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Outline of the Tutorial

� Schema Mappings as a framework for formalizing and 
studying data interoperability tasks.

� Data Exchange and Solutions in Data Exchange

� Universal Solutions and the Core.

� Query Answering in Data Exchange.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants
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The Information Integration Challenge

� Data may reside

� at several different sites

� in several different formats (relational, XML, …).

� Applications need to access and process all these data.

� Growing market of enterprise information integration  
tools:

� About $1.5B per year; 17% annual rate of growth.

� Information integration consumes 40% of the budget 
of enterprise information technology shops. 
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Gartner’s Magic Quadrant Report on 
Information Integration Products  
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Two Facets of Information Integration

The research community has studied two different, but 

closely related, facets of information integration:

� Data Integration (aka Data Federation)

� Data Exchange  (aka Data Translation)
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Data Integration
Query heterogeneous data in different sources via a virtual 

global schema
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Data Exchange

Transform data structured under a source schema into data 
structured under a different target schema.

S T

Σ

I
J

Source Schema Target Schema

Merges and acquisitions, …
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Schema Mappings

� Schema mappings constitute the essential building blocks in 
formalizing and studying data integration and data exchange.

� Schema mappings are:

High-level, declarative assertions that specify  the relationship

between two database schemas.

� Schema mappings make it possible to separate the design of the 
relationship between schemas from its implementation. 

� Are easier to generate and manage (semi)-automatically;

� Can be compiled into SQL/XSLT scripts automatically.



10

Schema Mappings

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� High-level, declarative assertions Σ that specify the 
relationship between S and T. 

� Question: What is a “good” schema-mapping specification 
language?

Σ
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Schema-Mapping Specification Languages

� Obvious Idea:

Use a logic-based language to specify schema mappings.  

In particular, use first-order logic. 

� Warning:

Unrestricted use of first-order logic as a schema-mapping 
specification language gives rise to undecidability of basic 
algorithmic problems about schema mappings.
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Schema-Mapping Specification Languages

Every schema-mapping specification language should support:

� Copy (Nicknaming):

� Copy each source table to a target table and rename it.

� Projection (Column Deletion):

� Form a target table by deleting one or more columns of a 
source table.

� Column Addition:

� Form a target table by adding one or more columns to a 
source table.

� Decomposition:

� Decompose a source table into two or more target tables.

� Join:

� Form a target table by joining two or more source tables.

� Combinations of the above (e.g., “join + column addition+ …”)
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Schema-Mapping Specification Languages

� Copy (Nicknaming):

� ∀x1, …,xn(P(x1,…,xn) → R(x1,…,xn))

� Projection:

� ∀x,y,z(P(x,y,z) → R(x,y))

� Column Addition:

� ∀x,y (P(x,y) → ∃ z R(x,y,z))

� Decomposition:

� ∀x,y,z (P(x,y,z) → R(x,y) Æ T(y,z))

� Join:

� ∀x,y,z(E(x,z)ÆF(z,y) → R(x,z,y))

� Combinations of the above (e.g., “join + column addition + …”):

� ∀x,y,z(E(x,z)Æ F(z,y) → ∃ w (R(x,y) Æ T(x,y,z,w)))
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Schema-Mapping Specification Languages

� Question: What do all these tasks (copy, projection, column 
augmentation, decomposition, join) have in common?

� Answer:

� They can be specified using

tuple-generating dependencies (tgds).

� In fact, they can be specified using a special class of 

tuple-generating dependencies known as 

source-to-target tuple generating dependencies (s-t tgds).
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Database Integrity Constraints

� Dependency Theory: extensive study of integrity constraints in 
relational databases in the 1970s and 1980s

(Codd, Fagin, Beeri, Vardi …)

� Tuple-generating dependencies (tgds) emerged as an important 
class of constraints with a balance between high expressive power
and good algorithmic properties. Tgds are expressions of the form

∀ x (ϕ(x) → ∃ y ψ(x, y )), where

ϕ(x), ψ(x, y ) are conjunctions of atomic formulas.

Special Cases: 

� Inclusion Dependencies

� Multivalued Dependencies
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Tuple-Generating Dependencies

� “A Formal System for Euclid's Elements”
by J. Avigad, E. Dean, J. Mumma

The Review of Symbolic Logic, 2009

� Claim:

All theorems in Euclid's Elements can be expressed by
tuple-generating dependencies!
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Schema-Mapping Specification Language

The relationship between source and target is given by

source-to-target tuple generating dependencies (s-t tgds)

∀x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x)     is a conjunction of atoms over the source; 

� ψ(x, y) is a conjunction of atoms over the target. 

Examples:

� ∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))

� (dropping the universal quantifiers in the front)

Student (s) ∧ Enrolls(s,c) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))
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Schema-Mapping Specification Language

Fact: s-t tgds are also known as 

GLAV (global-and-local-as-view) constraints:

� They generalize LAV (local-as-view) constraints:

∀x ( P(x)  → ∃y ψ(x, y)), where P is a source relation.

� They generalize GAV (global-as-view) constraints:

∀x (ϕ(x)  → R(x)),  where R is a target relation.
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LAV and GAV Constraints

Examples of LAV (local-as-view) constraints:

� Copy and projection

� Decomposition: ∀x ∀y ∀z (P(x,y,z) → R(x,y) Æ T(y,z))

� ∀x ∀y (E(x,y) → ∃ z (H(x,z)Æ H(z,y))) 

Examples of GAV (global-as-view) constraints:

� Copy and projection

� Join: ∀x ∀y ∀z (E(x,y) Æ E(y,z) → F(x,z))

Note:  

∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))

is a GLAV constraint that is neither a LAV nor a GAV constraint
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Semantics of Schema Mappings 

Source  S Target  T

� M = (S, T, Σ) schema mapping with Σ a set of s-t tgds

� From a semantic point of view,  M can be identified with

Inst(M) = { (I,J):  I is a sourse instance,
J is a target instance, and (I,J) � Σ } 

(this is open-world-assumption semantics)

� A solution for a source instance I is a target instance J 
such that (I,J) ∈ Inst(M)  (i.e., (I,J) � Σ).

I
J

Σ
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Schema Mappings & Data Exchange

Source  S Target  T

� Data Exchange via the schema mapping M = (S, T, Σ):

Given a source instance I, construct a solution J for I.

� Difficulty:

� Typically, there are multiple solutions

� Which one is the “best” to materialize?

I
J

Σ
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Over/Underspecification in Data Exchange

� Fact: A given source instance may have no solutions (overspecification)
� Fact: A given source instance may have multiple solutions 

(underspecification)

� Example: 
Source relation E(A,B), target relation H(A,B)

Σ:  E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

� J1  =  {H(a,b), H(b,b)}                                    constants:

� J2  =  {H(a,a), H(a,b)}                                        a, b, …

� J3  =  {H(a,X), H(X,b)}                                    variables (labelled nulls):         

� J4  =  {H(a,X), H(X,b), H(a,Y), H(Y,b)}               X, Y, …

� J5  =  {H(a,X), H(X,b), H(Y,Y)}
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Data Exchange & Universal solutions

Fagin, K …, Miller, Popa:

Identified and studied the concept of a universal solution in

data exchange.

� A universal solution is a most general solution.

� A universal solution “represents” the entire space of 
solutions.

� A “canonical” universal solution can be generated 
efficiently using the chase procedure.
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Universal Solutions in Data Exchange

Note: Two types of values in instances:

� Constants: they can only be mapped to themselves

� Variables (labeled nulls): they can be mapped to other 
values

Definition: Homomorphism h: J → K between instances:

� h(c) = c, for constant c

� If P(a1,…,am) is in J, then P(h(a1),…,h(am)) is in K.

Definition (FKMP):  A solution J for I is universal if it has 

homomorphisms to all other solutions for I..
(thus, a universal solution is a “most general” solution).
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Universal Solutions in Data Exchange

Schema  S Schema  T

I
J

Σ

J1

J2
J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms
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Example 

Source relation E(A,B), target relation F(A,B)

Σ :  E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = { E(1,2) }, where 1 and 2 are constants.

Solutions: Infinitely many solutions exist

� J1  =  { H(1,2), H(2,2) }    is not universal

� J2  =  { H(1,1), H(1,2) }    is not universal

� J3  =  { H(1,X), H(X,2) }    is universal

� J4  =  { H(1,X), H(X,2), H(1,Y), H(Y,2) }   is universal

� J5  =  { H(1,X), H(X,2), H(Y,Y) }              is not universal
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Structural Properties of Universal Solutions

� Universal solutions are akin to:

� most general unifiers in logic programming;

� initial models.

� Uniqueness up to homomorphic equivalence: 

If J and J’ are universal for I, then they are homomorphically

equivalent.

� Representation of  the entire space of solutions:

Assume that J is universal for I, and J’ is universal for I’.

Then the following are equivalent:

1. I and I’ have the same space of solutions.

2. J and J’ are homomorphically equivalent. 
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Exercise #1

� Let M = (S, T, Σ) be a GLAV schema mapping (i.e., Σ is a 
finite set of s-t tgds) and let I be a source instance. Assume 
that J is a universal solution for I, and J’ is a universal solution 
for I’.
Show that the following statements are equivalent:
1. I and I’ have the same space of solutions.
2. J and J’ are homomorphically equivalent. 

� Does the above equivalence hold for schema mappings 
M = (S, T, Σ), where Σ is an arbitrary first-order sentence?
Justify your answer as best as you can.
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The Chase Procedure

Chase Procedure for M = (S, T, Σ) : given a source 

instance I, build a target instance chaseM(I) that satisfies

every s-t tgd in Σ as follows.

Whenever the LHS of some s-t tgd in Σ evaluates to true:

� Introduce new facts in chaseM(I) as dictated by the RHS of 
the s-t tgd. 

� In these facts, each time existential quantifiers need 
witnesses,  introduce new variables (labeled nulls) as values.
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The Chase Procedure

Example: Transforming edges to paths of length 2

M = (S, T, Σ)  LAV schema mapping with
Σ :  E(x,y)  → ∃ z(F(x,z)Æ F(z,y))

The chase returns a relation obtained from E by adding a new

node between every edge of E.

� If I = { E(1,2) }, then chaseM(I) ={ E(1,X), E(X,2) } 

� If I = { E(1,2), E(2,3), E(1,4) }, then

chaseM(I) = { F(1,X), F(X,2), F(2,Y), F(Y,3), F(1,Z), F(Z,4) }  
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The Chase Procedure

Example : Collapsing paths of length 2 to edges

M = (S, T, Σ)   GAV schema mapping with

Σ :    E(x,z) Æ E(z,y) → F(x,y)

� If I = { E(1,3), E(2,4), E(3,4) }, then 

chaseM(I) = { F(1,4) }.

� If I =   { E(1,3), E(2,4), E(3,4), E(4,3)}, then 

chaseM(I) =  { F(1,4), F(2,3), F(3,3), F(4,4) }.

Note: No new variables are introduced in the GAV case.
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The Chase Procedure

Theorem (FKMP): Let M= (S, T, Σ) be a GLAV schema mapping 

(i.e., Σ is a set of s-t tgds). Then, for every source instance I,

� The chase procedure produces a universal solution chaseM(I).

� The running time of the chase procedure is bounded by a 
polynomial in the size of I  (PTIME data complexity).

Note: The chase procedure can be used to produce universal 

solutions even in the presence of target constraints that obey 

certain mild structural conditions.
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Target Dependencies

In addition to source-to-target dependencies, we also consider

target dependencies: 

� Target Tgds :    ϕT(x)  → ∃y ψT(x, y)

Dpt (e,d) → ∃p Proj(e,p)
(a target inclusion dependency constraint)

� Target Equality Generating Dependencies (egds):
ϕT(x)  → (x1=x2) 

Dpt (e, d1) ∧ Dpt (e, d2) → (d1 = d2)
(a target key constraint) 
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Algorithmic Problems in Data Exchange

Question: Fix a schema mapping M = (S, T, Σst,Σt) specified by s-t tgds and 
target tgds and egds. What can we say about the complexity of 
� The existence-of-solutions problem Sol(M)

(given source instance I, is there a solution for I w.r.t. M?
and 
� The data exchange problem

(given a source instance I, construct a universal solution for  I w.r.t. M?)

Answer:  Depending on the target constraints in Σt:
� Sol(M) is trivial (solutions always exist) /

Universal solutions can be constructed in PTIME (in fact, in LOGSPACE).
…

� Sol(M) can be in PTIME (in fact, it can be PTIME-complete) /
Universal solutions can be constructed in PTIME (if solutions exist)
…

� Sol(M) can be undecidable / 
Universal solutions may not exist (even if solutions exist)
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Undecidability in Data Exchange

Theorem (K …, Panttaja, Tan): 

There is a schema mapping M= (S, T, Σ*st, Σ*t) such that:

� Σ*st consists of a single s-t tgd; 

� Σ*t consists of one target egd and two target tgds.

� The existence-of-solutions problem Sol(M) is undecidable. 

Hint of Proof: 

Reduction from the

Embedding Problem for Finite Semigroups

Given a finite partial semigroup, can it be embedded to a 
finite semigroup?

(undecidability implied by results of Evans and Gurevich).
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The Embedding Problem & Data Exchange

Reducing the Embedding Problem for Semigroups to Sol(M)
� Σst:   R(x,y,z) → R’(x,y,z)

� Σt:
• R’ is a partial function:

R’(x,y,z) Æ R’(x,y,w) → z = w

• R’ is associative
R’(x,y,u) Æ R’(y,z,v) Æ R’(u,z,w) → R’(x,u,w)

• R’ is a total function
R’(x,y,z) Æ R’(x’,y’,z’) → ∃ w1 …∃ w9

(R’(x,x’,w1) Æ R’(x,y’,w2) Æ R’(x,z’,w3)
R’(y,x’,w4) Æ R’(y,y’,w5) Æ R’(x,z’,w6)
R’(z,x’,w7) Æ R’(z,y’,w8) Æ R’(z,z’,w9))
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Tractability in Data Exchange

Question: Are there broad structural conditions on the target 

constraints that guarantee tractability?  

(that is, 

� The existence of solutions problem is in PTIME

and

� A universal solution can be constructed in PTIME, if a solution 
exists.)
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Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping M= (S, T, Σst, Σt) such 
that:

� Σst is a set of source-to-target tgds; 

� Σt is the union of a weakly acyclic set of  target tgds with 
a set of  target egds. 

Then:

� Universal solutions exist if and only if solutions exist.

� Sol(M) is in PTIME.

� A canonical universal solution (if a solution exists) can be 
produced in PTIME using the chase procedure.
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Chase Procedure for Tgds and Egds

Given a source instance I,

1. Use the naïve chase to chase I with Σst and obtain a 

target instance J*.

2. Chase J * with the target tgds and the target egds in Σt to obtain a target 
instance J as follows:

2.1. For target tgds introduce new facts in J as dictated by the RHS of the 

s-t tgd and introduce new values (variables) in J each time existential

quantifiers need witnesses. 

2.2. For target egds φ(x) → x1 = x2

2.2.1. If a variable is equated to a constant, replace the variable by 
that constant;

2.2.2. If one variable is equated to another variable, replace one

variable by the other variable.

2.2.3 If one constant is equated to a different constant, stop and 
report “failure”.
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Weakly Acyclic Sets of Tgds:  Definition

� Position graph of a set Σ of tgds:

� Nodes: R.A, with R relation symbol, A attribute of R

� Edges: for every ϕ(x) → ∃y ψ(x, y) in Σ,  for every x in x 
occurring in ψ,  for every occurrence of x in ϕ in R.A:

� For every occurrence of x in ψ in S.B, 

add an edge   R.A             S.B

� In addition, for every existentially quantified y that occurs in ψ

in T.C, add a special edge R.A              T.C

� Σ is weakly acyclic if the position graph has no cycle 
containing a special edge.

� A tgd θ is weakly acyclic if so is the singleton set {θ} .
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Weakly Acyclic Sets of Tgds: Examples

� Example 1: { D(e,m) → M(m),  M(m) → ∃ e D(e,m) } 

is weakly acyclic, but cyclic.

D.1                 M.1                 D.2 

� Example 2: { E(x,y) → ∃ z E(y,z) } 

is not weakly acyclic.

E.1             E.2
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Complexity of Data Exchange

No algorithm 
exists, in 
general

Undecidable, in 
general 

Undecidable, in 
general

Σt: 

target tgds + 
egds

PTIMEPTIME

Univ. solutions 
exist if and only 
if solutions exist

PTIME

It can be 
PTIME-
complete

Σt:

Weakly acyclic 
set of target tgds
+ egds

PTIMETrivialTrivialΣt = ∅; 

No target 
constraints

Computing a 
Universal 
Solution

Existence-of-
Universal 
Solutions 
Problem

Existence-of-
Solutions 
Problem

M = (S, T, Σst , Σt )

Σst a set of s-t
tgds
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Exercise #2

� Let M= (S, T, Σ) be a GLAV schema mapping (i.e., Σ is a set 
of s-t tgds). Show that the chase procedure for constructing 
universal solutions can be implemented in LOGSPACE.

� Let M= (S, T, Σst, Σt) be a schema mapping such that Σst is a 
set of s-t tgds and Σt is the union of a set of target egds and 
a weakly acyclic set of target tgds.

Can the chase procedure be always implemented in 
LOGSPACE? Justify your answer as best as you can.
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From Theory to Practice

� Clio Project at the IBM Almaden Research Center.

� Semi-automatic schema-mapping generation tool;

� Data exchange system based on schema mappings.

� Universal solutions used as the semantics of data exchange.

� Universal solutions are generated via SQL queries extended 
with Skolem functions (implementation of chase procedure). 

� Clio technology is now part of IBM Rational® Data Architect.
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� Supports nested structures

� Nested Relational 

Model

� Nested Constraints

� Automatic & semi-

automatic discovery of 

attribute correspondence.

� Interactive derivation of 

schema mappings.

� Performs data exchange

Some Features of Clio
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The Smallest Universal Solution

� Fact: Universal solutions need not be unique.

� Question: Is there a “best” universal solution?

� Answer: In joint work with R. Fagin and L. Popa, we took a 

“small is beautiful” approach:

There is a smallest universal solution (if solutions exist); hence, 

the most compact one to materialize.

� Definition: The core of an instance J is the smallest subinstance J’
that is homomorphically equivalent to J.

� Fact:

� Every finite relational structure has a core.

� The core is unique up to isomorphism.
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The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ⊆ J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ ⊂ J’.

h
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The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ⊆ J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ ⊂ J’.

h

Example: If a graph G contains a                , then

G is 3-colorable   if and only if   core(G)  =                  .

Fact: Computing cores of graphs is an NP-hard problem.
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Example - continued

Source relation E(A,B), target relation H(A,B)

Σ :  (E(x,y) → ∃z (H(x,z) ∧ H(z,y)))

Source instance I = {E(a,b)}.

Solutions: Infinitely many universal solutions exist.

� J3 =  {H(a,X), H(X,b)}   is the core.

� J4 =  {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not 

the core.

� J5 =  {H(a,X), H(X,b), H(Y,Y)}   is not universal.
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Core: The smallest universal solution

Theorem (FKP 2003): M = (S, T, Σst , Σt )  a schema mapping:

� All universal solutions have the same core.

� The core of the universal solutions is the smallest universal 
solution.

� If every target constraint is an egd, then the core is 
polynomial-time computable.

Theorem (Nash & Gottlob 2006): Let M = (S, T, Σst , Σt ) be

such that Σt is the union of a set of weakly acyclic target tgds

with a set of target egds. Then the core is polynomial-time 

computable.
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Exercise #3

� Prove that every finite graph G has a core.

� Prove that if both H and H’ are cores of a finite graph G, then 
H and H’ are isomorphic.

� Prove or disprove the following:

Every infinite graph has a core.

� Identify the computational complexity of the 

CORE RECOGNITION PROBLEM: 

Given a finite graph G, is G its own core?
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Outline of the Tutorial

� Schema Mappings as a framework for formalizing and 
studying data interoperability tasks.

� Data Exchange and Solutions in Data Exchange

� Universal Solutions and the Core.

� Query Answering in Data Exchange.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants
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Query Answering in Data Exchange

Schema S Schema  T

I
J

Σ
q

Question: What is the semantics of target query answering?

Definition: The certain answers of a query q over T on I 

certain(q,I) =  ∩ { q(J):  J is a solution for I }.

Note: It is the standard open-world-assumption semantics in data 

integration.
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Certain Answers Semantics

certain(q,I)

q(J1)

q(J2)q(J3)

certain(q,I)  =   ∩ { q(J):  J is a solution for I }.
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Computing the Certain Answers

Theorem (FKMP): Schema mapping M = (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds, and 

� Σt    is the union of a weakly acyclic set of tgds with a set of 
egds.

Let q be a union of conjunctive queries over T.

� If I is a source instance and J is a universal solution for I, then 

certain(q,I) = the set of all “null-free” tuples in q(J).

� Hence,  certain(q,I) is computable in time polynomial in |I|:

1. Compute a canonical universal J solution in polynomial time;

2. Evaluate q(J) and remove tuples with nulls. 

Note: This is a data complexity result  (M and q are fixed).



56

Certain Answers via Universal Solutions

q(J1)

q(J2)q(J3)

certain(q,I)  =  set of null-free tuples of q(J).

q(J)certain(q,I)

q(J)

universal solution J for I

q: union of conjunctive queries
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Computing the Certain Answers

Theorem (FKMP): Schema mapping M = (S, T, Σst, Σt)  such that:

� Σst is a set of source-to-target tgds, and 

� Σt    is the union of a weakly acyclic set of tgds with a set of egds. 

Let q be a union of conjunctive queries with inequalities (≠).

� If q has at most one inequality per conjunct, then

certain(q,I) is computable in time polynomial in |I|

using a disjunctive chase.

� If q is has at most two inequalities per conjunct, then

certain(q,I) can be coNP-complete, even if Σt  is empty.
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Outline of the Tutorial

� Schema Mappings as a framework for formalizing and 
studying data interoperability tasks.

� Data Exchange and Solutions in Data Exchange

� Universal Solutions and the Core.

� Query Answering in Data Exchange.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants
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Managing Schema Mappings

� Schema mappings can be quite complex.

� Methods and tools are needed to automate or semi-automate 
schema-mapping management.

� Metadata Management Framework – Bernstein 2003

Based on schema-mapping operators, the most prominent of 
which are:

� Composition operator

� Inverse operator
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Composing Schema Mappings

� Given M1 = (S1, S2, Σ1) and M2 = (S2, S3, Σ2), derive a 

schema mapping M3 = (S1, S3, Σ3) that is “equivalent” to 

the sequential application of M1 and M2.

� M3 is a composition of M1 and M2

M3 = M1 ◦ M2

Schema  S1 Schema  S2 Schema  S3

M1 M2

M3
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Inverting Schema Mapping

� Given M, derive M’ that “undoes” M

M’ is an inverse of M

� Composition and inverse can be applied to schema evolution.

Schema  S Schema T

M

M’
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Applications to Schema Evolution

Schema  S Schema T

Mst

Schema T’

Mtt’

Mst’ = Mst ◦◦◦◦ Mtt’

Composition

Schema  S’

Mss’Ms’s

Inverse

Ms’t’ = Ms’s◦◦◦◦ (Mst ◦◦◦◦ Mtt’)

Fact:

Schema evolution can be analyzed using the composition operator and 

the inverse operator.
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Composing Schema Mappings

Main Issues:

� Semantics: 

What is the semantics of composition?

� Language:

What is the language needed to express the composition of 
two schema mappings specified by s-t tgds?  

(GLAV schema mappings)

Note: Joint work with Fagin, Popa, and Tan
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Composing Schema Mappings

� Given M1 = (S1, S2, Σ1) and M2 = (S2, S3, Σ2), derive a 

schema mapping M3 = (S1, S3, Σ3) that is “equivalent” to 

the sequential application of M1 and M2.

� M3 is a composition of M1 and M2

M3 = M1 ◦ M2

Schema  S1 Schema  S2 Schema  S3

M1 M2

M13
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Semantics of Composition

� Recall that, from a semantic point of view,  M can be 
identified with the binary relation 

Inst(M) = { (I,J):  (I,J) � Σ } 

� Definition:

A schema mapping M3 is a composition of M1 and M2 if 

Inst(M3) = Inst(M1) ◦ Inst(M2),  that is,

(I1,I3)  � Σ3

if and only if 
there exists I2 such that  (I1,I2) � Σ1 and  (I2,I3) � Σ2.
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The Composition of  Schema Mappings

Fact: If  both M = (S1, S3, Σ) and M’ = (S1, S3, Σ’) are 

compositions of M1 and M2, then Σ are Σ’ are logically

equivalent. For this reason:

� We say that  M (or M’) is the composition of M1 and M2.

� We write M1 ◦ M2 to denote it
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The Language of Composition: Good News

Theorem: Let M1 and M2 be consecutive schema mappings.

� If both M1 and M2 are GAV schema mappings, then their 
composition M1 ◦ M2 can be expressed as a GAV schema 
mapping.

� If M1 is a GAV schema mapping and M2 is a GLAV schema 
mappings, then their composition M1 ◦ M2 can be expressed 
as a GLAV schema mapping.

In symbols,

� GAV ◦ GAV    =  GAV

� GAV ◦ GLAV  =  GLAV
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GAV ◦ GLAV  =  GLAV

Example:

� M1 :  GAV schema mapping

Takes(s,m,c)  → Student(s,m)

Takes(s,m,c)  → Enrolls(s,c)

� M2 :  GLAV schema mapping

Student(s,m) Æ Enrolls(s,c) → ∃g Grade(s,m,c,g)

� M1 ◦ M2:  GLAV schema mapping

Takes(s,m,c) Æ Takes(s,m’,c’) → ∃g Grade(s,m,c’,g)
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Exercise #4

� Show that

GAV ◦ GAV    =  GAV

� Show that 

GAV ◦ GLAV  =  GLAV

� Give algorithms for 

� the composition GAV ◦ GAV 

and

� the composition GAV ◦ GLAV.

� Analyze the running time of the algorithms you gave.
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The Language of Composition: Bad News

Theorem:  

� GLAV schema mappings are not closed under composition.

In symbols,  GLAV ◦ GLAV  ⊄⊄⊄⊄ GLAV.

� In fact, there is a LAV schema mapping M1 and a GAV 
schema mapping M2 such that M1 ◦ M2 is not expressible in 
least fixed-point logic LFP (hence, not in FO or in Datalog).

In symbols, LAV ◦ GAV  ⊄⊄⊄⊄ LFP.
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LAV ◦ GAV  ⊄⊄⊄⊄ LFP

� M1 :  LAV schema mapping

∀x ∀y (E(x,y) → ∃u∃v (C(x,u) ∧ C(y,v)))

∀x ∀y (E(x,y) → F(x,y))

� M2 : GAV schema mapping

∀x ∀y ∀u ∀v (C(x,u) ∧ C(y,v) ∧ F(x,y) → D(u,v))

� Given graph G=(V, E):

� Let I1 = E

� Let I3 = { D(r,g), D(g,r), D(b,r), D(r,b), D(g,b), D(b,g) } 

Fact:

G is 3-colorable  if and only if  (I1, I3) ∈ Inst(M1) ◦ Inst(M2)

� Theorem (Dawar – 1998):

3-Colorability is not expressible in LFP.
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The Language of Composition

Question:

What is the “right” language for expressing the composition of 

two GLAV schema mappings?

Answer: 

A fragment of existential second-order logic turns out to be 

the “right” language for this task.
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Second-Order Logic to the Rescue

� M1 : LAV schema mapping

� ∀e (Emp(e) → ∃m Rep(e,m)) 

� M2 : GAV schema mapping

� ∀e ∀m (Rep(e,m) → Mgr(e,m)) 

� ∀e (Rep(e,e) → SelfMgr(e)) 

� Theorem: M1 ◦ M2 is not definable by any set 

(finite or infinite) of s-t tgds.

� Fact:  This composition is definable in a well-behaved 
fragment of existential second-order logic, called SO tgds, 
that extends s-t tgds with Skolem functions.

Emp
e

Rep
e 
m

Mgr
e
m

SelfMgr
e
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Second-Order Logic to the Rescue

� M1 :  LAV schema mapping

� ∀e (Emp(e) → ∃m Rep(e,m))

� M2 :  GAV schema mapping

� ∀e ∀m (Rep(e,m) → Mgr(e,m))

� ∀e (Rep(e,e) → SelfMgr(e))

� Fact: M1 ◦ M2 is expressible by the SO-tgd

� ∃f (∀e (Emp(e) → Mgr(e,f(e)) ∧
∀e (Emp(e) ∧ (e=f(e)) → SelfMgr(e))).
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Second-Order Tgds

Definition: Let S be a source schema and T a target schema.

A second-order tuple-generating dependency (SO tgd) is a 
formula of the form:

∃f1 … ∃fm( (∀x1(φ1 → ψ1)) ∧ … ∧ (∀xn(φn → ψn)) ), where

� Each fi is a function symbol.

� Each φi is a conjunction of atoms from S and equalities of 

terms.

� Each ψi is a conjunction of atoms from T.

Example:   ∃f (∀e( Emp(e) → Mgr(e,f(e) ) ∧

∀e( Emp(e) ∧ (e=f(e)) → SelfMgr(e) ) )
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Composing SO-Tgds and Data Exchange

Theorem (FKPT):

� The composition of two SO-tgds is definable by a SO-tgd.

� There is an algorithm for composing SO-tgds.

� The chase procedure can be extended to SO-tgds; 

it produces universal solutions in polynomial time.

� Every SO tgd is the composition of finitely many GLAV 
schema mappings. Hence, SO tgds are the “right” language 
for the composition of GLAV schema mappings.
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Synopsis of Schema Mapping Composition

� GAV ◦ GAV    =   GAV

� GAV ◦ GLAV  =   GLAV. 

� GLAV ◦ GLAV  ⊄⊄⊄⊄ GLAV.  In fact, LAV ◦ GAV  ⊄⊄⊄⊄ LFP. 

� GLAV ◦ GLAV  =  SO-tgds =  SO-tgds ◦ SO-tgds

� SO-tgds are the “right” language for composing GLAV 
schema mappings.

� SO-tgds are “chasable”: Universal solutions in PTIME.

� SO-tgds and the composition algorithm are supported in 
Clio.



78

Related Work (partial list)

� Earlier work on composition

Madhavan and Halevy - 2003

� Composing richer schema mappings

Nash, Bernstein, Melnik – 2007

� Composing schema mappings in open & closed worlds

Libkin and Sirangelo – 2008

� XML Schema Mappings

Amano, Libkin, Murlak – 2009

� Composing schema mappings with target constraints

Arenas, Fagin, Nash – 2010

� Composing LAV schema mappings with distinct variables

Arocena, Fuxman, Miller - 2010
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Inverting Schema Mapping

� Given M, derive M’ that “undoes” M.

� Question:

What is the “right” semantics of the inverse operator?

� Note:

In general, M may have no “good” inverse, because M may 
have information loss (e.g., projection schema mapping).

Schema  S Schema T

M

M’
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The Semantics of the Inverse Operator

� Several different approaches:

� (Exact) Inverses of schema mappings

Fagin - 2006

� Quasi-inverses of schema mappings

Fagin, K …, Popa, Tan - 2007

� Maximum recoveries of schema mappings

Arenas, Pérez, Riveros - 2008

� Extended maximum recoveries of schema mappings

Fagin, K …, Popa, Tan – 2009

� No definitive semantics of the inverse operator has emerged. 
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Related Presentations at DEIS ‘10

� Adrian Onet:   Chase and its Applications to Data Exchange

� Vadim Savenkov:  Core Computation for Data Exchange

� Jorge Pérez:  Inverting Schema Mappings

� André Hernich:  Closed World Reasoning in Data Exchange

� Amelie Greebranddt:   XML Data Exchange

� Víctor Gutiérrez-Basulto: Integrity Constraints in Data 
Exchange

� Emanuel Salinger: Analyzing, Comparing, and Debugging 
Schema Mappings
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Data Interoperability:
The Elephant and the Six Blind Men

� Data interoperability remains a 
major challenge:

“Information integration is a 
beast.” (L. Haas – 2007)

� Schema mappings specified by 
tgds offer a formalism that 
covers only some aspects of 
data interoperability.

� However, theory and practice 
can inform each other.


