A tutorial on Data Integration 70 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 71 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

LAV without constraints – Query answering via rewriting

Given a LAV data integration system I = 〈G,S,M〉, and a query q′

over S, exp(q′) is the query over G that is obtained by substituting
every atom with the view that M associates to it.

Let q be a conjunctive query over G, and q′ a conjunctive query over S.
q′ is a sound rewriting of q if and only if exp(q′) ⊆ q.

We may be interested in exact rewritings, i.e., rewritings q′ that are
logically equivalent to the query, modulo M (i.e., exp(q′) ≡ q).
However, exact rewritings may not exist.

M. Lenzerini A tutorial on Data Integration 72 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

LAV without constraints – Query answering via rewriting

Given a LAV data integration system I = 〈G,S,M〉, and a query q′

over S, exp(q′) is the query over G that is obtained by substituting
every atom with the view that M associates to it.

Let q be a conjunctive query over G, and q′ a conjunctive query over S.
q′ is a sound rewriting of q if and only if exp(q′) ⊆ q.

We may be interested in exact rewritings, i.e., rewritings q′ that are
logically equivalent to the query, modulo M (i.e., exp(q′) ≡ q).
However, exact rewritings may not exist.

M. Lenzerini A tutorial on Data Integration 72 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

Exercise 2

Prove the following:
Let I be a LAV data integration system without constraints in the
global schema, let q be a conjunctive query over G, and let q′ be a
conjunctive query over S. q′ is a sound rewriting of q if and only if
exp(q′) ⊆ q.

Exhibit a LAV data integration system and a query q such that no
exact rewriting of q exists with respect to I.

M. Lenzerini A tutorial on Data Integration 73 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

LAV without constraints – Rewriting for conjunctive queries

Consider a LAV data integration system I = 〈G,S,M〉, and a query q
over G. Let q and the queries in M be conjunctive queries.

Theorem

If the body of q has n atoms, and q′ is a maximal rewriting in the class
of conjunctive queries, then q′ has at most n atoms.

Sketch of the proof: Since q′ is a rewriting of q, we have that
exp(q′) ⊆ q. Consider the homomorphism h from q to exp(q′). Each
atom in q is mapped by h to at most one atom in exp(q′). If there are
more than n atoms in q′, then the expansion of some atom in q′ is
disjoint from the image of h, and then this atom can be removed from
q′ while preserving containment (i.e., q′ is not maximal).

This provides us with an algorithm for computing the set of maximal
conjunctive rewritings.

M. Lenzerini A tutorial on Data Integration 74 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

LAV without constraints – Rewriting for conjunctive queries

Let q′ be the union of all maximal rewritings of q for the class of CQs

Theorem (Levy & al. PODS’95, Abiteboul & Duschka PODS’98)

q′ is the maximal rewriting for the class of unions of conjunctive
queries (UCQs)

q′ is the perfect rewriting of q wrt I
q′ is a PTIME query (actually, LogSpace)

q′ is an exact rewriting (equivalent to q for each database B of I),
if an exact rewriting exists

Does this “ideal situation” carry on to cases where q and M allow for
union?

M. Lenzerini A tutorial on Data Integration 75 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

LAV without constraints – Rewriting for conjunctive queries

Let q′ be the union of all maximal rewritings of q for the class of CQs

Theorem (Levy & al. PODS’95, Abiteboul & Duschka PODS’98)

q′ is the maximal rewriting for the class of unions of conjunctive
queries (UCQs)

q′ is the perfect rewriting of q wrt I
q′ is a PTIME query (actually, LogSpace)

q′ is an exact rewriting (equivalent to q for each database B of I),
if an exact rewriting exists

Does this “ideal situation” carry on to cases where q and M allow for
union?

M. Lenzerini A tutorial on Data Integration 75 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

LAV without constraints – Rewriting for positive views

When queries over the global schema in the mapping contain union:

Computing certain answering is coNP-complete in data complexity
[van der Meyden TCS’93]

Hence, the perfect rewriting cert [q,I] is a coNP-complete query,
and therefore cannot be expressed as a union of conjunctive query

We do not have the ideal situation we had for conjunctive queries

M. Lenzerini A tutorial on Data Integration 76 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

Exercise 3

Prove the following:

When queries over the global schema of a LAV data integration system
without constraints contain union, computing certain answering is
coNP-complete in data complexity

M. Lenzerini A tutorial on Data Integration 77 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

LAV without constraints Part 2: Query answering for relational data

Exercise 4

Define an algorithm based on rewriting for computing the certain
answers to conjunctive queries in GLAV data integration systems
without constraints.

M. Lenzerini A tutorial on Data Integration 78 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 79 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies (IDs)

An inclusion dependency (ID) states that the presence of a tuple ~t1 in a
relation implies the presence of a tuple ~t2 in another relation, where ~t2
contains a projection of the values contained in ~t1

Syntax of inclusion dependencies

r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
with i1, . . . , ik components of r, and j1, . . . , jk components of s

Example

For r of arity 3 and s of arity 2, the ID r[1] ⊆ s[2] corresponds to the
FOL sentence

∀x, y, w. r(x, y, w)→ ∃z. s(z, x)

Note: IDs are a special form of tuple-generating dependencies
M. Lenzerini A tutorial on Data Integration 80 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies (IDs)

An inclusion dependency (ID) states that the presence of a tuple ~t1 in a
relation implies the presence of a tuple ~t2 in another relation, where ~t2
contains a projection of the values contained in ~t1

Syntax of inclusion dependencies

r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
with i1, . . . , ik components of r, and j1, . . . , jk components of s

Example

For r of arity 3 and s of arity 2, the ID r[1] ⊆ s[2] corresponds to the
FOL sentence

∀x, y, w. r(x, y, w)→ ∃z. s(z, x)

Note: IDs are a special form of tuple-generating dependencies
M. Lenzerini A tutorial on Data Integration 80 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies (IDs)

An inclusion dependency (ID) states that the presence of a tuple ~t1 in a
relation implies the presence of a tuple ~t2 in another relation, where ~t2
contains a projection of the values contained in ~t1

Syntax of inclusion dependencies

r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
with i1, . . . , ik components of r, and j1, . . . , jk components of s

Example

For r of arity 3 and s of arity 2, the ID r[1] ⊆ s[2] corresponds to the
FOL sentence

∀x, y, w. r(x, y, w)→ ∃z. s(z, x)

Note: IDs are a special form of tuple-generating dependencies
M. Lenzerini A tutorial on Data Integration 80 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies – Example

Global schema G: player(Pname,YOB ,Pteam)
team(Tname,Tcity ,Tleader)

Constraints: team[Tleader ,Tname] ⊆ player[Pname,Pteam]

Sources S: s1 and s3 store players
s2 stores teams

Mapping M: ∀x, y, z s1(x, y, z) ∨ s3(x, y, z) → player(x, y, z)
∀x, y, z s2(x, y, z) → team(x, y, z)

M. Lenzerini A tutorial on Data Integration 81 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies – Example retrieved global db

Source database C:

s1: Totti 1971 Roma s2: Juve Torino Del Piero

s3: Buffon 1978 Juve

Retrieved global database M(C):

player:
Totti 1971 Roma
Buffon 1978 Juve

team: Juve Torino Del Piero

M. Lenzerini A tutorial on Data Integration 82 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies – Example retrieved global db

Source database C:

s1: Totti 1971 Roma s2: Juve Torino Del Piero

s3: Buffon 1978 Juve

Retrieved global database M(C):

player:
Totti 1971 Roma
Buffon 1978 Juve

team: Juve Torino Del Piero

M. Lenzerini A tutorial on Data Integration 82 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies – Example retrieved global db

player:

Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team:

Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All global databases satisfying I have at least the tuples shown above,
where α is some value of the domain ∆

Warnings

1 There may be an infinite number of databases satisfying I
2 In case of cyclic IDs, databases satisfying I may be of infinite size

M. Lenzerini A tutorial on Data Integration 83 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies – Example retrieved global db

player:

Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team:

Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All global databases satisfying I have at least the tuples shown above,
where α is some value of the domain ∆

Warnings

1 There may be an infinite number of databases satisfying I
2 In case of cyclic IDs, databases satisfying I may be of infinite size

M. Lenzerini A tutorial on Data Integration 83 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Inclusion dependencies – Example retrieved global db

player:

Totti 1971 Roma
Buffon 1978 Juve

Del Piero α Juve

team:

Juve Torino Del Piero

The ID on the global schema tells us that Del Piero is a player of Juve

All global databases satisfying I have at least the tuples shown above,
where α is some value of the domain ∆

Warnings

1 There may be an infinite number of databases satisfying I
2 In case of cyclic IDs, databases satisfying I may be of infinite size

M. Lenzerini A tutorial on Data Integration 83 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Chasing inclusion dependencies – Infinite construction

Intuitive strategy: Add new facts until IDs are satisfied

Problem: Infinite construction in the presence of cyclic IDs

Example

Let r be binary with
r[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add r(b, c1)
2 add r(c1, c2)
3 add r(c2, c3)
4 . . . (ad infinitum)

Example

Let r, s be binary with
r[1] ⊆ s[1], s[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add s(a, c1)
2 add r(c1, c2)
3 add s(c1, c3)
4 add r(c3, c4)
5 . . . (ad infinitum)

M. Lenzerini A tutorial on Data Integration 84 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Chasing inclusion dependencies – Infinite construction

Intuitive strategy: Add new facts until IDs are satisfied

Problem: Infinite construction in the presence of cyclic IDs

Example

Let r be binary with
r[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add r(b, c1)
2 add r(c1, c2)
3 add r(c2, c3)
4 . . . (ad infinitum)

Example

Let r, s be binary with
r[1] ⊆ s[1], s[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add s(a, c1)
2 add r(c1, c2)
3 add s(c1, c3)
4 add r(c3, c4)
5 . . . (ad infinitum)

M. Lenzerini A tutorial on Data Integration 84 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Chasing inclusion dependencies – Infinite construction

Intuitive strategy: Add new facts until IDs are satisfied

Problem: Infinite construction in the presence of cyclic IDs

Example

Let r be binary with
r[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add r(b, c1)
2 add r(c1, c2)
3 add r(c2, c3)
4 . . . (ad infinitum)

Example

Let r, s be binary with
r[1] ⊆ s[1], s[2] ⊆ r[1]

Suppose M(C) = { r(a, b) }
1 add s(a, c1)
2 add r(c1, c2)
3 add s(c1, c3)
4 add r(c3, c4)
5 . . . (ad infinitum)

M. Lenzerini A tutorial on Data Integration 84 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

The ID-chase rule

The chase for IDs has only one rule, the ID-chase rule

Let D be a database:

if the schema contains the ID r[i1, . . . , ik] ⊆ s[j1, . . . , jk]
and there is a fact in D of the form r(a1, . . . , an)
and there are no facts in D of the form s(b1, . . . , bm)

such that ai` = bj`
for each ` ∈ {1, . . . , k},

then add to D the fact s(c1, . . . , cm),
where for each h ∈ {1, . . . ,m},

if h = j` for some ` then ch = ai`

otherwise ch is a new constant symbol (not in D yet)

Notice: New existential symbols are introduced (skolem terms)

M. Lenzerini A tutorial on Data Integration 85 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Properties of the chase

Bad news: the chase is in general infinite

Good news: the chase identifies a canonical database (with
variables)

We can use the chase to prove soundness and completeness of a
query processing method

. . . but only for positive queries!

M. Lenzerini A tutorial on Data Integration 86 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Limiting the chase

Why don’t we use a finite number of existential constants in the chase?

Example

Consider r[1] ⊆ s[1], and s[2] ⊆ r[1] and suppose M(C) = { r(a, b) }

Compute chase(M(C)) with only one new constant c1:
0) r(a, b); 1) add s(a, c1) 2) add r(c1, c1) 3) add s(c1, c1)

This database is not a canonical database for I wrt C
E.g., for query q = { (x) | r(x, y), s(y, y) }, we have a ∈ qchase(M(C))

while a 6∈ cert(q, I, C)

Arbitrarily limiting the chase is unsound, for any finite number of new
constants

M. Lenzerini A tutorial on Data Integration 87 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Rewriting: Chasing the query

Instead of chasing the data, we chase the query

Is the dual notion of the database chase

IDs are applied from right to left to the query atoms

Advantage: much easier termination conditions, which imply:

decidability properties
efficiency

This technique provides an algorithm for rewriting UCQs under IDs

M. Lenzerini A tutorial on Data Integration 88 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Rewriting rule for inclusion dependencies

Intuition: Use the IDs as basic rewriting rules

Example

Consider a query q = { (x, z) | player(x, y, z) }

and the constraint team[Tleader ,Tname] ⊆ player[Pname,Pteam]
as a logic rule: player(w3, w4, w1) ← team(w1, w2, w3)

We add to the rewriting the query q′ = { (x, z) | team(x, y, z) }

Definition

Basic rewriting step:

when an atom unifies with the head of the rule

substitute the atom with the body of the rule

M. Lenzerini A tutorial on Data Integration 89 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Rewriting rule for inclusion dependencies

Intuition: Use the IDs as basic rewriting rules

Example

Consider a query q = { (x, z) | player(x, y, z) }

and the constraint team[Tleader ,Tname] ⊆ player[Pname,Pteam]
as a logic rule: player(w3, w4, w1) ← team(w1, w2, w3)

We add to the rewriting the query q′ = { (x, z) | team(x, y, z) }

Definition

Basic rewriting step:

when an atom unifies with the head of the rule

substitute the atom with the body of the rule

M. Lenzerini A tutorial on Data Integration 89 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Rewriting rule for inclusion dependencies

Intuition: Use the IDs as basic rewriting rules

Example

Consider a query q = { (x, z) | player(x, y, z) }

and the constraint team[Tleader ,Tname] ⊆ player[Pname,Pteam]
as a logic rule: player(w3, w4, w1) ← team(w1, w2, w3)

We add to the rewriting the query q′ = { (x, z) | team(x, y, z) }

Definition

Basic rewriting step:

when an atom unifies with the head of the rule

substitute the atom with the body of the rule

M. Lenzerini A tutorial on Data Integration 89 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Query Rewriting for IDs – Algorithm ID-rewrite

Iterative execution of:
1 Reduction:

Atoms that unify with other atoms are eliminated and the
unification is applied
Variables that appear only once are marked

2 Basic rewriting step

A rewriting step is applicable to an atom if it does not eliminate
variables that appear somewhere else
May introduce fresh variables

Note: The algorithm works directly for unions of conjunctive queries
(UCQs), and produces an UCQ as result

M. Lenzerini A tutorial on Data Integration 90 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Query Rewriting for IDs – Algorithm ID-rewrite

Iterative execution of:
1 Reduction:

Atoms that unify with other atoms are eliminated and the
unification is applied
Variables that appear only once are marked

2 Basic rewriting step

A rewriting step is applicable to an atom if it does not eliminate
variables that appear somewhere else
May introduce fresh variables

Note: The algorithm works directly for unions of conjunctive queries
(UCQs), and produces an UCQ as result

M. Lenzerini A tutorial on Data Integration 90 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

The algorithm ID-rewrite

Input: relational schema G, set ΨID of IDs, UCQ Q
Output: perfect rewriting of Q
Q′ := Q;
repeat

Qaux := Q′;
for each q ∈ Qaux do
(a) for each g1, g2 ∈ body(q) do

if g1 and g2 unify then Q′ := Q′ ∪ {τ(reduce(q, g1, g2))};
(b) for each g ∈ body(q) do

for each ID ∈ ΨID do
if ID is applicable to g

then Q′ := Q′ ∪ { q[g/rewrite(g, ID)] }
until Qaux = Q′;
return Q′

M. Lenzerini A tutorial on Data Integration 91 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Query answering in GAV under IDs

Properties of ID-rewrite

ID-rewrite terminates

ID-rewrite produces a perfect rewriting of the input query

More precisely, let unfM(q) be the unfolding of the query q wrt the GAV
mapping M

Theorem

unfM(ID-rewrite(q)) is a perfect rewriting of the query q

Theorem

Query answering in GAV systems under IDs is in PTime in data
complexity (actually in LogSpace)

M. Lenzerini A tutorial on Data Integration 92 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Query answering in GAV under IDs

Properties of ID-rewrite

ID-rewrite terminates

ID-rewrite produces a perfect rewriting of the input query

More precisely, let unfM(q) be the unfolding of the query q wrt the GAV
mapping M

Theorem

unfM(ID-rewrite(q)) is a perfect rewriting of the query q

Theorem

Query answering in GAV systems under IDs is in PTime in data
complexity (actually in LogSpace)

M. Lenzerini A tutorial on Data Integration 92 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

GAV with constraints Part 2: Query answering for relational data

Exercise 5

An exclusion dependency (ED) states that the presence of a tuple ~t1 in
a relation implies the absence of a tuple ~t2 in another relation, where ~t2
contains a projection of the values contained in ~t1

Syntax of exclusion dependencies

r[i1, . . . , ik] ∩ s[j1, . . . , jk] = ∅
with i1, . . . , ik components of r, and j1, . . . , jk components of s

Find an algorithm for computing certain answers to conjunctive queries
in GAV with inclusion and exclusion dependencies.

M. Lenzerini A tutorial on Data Integration 93 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 94 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Query answering based on counterexample

Given I, C, q, and ~t, a counterexample to ~t ∈ cert(q, I, C) is a database
B ∈ semC(I) such that ~t 6∈ qB

Thus, query answering based on counterexample can be described as
follows:

Given I, C, q, and ~t, check whether there exists a counterexample to
~t ∈ cert(q, I, C)

M. Lenzerini A tutorial on Data Integration 95 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Exercise 6

Consider the case of LAV with positive views.

~t 6∈ cert(q, I, C) iff there is a database B1 ∈ semC(I) such that ~t 6∈ qB1

In LAV with positive views, the mapping M has the form:

∀~x. φS(~x) → ∃~y1. α1(~x, ~y1) ∨ · · · ∨ ∃~yh αh(~x, ~yh))

Find an algorithm for computing certain answers to conjuntive queries in
LAV with positive views

M. Lenzerini A tutorial on Data Integration 96 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Outline

4 Approaches to query answering

5 Canonical database
The notion of canonical database
GAV without constraints

6 Query rewriting
What is a rewriting
Perfect rewriting
LAV without constraints
GAV with constraints

7 Counterexamples

8 Query containment

M. Lenzerini A tutorial on Data Integration 97 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Query containment under constraints

Definition

Query containment (under constraints) is the problem of checking
whether qD1 is contained in qD2 for every database D (satisfying the
constraints), where q1, q2 are queries of the same arity

M. Lenzerini A tutorial on Data Integration 98 / 132

Approaches to query answering Canonical database Query rewriting Counterexamples Query containment

Part 2: Query answering for relational data

Exercise 7

How can we solve the problem of computing the certain answers in
terms of containment?

M. Lenzerini A tutorial on Data Integration 99 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Part III

Beyond relational data

M. Lenzerini A tutorial on Data Integration 100 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Outline

9 Semi-structured data integration
Semi-structured data and queries
Graph databases

10 Ontology-based data integration

M. Lenzerini A tutorial on Data Integration 101 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Outline

9 Semi-structured data integration
Semi-structured data and queries
Graph databases

10 Ontology-based data integration

M. Lenzerini A tutorial on Data Integration 102 / 132

Semi-structured data integration Ontology-based data integration

Semi-structured data and queries Part 3: Beyond relational data

Outline

9 Semi-structured data integration
Semi-structured data and queries
Graph databases

10 Ontology-based data integration

M. Lenzerini A tutorial on Data Integration 103 / 132

Semi-structured data integration Ontology-based data integration

Semi-structured data and queries Part 3: Beyond relational data

Introduction to semi-structured data integration

The global schema (and possibly the sources) is expressed in a formalism
aimed at modeling data with more flexibility wrt the relational model

There are at least two types of semi-structured data models

Graph databases
Talk 18 – Paolo Guagliardo “View-based query processing”

XML data
Talk 14 – Lucja Kot, “XML data integration”

M. Lenzerini A tutorial on Data Integration 104 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

Outline

9 Semi-structured data integration
Semi-structured data and queries
Graph databases

10 Ontology-based data integration

M. Lenzerini A tutorial on Data Integration 105 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

Graph databases

A graph database is a finite directed graph whose edges are labeled with
a given finite alphabet Σ.

Each node represents an object, and an edge from x to y labeled r
represents the fact that the relation r holds between x and y.

The basic query language for graph databases is the language of regular
path queries. A regular path query (RPQ) over Σ is defined in terms of
a regular language over Σ. The answer Q(D) to an RPQ Q over a
grapg database D is the set of pairs of objects connected in D by a
path traversing a sequence of edges forming a word in the regular
language L(Q) defined by Q.

M. Lenzerini A tutorial on Data Integration 106 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

Global semi-structured database

sub sub

sub var sub sub sub

sub sub sub

calls

calls

calls
var var var var

M. Lenzerini A tutorial on Data Integration 107 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

Global semi-structured databases and queries

sub sub

sub var sub sub sub

sub sub sub

calls

calls

calls
var var var var

a

b

Regular Path Query (RPQ): (sub)∗ · (sub · (calls ∪ sub))∗ · var

M. Lenzerini A tutorial on Data Integration 108 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

Global semi-structured databases and queries

sub sub

sub var sub sub sub

sub sub sub

calls

calls

calls
var var var var

a

b

2RPQ: (sub−)∗ · (var ∪ sub)

M. Lenzerini A tutorial on Data Integration 109 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

The case of RPQ with LAV mappings

Given

I = 〈G,S,M〉, where

G simply fixes the labels (alphabet Σ) of a semi-structured database
the sources in S are binary relations
the mapping M is of type LAV, and associates to each source s a
2RPQ w over Σ

∀x, y s(x, y) ⊆ x w→ y

a source database C
a 2RPQ Q over Σ
a pair of objects ~t

we want to determine whether ~t ∈ cert(Q, I, C).

M. Lenzerini A tutorial on Data Integration 110 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

Query answering: Technique

We search for a counterexample to ~t ∈ cert(Q, I, C), i.e., a
database B ∈ semC(I) such that ~t 6∈ cert(Q, I, C)
Crucial point: it is sufficient to restrict our attention to canonical
databases, i.e., databases B that can be represented by a word wB

$ d1 w1 d2 $ d3 w2 d4 $ · · · $ d2m−1 wm d2m $

where d1, . . . , d2m are constants in C, wi ∈ Σ+, and $ acts as a
separator

⇒ Use word-automata theoretic techniques! [Calvanese & al.
PODS 2000]

M. Lenzerini A tutorial on Data Integration 111 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

Query answering: Technique

To check whether (c, d) 6∈ cert(Q, I, C), we check for nonemptiness of
A, that is the intersection of

the one-way automaton A0 that accepts words that represent
databases, i.e., words of the form ($· C·Σ+· C)∗·$
the one-way automata corresponding to the various A(Si,a,b) (for

each source Si and for each pair (a, b) ∈ SCi)

the one-way automaton corresponding to the complement of
A(Q,c,d)

Indeed, any word accepted by such intersection automaton represents a
counterexample to (c, d) ∈ cert(Q, I, C).

M. Lenzerini A tutorial on Data Integration 112 / 132

Semi-structured data integration Ontology-based data integration

Graph databases Part 3: Beyond relational data

Query answering: Complexity

All two-way automata constructed above are of linear size in the
size of Q, the queries associated to S1, . . . , Sk, and SC1 , . . . , S

C
k .

Hence, the corresponding one-way automata would be exponential.

However, we do not need to construct A explicitly. Instead, we can
construct it on the fly while checking for nonemptiness.

Query answering for 2RPQs is PSPACE-complete in combined
complexity, and coNP-complete in data complexity.

M. Lenzerini A tutorial on Data Integration 113 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Outline

9 Semi-structured data integration
Semi-structured data and queries
Graph databases

10 Ontology-based data integration

M. Lenzerini A tutorial on Data Integration 114 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

The use of ontologies in data integration

The global schema is expressed as an ontology, aimed at modeling the
domain of discourse from a conceptual point of view, in turn expressed
in termis of logic.

Description Logics (DLs) [Baader & al. 2003] are logics specifically
designed to represent and reason on structured knowledge. The domain
of interest is composed of objects and is structured into:

concepts, which correspond to classes, and denote sets of objects

roles, which correspond to (binary) relationships, and denote binary
relations on objects

The knowledge is asserted through so-called assertions, i.e., logical
axioms.

M. Lenzerini A tutorial on Data Integration 115 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Brief history of Description Logics

1977 KL-ONE Workshop: from Semantic Networks and Frames
to Description Logics

1984 Trade-off expressiveness – complexity of inference
[Brachman & al. 1984]

1986 Description logics for conceptual modeling

1989 Classic system – polynomial inference, but no assertions

1990 Expressive DLs – tableaux correspondence with modal
logic and PDLs automata

1995 Conceptual models fully captured in DLs

1998 Optimized tableaux make expressive DLs practical Query
answering in DLs

2000 Standardization efforts – OIL, DAML+OIL, OWL, OWL2

2005 Polynomial DLs with assertions – EL, DL-Lite

M. Lenzerini A tutorial on Data Integration 116 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Ingredients of a Description Logic

A DL is characterized by:

1 A description language: how to form concepts and roles
Human uMale u ∃hasChild u ∀hasChild.(Doctor t Lawyer)

2 A mechanism to specify knowledge about concepts and roles (i.e., a
TBox)
T = { Father ≡ Human uMale u ∃hasChild,

HappyFather v Father u ∀hasChild.(Doctor t Lawyer) }
3 A mechanism to specify properties of objects (i.e., an ABox)
A = { HappyFather(john), hasChild(john, mary) }

4 A set of inference services: how to reason on a given KB
T |= HappyFather v ∃hasChild.(Doctor t Lawyer)
T ∪ A |= (Doctor t Lawyer)(mary)

M. Lenzerini A tutorial on Data Integration 117 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Description language

A description language provides the means for defining:

concepts, corresponding to classes: interpreted as sets of objects;

roles, corresponding to relationships: interpreted as binary relations
on objects.

To define concepts and roles:

We start from a (finite) alphabet of atomic concepts and atomic
roles, i.e., simply names for concept and roles.

Then, by applying specific constructors, we can build complex
concepts and roles, starting from the atomic ones.

A description language is characterized by the set of constructs that are
available for that.

M. Lenzerini A tutorial on Data Integration 118 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Semantics of a description language

The formal semantics of DLs is given in terms of interpretations.

An interpretation I = (∆I , ·I) consists of:

a nonempty set ∆I , the domain of I
an interpretation function ·I , which maps

each individual a to an element aI of ∆I

each atomic concept A to a subset AI of ∆I

each atomic role P to a subset P I of ∆I ×∆I

The interpretation function is extended to complex concepts and roles
according to their syntactic structure.

M. Lenzerini A tutorial on Data Integration 119 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Concept constructors

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

atomic negation ¬A ¬Doctor ∆I \AI

conjunction C uD Hum uMale CI ∩DI

(unqual.) exist. res. ∃R ∃hasChild { a | ∃b. (a, b) ∈ RI }
value restriction ∀R.C ∀hasChild.Male {a | ∀b. (a, b) ∈ RI → b ∈ CI}
bottom ⊥ ∅
(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language AL of the family of AL
languages.

M. Lenzerini A tutorial on Data Integration 120 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Concept constructors

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

atomic negation ¬A ¬Doctor ∆I \AI

conjunction C uD Hum uMale CI ∩DI

(unqual.) exist. res. ∃R ∃hasChild { a | ∃b. (a, b) ∈ RI }
value restriction ∀R.C ∀hasChild.Male {a | ∀b. (a, b) ∈ RI → b ∈ CI}
bottom ⊥ ∅
(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language AL of the family of AL
languages.

M. Lenzerini A tutorial on Data Integration 120 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Further examples of DL constructs

Disjunction U : Doctor t Lawyer

Qualified existential restriction E : ∃hasChild.Doctor

Full negation C: ¬(Doctor t Lawyer)

Number restrictions N : (≥ 2 hasChild) (≤ 1 sibling)

Qualified number restrictions Q: (≥ 2 hasChild. Doctor)

Inverse role I: ∃hasChild−.Doctor

Reflexive-transitive role closure reg : ∃hasChild∗.Doctor

M. Lenzerini A tutorial on Data Integration 121 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Structural properties vs. asserted properties

We have seen how to build complex concept and roles expressions,
which allow one to denote classes with a complex structure.

However, in order to represent real world domains, one needs the ability
to assert properties of classes and relationships between them (e.g., as
done in UML class diagrams).

The assertion of properties is done in DLs by means of an ontology.

M. Lenzerini A tutorial on Data Integration 122 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Description Logics ontology

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:
The TBox consists of a set of assertions on concepts and roles:

Inclusion assertions on concepts: C1 v C2

Inclusion assertions on roles: R1 v R2

Property assertions on (atomic) roles:
(transitive P) (symmetric P) (domain P C)
(functional P) (reflexive P) (range P C) · · ·

The ABox consists of a set of membership assertions on individuals:

for concepts: A(c)
for roles: P (c1, c2) (we use ci to denote individuals)

M. Lenzerini A tutorial on Data Integration 123 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Description Logics ontology

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:
The TBox consists of a set of assertions on concepts and roles:

Inclusion assertions on concepts: C1 v C2

Inclusion assertions on roles: R1 v R2

Property assertions on (atomic) roles:
(transitive P) (symmetric P) (domain P C)
(functional P) (reflexive P) (range P C) · · ·

The ABox consists of a set of membership assertions on individuals:

for concepts: A(c)
for roles: P (c1, c2) (we use ci to denote individuals)

M. Lenzerini A tutorial on Data Integration 123 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Description Logics ontology – Example

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

TBox assertions:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t Happy)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer
Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant),
(functional hasFather)

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)
M. Lenzerini A tutorial on Data Integration 124 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Description Logics ontology – Example

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

TBox assertions:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t Happy)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer
Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant),
(functional hasFather)

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)
M. Lenzerini A tutorial on Data Integration 124 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Semantics of a Description Logics ontology

The semantics is given by specifying when an interpretation I satisfies
an assertion:

C1 v C2 is satisfied by I if CI1 ⊆ CI2 .

R1 v R2 is satisfied by I if RI1 ⊆ RI2 .

A property assertion (prop P) is satisfied by I if P I is a relation
that has the property prop.

A(c) is satisfied by I if cI ∈ AI .

P (c1, c2) is satisfied by I if (cI1 , c
I
2) ∈ P I .

This leads to the notion of model of a DL ontology. An interpretation I
is a model of O = 〈T ,A〉 if it satisfies all assertions in T and all
assertions in A.

M. Lenzerini A tutorial on Data Integration 125 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Semantics of a Description Logics ontology

The semantics is given by specifying when an interpretation I satisfies
an assertion:

C1 v C2 is satisfied by I if CI1 ⊆ CI2 .

R1 v R2 is satisfied by I if RI1 ⊆ RI2 .

A property assertion (prop P) is satisfied by I if P I is a relation
that has the property prop.

A(c) is satisfied by I if cI ∈ AI .

P (c1, c2) is satisfied by I if (cI1 , c
I
2) ∈ P I .

This leads to the notion of model of a DL ontology. An interpretation I
is a model of O = 〈T ,A〉 if it satisfies all assertions in T and all
assertions in A.

M. Lenzerini A tutorial on Data Integration 125 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Example

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..*

1..1

boss

projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations
are expressed by means of concept inclu-
sions.

M. Lenzerini A tutorial on Data Integration 126 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Example

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..*

1..1

boss

projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations
are expressed by means of concept inclu-
sions.

M. Lenzerini A tutorial on Data Integration 126 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Example

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..*

1..1

boss

projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations
are expressed by means of concept inclu-
sions.

M. Lenzerini A tutorial on Data Integration 126 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Example

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..*

1..1

boss

projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations
are expressed by means of concept inclu-
sions.

M. Lenzerini A tutorial on Data Integration 126 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Example

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..*

1..1

boss

projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations
are expressed by means of concept inclu-
sions.

M. Lenzerini A tutorial on Data Integration 126 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Example

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..*

1..1

boss

projectName: String

Project
1..*

1..1

1..1

worksFor

manages

3..*

{disjoint, complete}

Manager v Employee
AreaManager v Manager
TopManager v Manager

Manager v AreaManager t
TopManager

AreaManager v ¬TopManager

Employee v ∃salary
∃salary− v Integer

∃worksFor v Employee
∃worksFor− v Project

Employee v ∃worksFor
Project v (≥ 3 worksFor−)

(funct manages)
(funct manages−)

manages v worksFor
· · ·

Note: Domain and range of associations
are expressed by means of concept inclu-
sions.

M. Lenzerini A tutorial on Data Integration 126 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

TBox reasoning

Concept Satisfiability:
C is satisfiable wrt T , if CI is not empty for some model I of T .

Subsumption:
C1 is subsumed by C2 wrt T , if CI1 ⊆ CI2 for every model I of T .

Equivalence:
C1 and C2 are equivalent wrt T , if CI1 = CI2 for every model I of
T .

Disjointness:
C1 and C2 are disjoint wrt T , if CI1 ∩ CI2 = ∅ for every model I of
T .

Analogous definitions hold for role satisfiability, subsumption,
equivalence, and disjointness.

M. Lenzerini A tutorial on Data Integration 127 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Reasoning over an ontology

Ontology Satisfiability: Verify whether an ontology O is satisfiable,
i.e., whether O admits at least one model.

Concept Instance Checking: Verify whether an individual c is an
instance of a concept C in every model of O.

Role Instance Checking: Verify whether a pair (c1, c2) of individuals
is an instance of a role R in every model of O.

Query Answering: see later . . .

M. Lenzerini A tutorial on Data Integration 128 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Reasoning in Description Logics – Example

TBox:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t Happy)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer
Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant),
(functional hasFather)

The above TBox logically implies: HappyAncestor v Father.
ABox:

Teacher(mary), hasFather(mary, john), HappyAnc(john)

The above TBox and ABox logically imply: Happy(mary)
M. Lenzerini A tutorial on Data Integration 129 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Reasoning in Description Logics – Example

TBox:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t Happy)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer
Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant),
(functional hasFather)

The above TBox logically implies: HappyAncestor v Father.
ABox:

Teacher(mary), hasFather(mary, john), HappyAnc(john)

The above TBox and ABox logically imply: Happy(mary)
M. Lenzerini A tutorial on Data Integration 129 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Reasoning in Description Logics – Example

TBox:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t Happy)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer
Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant),
(functional hasFather)

The above TBox logically implies: HappyAncestor v Father.
ABox:

Teacher(mary), hasFather(mary, john), HappyAnc(john)

The above TBox and ABox logically imply: Happy(mary)
M. Lenzerini A tutorial on Data Integration 129 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Reasoning in Description Logics – Example

TBox:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.(Doctor t Lawyer t Happy)
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer
Inclusion assertions on roles:
hasChild v descendant hasFather v hasChild−

Property assertions on roles:
(transitive descendant), (reflexive descendant),
(functional hasFather)

The above TBox logically implies: HappyAncestor v Father.
ABox:

Teacher(mary), hasFather(mary, john), HappyAnc(john)

The above TBox and ABox logically imply: Happy(mary)
M. Lenzerini A tutorial on Data Integration 129 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Complexity of reasoning over DL ontologies

TBox reasoning over DL ontologies is in general complex:

TBox reasoning over ontologies in virtually all traditional DLs is
ExpTime-hard

Stays in ExpTime even in the most expressive DLs (except when
using nominals, i.e., ObjectOneOf).

There are TBox reasoners that perform reasonably well in practice
for such DLs (e.g, Racer, Pellet, Fact++, . . .)

M. Lenzerini A tutorial on Data Integration 130 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Queries over Description Logics ontologies

If we want to use ontologies as global schemas in data integration, we
have to allow for queries expressed over a DL ontology

A conjunctive query q(~x) over an ontology O = 〈T ,A〉 has the form
q(~x)← ∃~y. conj (~x, ~y) where conj (~x, ~y) is a conjunction of atoms which

has as predicate symbol an atomic concept or role of T , and

may use variables and constants that are individuals in A

The certain answers to q(~x) over O = 〈T ,A〉, denoted cert(q,O) are
the tuples ~c of constants such that ~c ∈ qI , for every model I of O.

DLs must be restricted considerably if we want tractable conjunctive
query answering (even when the complexity is measured wrt the size of
the ABox only)

M. Lenzerini A tutorial on Data Integration 131 / 132

Semi-structured data integration Ontology-based data integration

Part 3: Beyond relational data

Related talks at DEIS’10

Talk 2 – Piotr Wieczorek, “Query answering in data integration”

Talk 7 – Slawomir Staworko, “Consistent query answering”

Talk 8 – Yazmin A. Ibanez, “Description logics for data integration”

Talk 9 – Ekaterini Ioannou, “Data cleaning for data integration”

Talk 10 – Armin Roth, “Peer data management systems”

Talk 11 – Sebastian Skritek, “Theory of Peer Data Management”

Talk 14 – Lucja Kot, “XML data integration”

Talk 18 – Paolo Guagliardo “View-based query processing”

Talk 22 – Marie Jacob, “Learning and discovering queries and
mappings”

M. Lenzerini A tutorial on Data Integration 132 / 132

	Part 1: Introduction to data integration
	Motivations
	What is data integration?
	Variants of data integration
	Issues in data integration

	Data integration: Logical formalization
	Syntax and semantics of a data integration system
	Queries to a data integration system

	Mappings
	Types of mappings
	GAV mappings
	LAV mappings
	GLAV mappings

	Part 2: Query answering for relational data
	Approaches to query answering
	Canonical database
	The notion of canonical database
	GAV without constraints

	Query rewriting
	What is a rewriting
	Perfect rewriting
	LAV without constraints
	GAV with constraints

	Counterexamples
	Query containment

	Part 3: Beyond relational data
	Semi-structured data integration
	Semi-structured data and queries
	Graph databases

	Ontology-based data integration

