
A Tutorial
on

Schema Mappings & Data Exchange

DEIS ‘10

Phokion G. Kolaitis

University of California Santa Cruz
&

IBM Research - Almaden

2

Outline of the Tutorial

� Schema Mappings as a framework for formalizing and
studying data interoperability tasks.

� Data Exchange and Solutions in Data Exchange

� Universal Solutions and the Core.

� Query Answering in Data Exchange.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants

3

Acknowledgments

� Much of the work presented has been carried out in
collaboration with

� Ron Fagin, IBM Almaden

� Renee J. Miller, University of Toronto

� Lucian Popa, IBM Almaden

� Wang-Chiew Tan, UC Santa Cruz.

Papers in ICDT 2003, PODS 2003-2010, TCS, ACM TODS.

� The work has been motivated from the Clio Project at IBM
Almaden aiming to develop a working system for schema-
mapping generation and data exchange.

4

The Information Integration Challenge

� Data may reside

� at several different sites

� in several different formats (relational, XML, …).

� Applications need to access and process all these data.

� Growing market of enterprise information integration
tools:

� About $1.5B per year; 17% annual rate of growth.

� Information integration consumes 40% of the budget
of enterprise information technology shops.

5

Gartner’s Magic Quadrant Report on
Information Integration Products

SAS

Pervasive Software

iWay Software

Sun Microsystems

Tibco Software

Sybase

Syncort

ETI

Pitney Boss Software

Open Text

Informatica

IBM (Cognos, Ascential)

SAP – Business Objects

Microsoft

Oracle

Challengers Leaders

Niche Players Visionaries

Ability

to

execute

Completeness of vision

6

Two Facets of Information Integration

The research community has studied two different, but

closely related, facets of information integration:

� Data Integration (aka Data Federation)

� Data Exchange (aka Data Translation)

7

Data Integration
Query heterogeneous data in different sources via a virtual

global schema

I1

Global

Schema
I2

I3 Sources

query

S1

S2

S3

T

Q

Expedia, hotels.com, …

8

Data Exchange

Transform data structured under a source schema into data
structured under a different target schema.

S T

Σ

I
J

Source Schema Target Schema

Merges and acquisitions, …

9

Schema Mappings

� Schema mappings constitute the essential building blocks in
formalizing and studying data integration and data exchange.

� Schema mappings are:

High-level, declarative assertions that specify the relationship

between two database schemas.

� Schema mappings make it possible to separate the design of the
relationship between schemas from its implementation.

� Are easier to generate and manage (semi)-automatically;

� Can be compiled into SQL/XSLT scripts automatically.

10

Schema Mappings

Source S Target T

� Schema Mapping M = (S, T, Σ)

� Source schema S, Target schema T

� High-level, declarative assertions Σ that specify the
relationship between S and T.

� Question: What is a “good” schema-mapping specification
language?

Σ

11

Schema-Mapping Specification Languages

� Obvious Idea:

Use a logic-based language to specify schema mappings.

In particular, use first-order logic.

� Warning:

Unrestricted use of first-order logic as a schema-mapping
specification language gives rise to undecidability of basic
algorithmic problems about schema mappings.

12

Schema-Mapping Specification Languages

Every schema-mapping specification language should support:

� Copy (Nicknaming):

� Copy each source table to a target table and rename it.

� Projection (Column Deletion):

� Form a target table by deleting one or more columns of a
source table.

� Column Addition:

� Form a target table by adding one or more columns to a
source table.

� Decomposition:

� Decompose a source table into two or more target tables.

� Join:

� Form a target table by joining two or more source tables.

� Combinations of the above (e.g., “join + column addition+ …”)

13

Schema-Mapping Specification Languages

� Copy (Nicknaming):

� ∀x1, …,xn(P(x1,…,xn) → R(x1,…,xn))

� Projection:

� ∀x,y,z(P(x,y,z) → R(x,y))

� Column Addition:

� ∀x,y (P(x,y) → ∃ z R(x,y,z))

� Decomposition:

� ∀x,y,z (P(x,y,z) → R(x,y) Æ T(y,z))

� Join:

� ∀x,y,z(E(x,z)ÆF(z,y) → R(x,z,y))

� Combinations of the above (e.g., “join + column addition + …”):

� ∀x,y,z(E(x,z)Æ F(z,y) → ∃ w (R(x,y) Æ T(x,y,z,w)))

14

Schema-Mapping Specification Languages

� Question: What do all these tasks (copy, projection, column
augmentation, decomposition, join) have in common?

� Answer:

� They can be specified using

tuple-generating dependencies (tgds).

� In fact, they can be specified using a special class of

tuple-generating dependencies known as

source-to-target tuple generating dependencies (s-t tgds).

15

Database Integrity Constraints

� Dependency Theory: extensive study of integrity constraints in
relational databases in the 1970s and 1980s

(Codd, Fagin, Beeri, Vardi …)

� Tuple-generating dependencies (tgds) emerged as an important
class of constraints with a balance between high expressive power
and good algorithmic properties. Tgds are expressions of the form

∀ x (ϕ(x) → ∃ y ψ(x, y)), where

ϕ(x), ψ(x, y) are conjunctions of atomic formulas.

Special Cases:

� Inclusion Dependencies

� Multivalued Dependencies

16

Tuple-Generating Dependencies

� “A Formal System for Euclid's Elements”
by J. Avigad, E. Dean, J. Mumma

The Review of Symbolic Logic, 2009

� Claim:

All theorems in Euclid's Elements can be expressed by
tuple-generating dependencies!

17

Schema-Mapping Specification Language

The relationship between source and target is given by

source-to-target tuple generating dependencies (s-t tgds)

∀x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x) is a conjunction of atoms over the source;

� ψ(x, y) is a conjunction of atoms over the target.

Examples:

� ∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))

� (dropping the universal quantifiers in the front)

Student (s) ∧ Enrolls(s,c) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))

18

Schema-Mapping Specification Language

Fact: s-t tgds are also known as

GLAV (global-and-local-as-view) constraints:

� They generalize LAV (local-as-view) constraints:

∀x (P(x) → ∃y ψ(x, y)), where P is a source relation.

� They generalize GAV (global-as-view) constraints:

∀x (ϕ(x) → R(x)), where R is a target relation.

19

LAV and GAV Constraints

Examples of LAV (local-as-view) constraints:

� Copy and projection

� Decomposition: ∀x ∀y ∀z (P(x,y,z) → R(x,y) Æ T(y,z))

� ∀x ∀y (E(x,y) → ∃ z (H(x,z)Æ H(z,y)))

Examples of GAV (global-as-view) constraints:

� Copy and projection

� Join: ∀x ∀y ∀z (E(x,y) Æ E(y,z) → F(x,z))

Note:

∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))

is a GLAV constraint that is neither a LAV nor a GAV constraint

20

Semantics of Schema Mappings

Source S Target T

� M = (S, T, Σ) schema mapping with Σ a set of s-t tgds

� From a semantic point of view, M can be identified with

Inst(M) = { (I,J): I is a sourse instance,
J is a target instance, and (I,J) � Σ }

(this is open-world-assumption semantics)

� A solution for a source instance I is a target instance J
such that (I,J) ∈ Inst(M) (i.e., (I,J) � Σ).

I
J

Σ

21

Schema Mappings & Data Exchange

Source S Target T

� Data Exchange via the schema mapping M = (S, T, Σ):

Given a source instance I, construct a solution J for I.

� Difficulty:

� Typically, there are multiple solutions

� Which one is the “best” to materialize?

I
J

Σ

22

Over/Underspecification in Data Exchange

� Fact: A given source instance may have no solutions (overspecification)
� Fact: A given source instance may have multiple solutions

(underspecification)

� Example:
Source relation E(A,B), target relation H(A,B)

Σ: E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

� J1 = {H(a,b), H(b,b)} constants:

� J2 = {H(a,a), H(a,b)} a, b, …

� J3 = {H(a,X), H(X,b)} variables (labelled nulls):

� J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} X, Y, …

� J5 = {H(a,X), H(X,b), H(Y,Y)}

23

Data Exchange & Universal solutions

Fagin, K …, Miller, Popa:

Identified and studied the concept of a universal solution in

data exchange.

� A universal solution is a most general solution.

� A universal solution “represents” the entire space of
solutions.

� A “canonical” universal solution can be generated
efficiently using the chase procedure.

24

Universal Solutions in Data Exchange

Note: Two types of values in instances:

� Constants: they can only be mapped to themselves

� Variables (labeled nulls): they can be mapped to other
values

Definition: Homomorphism h: J → K between instances:

� h(c) = c, for constant c

� If P(a1,…,am) is in J, then P(h(a1),…,h(am)) is in K.

Definition (FKMP): A solution J for I is universal if it has

homomorphisms to all other solutions for I..
(thus, a universal solution is a “most general” solution).

25

Universal Solutions in Data Exchange

Schema S Schema T

I
J

Σ

J1

J2
J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms

26

Example

Source relation E(A,B), target relation F(A,B)

Σ : E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = { E(1,2) }, where 1 and 2 are constants.

Solutions: Infinitely many solutions exist

� J1 = { H(1,2), H(2,2) } is not universal

� J2 = { H(1,1), H(1,2) } is not universal

� J3 = { H(1,X), H(X,2) } is universal

� J4 = { H(1,X), H(X,2), H(1,Y), H(Y,2) } is universal

� J5 = { H(1,X), H(X,2), H(Y,Y) } is not universal

27

Structural Properties of Universal Solutions

� Universal solutions are akin to:

� most general unifiers in logic programming;

� initial models.

� Uniqueness up to homomorphic equivalence:

If J and J’ are universal for I, then they are homomorphically

equivalent.

� Representation of the entire space of solutions:

Assume that J is universal for I, and J’ is universal for I’.

Then the following are equivalent:

1. I and I’ have the same space of solutions.

2. J and J’ are homomorphically equivalent.

28

Exercise #1

� Let M = (S, T, Σ) be a GLAV schema mapping (i.e., Σ is a
finite set of s-t tgds) and let I be a source instance. Assume
that J is a universal solution for I, and J’ is a universal solution
for I’.
Show that the following statements are equivalent:
1. I and I’ have the same space of solutions.
2. J and J’ are homomorphically equivalent.

� Does the above equivalence hold for schema mappings
M = (S, T, Σ), where Σ is an arbitrary first-order sentence?
Justify your answer as best as you can.

29

The Chase Procedure

Chase Procedure for M = (S, T, Σ) : given a source

instance I, build a target instance chaseM(I) that satisfies

every s-t tgd in Σ as follows.

Whenever the LHS of some s-t tgd in Σ evaluates to true:

� Introduce new facts in chaseM(I) as dictated by the RHS of
the s-t tgd.

� In these facts, each time existential quantifiers need
witnesses, introduce new variables (labeled nulls) as values.

30

The Chase Procedure

Example: Transforming edges to paths of length 2

M = (S, T, Σ) LAV schema mapping with
Σ : E(x,y) → ∃ z(F(x,z)Æ F(z,y))

The chase returns a relation obtained from E by adding a new

node between every edge of E.

� If I = { E(1,2) }, then chaseM(I) ={ E(1,X), E(X,2) }

� If I = { E(1,2), E(2,3), E(1,4) }, then

chaseM(I) = { F(1,X), F(X,2), F(2,Y), F(Y,3), F(1,Z), F(Z,4) }

31

The Chase Procedure

Example : Collapsing paths of length 2 to edges

M = (S, T, Σ) GAV schema mapping with

Σ : E(x,z) Æ E(z,y) → F(x,y)

� If I = { E(1,3), E(2,4), E(3,4) }, then

chaseM(I) = { F(1,4) }.

� If I = { E(1,3), E(2,4), E(3,4), E(4,3)}, then

chaseM(I) = { F(1,4), F(2,3), F(3,3), F(4,4) }.

Note: No new variables are introduced in the GAV case.

32

The Chase Procedure

Theorem (FKMP): Let M= (S, T, Σ) be a GLAV schema mapping

(i.e., Σ is a set of s-t tgds). Then, for every source instance I,

� The chase procedure produces a universal solution chaseM(I).

� The running time of the chase procedure is bounded by a
polynomial in the size of I (PTIME data complexity).

Note: The chase procedure can be used to produce universal

solutions even in the presence of target constraints that obey

certain mild structural conditions.

33

Target Dependencies

In addition to source-to-target dependencies, we also consider

target dependencies:

� Target Tgds : ϕT(x) → ∃y ψT(x, y)

Dpt (e,d) → ∃p Proj(e,p)
(a target inclusion dependency constraint)

� Target Equality Generating Dependencies (egds):
ϕT(x) → (x1=x2)

Dpt (e, d1) ∧ Dpt (e, d2) → (d1 = d2)
(a target key constraint)

34

Algorithmic Problems in Data Exchange

Question: Fix a schema mapping M = (S, T, Σst,Σt) specified by s-t tgds and
target tgds and egds. What can we say about the complexity of
� The existence-of-solutions problem Sol(M)

(given source instance I, is there a solution for I w.r.t. M?
and
� The data exchange problem

(given a source instance I, construct a universal solution for I w.r.t. M?)

Answer: Depending on the target constraints in Σt:
� Sol(M) is trivial (solutions always exist) /

Universal solutions can be constructed in PTIME (in fact, in LOGSPACE).
…

� Sol(M) can be in PTIME (in fact, it can be PTIME-complete) /
Universal solutions can be constructed in PTIME (if solutions exist)
…

� Sol(M) can be undecidable /
Universal solutions may not exist (even if solutions exist)

35

Undecidability in Data Exchange

Theorem (K …, Panttaja, Tan):

There is a schema mapping M= (S, T, Σ*st, Σ*t) such that:

� Σ*st consists of a single s-t tgd;

� Σ*t consists of one target egd and two target tgds.

� The existence-of-solutions problem Sol(M) is undecidable.

Hint of Proof:

Reduction from the

Embedding Problem for Finite Semigroups

Given a finite partial semigroup, can it be embedded to a
finite semigroup?

(undecidability implied by results of Evans and Gurevich).

36

The Embedding Problem & Data Exchange

Reducing the Embedding Problem for Semigroups to Sol(M)
� Σst: R(x,y,z) → R’(x,y,z)

� Σt:
• R’ is a partial function:

R’(x,y,z) Æ R’(x,y,w) → z = w

• R’ is associative
R’(x,y,u) Æ R’(y,z,v) Æ R’(u,z,w) → R’(x,u,w)

• R’ is a total function
R’(x,y,z) Æ R’(x’,y’,z’) → ∃ w1 …∃ w9

(R’(x,x’,w1) Æ R’(x,y’,w2) Æ R’(x,z’,w3)
R’(y,x’,w4) Æ R’(y,y’,w5) Æ R’(x,z’,w6)
R’(z,x’,w7) Æ R’(z,y’,w8) Æ R’(z,z’,w9))

37

Tractability in Data Exchange

Question: Are there broad structural conditions on the target

constraints that guarantee tractability?

(that is,

� The existence of solutions problem is in PTIME

and

� A universal solution can be constructed in PTIME, if a solution
exists.)

38

Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping M= (S, T, Σst, Σt) such
that:

� Σst is a set of source-to-target tgds;

� Σt is the union of a weakly acyclic set of target tgds with
a set of target egds.

Then:

� Universal solutions exist if and only if solutions exist.

� Sol(M) is in PTIME.

� A canonical universal solution (if a solution exists) can be
produced in PTIME using the chase procedure.

39

Chase Procedure for Tgds and Egds

Given a source instance I,

1. Use the naïve chase to chase I with Σst and obtain a

target instance J*.

2. Chase J * with the target tgds and the target egds in Σt to obtain a target
instance J as follows:

2.1. For target tgds introduce new facts in J as dictated by the RHS of the

s-t tgd and introduce new values (variables) in J each time existential

quantifiers need witnesses.

2.2. For target egds φ(x) → x1 = x2

2.2.1. If a variable is equated to a constant, replace the variable by
that constant;

2.2.2. If one variable is equated to another variable, replace one

variable by the other variable.

2.2.3 If one constant is equated to a different constant, stop and
report “failure”.

40

Weakly Acyclic Sets of Tgds: Definition

� Position graph of a set Σ of tgds:

� Nodes: R.A, with R relation symbol, A attribute of R

� Edges: for every ϕ(x) → ∃y ψ(x, y) in Σ, for every x in x
occurring in ψ, for every occurrence of x in ϕ in R.A:

� For every occurrence of x in ψ in S.B,

add an edge R.A S.B

� In addition, for every existentially quantified y that occurs in ψ

in T.C, add a special edge R.A T.C

� Σ is weakly acyclic if the position graph has no cycle
containing a special edge.

� A tgd θ is weakly acyclic if so is the singleton set {θ} .

41

Weakly Acyclic Sets of Tgds: Examples

� Example 1: { D(e,m) → M(m), M(m) → ∃ e D(e,m) }

is weakly acyclic, but cyclic.

D.1 M.1 D.2

� Example 2: { E(x,y) → ∃ z E(y,z) }

is not weakly acyclic.

E.1 E.2

42

Complexity of Data Exchange

No algorithm
exists, in
general

Undecidable, in
general

Undecidable, in
general

Σt:

target tgds +
egds

PTIMEPTIME

Univ. solutions
exist if and only
if solutions exist

PTIME

It can be
PTIME-
complete

Σt:

Weakly acyclic
set of target tgds
+ egds

PTIMETrivialTrivialΣt = ∅;

No target
constraints

Computing a
Universal
Solution

Existence-of-
Universal
Solutions
Problem

Existence-of-
Solutions
Problem

M = (S, T, Σst , Σt)

Σst a set of s-t
tgds

43

Exercise #2

� Let M= (S, T, Σ) be a GLAV schema mapping (i.e., Σ is a set
of s-t tgds). Show that the chase procedure for constructing
universal solutions can be implemented in LOGSPACE.

� Let M= (S, T, Σst, Σt) be a schema mapping such that Σst is a
set of s-t tgds and Σt is the union of a set of target egds and
a weakly acyclic set of target tgds.

Can the chase procedure be always implemented in
LOGSPACE? Justify your answer as best as you can.

44

From Theory to Practice

� Clio Project at the IBM Almaden Research Center.

� Semi-automatic schema-mapping generation tool;

� Data exchange system based on schema mappings.

� Universal solutions used as the semantics of data exchange.

� Universal solutions are generated via SQL queries extended
with Skolem functions (implementation of chase procedure).

� Clio technology is now part of IBM Rational® Data Architect.

45

� Supports nested structures

� Nested Relational

Model

� Nested Constraints

� Automatic & semi-

automatic discovery of

attribute correspondence.

� Interactive derivation of

schema mappings.

� Performs data exchange

Some Features of Clio

46

The Smallest Universal Solution

� Fact: Universal solutions need not be unique.

� Question: Is there a “best” universal solution?

� Answer: In joint work with R. Fagin and L. Popa, we took a

“small is beautiful” approach:

There is a smallest universal solution (if solutions exist); hence,

the most compact one to materialize.

� Definition: The core of an instance J is the smallest subinstance J’
that is homomorphically equivalent to J.

� Fact:

� Every finite relational structure has a core.

� The core is unique up to isomorphism.

47

The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ⊆ J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ ⊂ J’.

h

48

The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ⊆ J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ ⊂ J’.

h

Example: If a graph G contains a , then

G is 3-colorable if and only if core(G) = .

Fact: Computing cores of graphs is an NP-hard problem.

49

Example - continued

Source relation E(A,B), target relation H(A,B)

Σ : (E(x,y) → ∃z (H(x,z) ∧ H(z,y)))

Source instance I = {E(a,b)}.

Solutions: Infinitely many universal solutions exist.

� J3 = {H(a,X), H(X,b)} is the core.

� J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not

the core.

� J5 = {H(a,X), H(X,b), H(Y,Y)} is not universal.

50

Core: The smallest universal solution

Theorem (FKP 2003): M = (S, T, Σst , Σt) a schema mapping:

� All universal solutions have the same core.

� The core of the universal solutions is the smallest universal
solution.

� If every target constraint is an egd, then the core is
polynomial-time computable.

Theorem (Nash & Gottlob 2006): Let M = (S, T, Σst , Σt) be

such that Σt is the union of a set of weakly acyclic target tgds

with a set of target egds. Then the core is polynomial-time

computable.

51

Exercise #3

� Prove that every finite graph G has a core.

� Prove that if both H and H’ are cores of a finite graph G, then
H and H’ are isomorphic.

� Prove or disprove the following:

Every infinite graph has a core.

� Identify the computational complexity of the

CORE RECOGNITION PROBLEM:

Given a finite graph G, is G its own core?

52

Outline of the Tutorial

� Schema Mappings as a framework for formalizing and
studying data interoperability tasks.

� Data Exchange and Solutions in Data Exchange

� Universal Solutions and the Core.

� Query Answering in Data Exchange.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants

53

Query Answering in Data Exchange

Schema S Schema T

I
J

Σ
q

Question: What is the semantics of target query answering?

Definition: The certain answers of a query q over T on I

certain(q,I) = ∩ { q(J): J is a solution for I }.

Note: It is the standard open-world-assumption semantics in data

integration.

54

Certain Answers Semantics

certain(q,I)

q(J1)

q(J2)q(J3)

certain(q,I) = ∩ { q(J): J is a solution for I }.

55

Computing the Certain Answers

Theorem (FKMP): Schema mapping M = (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds, and

� Σt is the union of a weakly acyclic set of tgds with a set of
egds.

Let q be a union of conjunctive queries over T.

� If I is a source instance and J is a universal solution for I, then

certain(q,I) = the set of all “null-free” tuples in q(J).

� Hence, certain(q,I) is computable in time polynomial in |I|:

1. Compute a canonical universal J solution in polynomial time;

2. Evaluate q(J) and remove tuples with nulls.

Note: This is a data complexity result (M and q are fixed).

56

Certain Answers via Universal Solutions

q(J1)

q(J2)q(J3)

certain(q,I) = set of null-free tuples of q(J).

q(J)certain(q,I)

q(J)

universal solution J for I

q: union of conjunctive queries

57

Computing the Certain Answers

Theorem (FKMP): Schema mapping M = (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds, and

� Σt is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries with inequalities (≠).

� If q has at most one inequality per conjunct, then

certain(q,I) is computable in time polynomial in |I|

using a disjunctive chase.

� If q is has at most two inequalities per conjunct, then

certain(q,I) can be coNP-complete, even if Σt is empty.

58

Outline of the Tutorial

� Schema Mappings as a framework for formalizing and
studying data interoperability tasks.

� Data Exchange and Solutions in Data Exchange

� Universal Solutions and the Core.

� Query Answering in Data Exchange.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants

59

Managing Schema Mappings

� Schema mappings can be quite complex.

� Methods and tools are needed to automate or semi-automate
schema-mapping management.

� Metadata Management Framework – Bernstein 2003

Based on schema-mapping operators, the most prominent of
which are:

� Composition operator

� Inverse operator

60

Composing Schema Mappings

� Given M1 = (S1, S2, Σ1) and M2 = (S2, S3, Σ2), derive a

schema mapping M3 = (S1, S3, Σ3) that is “equivalent” to

the sequential application of M1 and M2.

� M3 is a composition of M1 and M2

M3 = M1 ◦ M2

Schema S1 Schema S2 Schema S3

M1 M2

M3

61

Inverting Schema Mapping

� Given M, derive M’ that “undoes” M

M’ is an inverse of M

� Composition and inverse can be applied to schema evolution.

Schema S Schema T

M

M’

62

Applications to Schema Evolution

Schema S Schema T

Mst

Schema T’

Mtt’

Mst’ = Mst ◦◦◦◦ Mtt’

Composition

Schema S’

Mss’Ms’s

Inverse

Ms’t’ = Ms’s◦◦◦◦ (Mst ◦◦◦◦ Mtt’)

Fact:

Schema evolution can be analyzed using the composition operator and

the inverse operator.

63

Composing Schema Mappings

Main Issues:

� Semantics:

What is the semantics of composition?

� Language:

What is the language needed to express the composition of
two schema mappings specified by s-t tgds?

(GLAV schema mappings)

Note: Joint work with Fagin, Popa, and Tan

64

Composing Schema Mappings

� Given M1 = (S1, S2, Σ1) and M2 = (S2, S3, Σ2), derive a

schema mapping M3 = (S1, S3, Σ3) that is “equivalent” to

the sequential application of M1 and M2.

� M3 is a composition of M1 and M2

M3 = M1 ◦ M2

Schema S1 Schema S2 Schema S3

M1 M2

M13

65

Semantics of Composition

� Recall that, from a semantic point of view, M can be
identified with the binary relation

Inst(M) = { (I,J): (I,J) � Σ }

� Definition:

A schema mapping M3 is a composition of M1 and M2 if

Inst(M3) = Inst(M1) ◦ Inst(M2), that is,

(I1,I3) � Σ3

if and only if
there exists I2 such that (I1,I2) � Σ1 and (I2,I3) � Σ2.

66

The Composition of Schema Mappings

Fact: If both M = (S1, S3, Σ) and M’ = (S1, S3, Σ’) are

compositions of M1 and M2, then Σ are Σ’ are logically

equivalent. For this reason:

� We say that M (or M’) is the composition of M1 and M2.

� We write M1 ◦ M2 to denote it

67

The Language of Composition: Good News

Theorem: Let M1 and M2 be consecutive schema mappings.

� If both M1 and M2 are GAV schema mappings, then their
composition M1 ◦ M2 can be expressed as a GAV schema
mapping.

� If M1 is a GAV schema mapping and M2 is a GLAV schema
mappings, then their composition M1 ◦ M2 can be expressed
as a GLAV schema mapping.

In symbols,

� GAV ◦ GAV = GAV

� GAV ◦ GLAV = GLAV

68

GAV ◦ GLAV = GLAV

Example:

� M1 : GAV schema mapping

Takes(s,m,c) → Student(s,m)

Takes(s,m,c) → Enrolls(s,c)

� M2 : GLAV schema mapping

Student(s,m) Æ Enrolls(s,c) → ∃g Grade(s,m,c,g)

� M1 ◦ M2: GLAV schema mapping

Takes(s,m,c) Æ Takes(s,m’,c’) → ∃g Grade(s,m,c’,g)

69

Exercise #4

� Show that

GAV ◦ GAV = GAV

� Show that

GAV ◦ GLAV = GLAV

� Give algorithms for

� the composition GAV ◦ GAV

and

� the composition GAV ◦ GLAV.

� Analyze the running time of the algorithms you gave.

70

The Language of Composition: Bad News

Theorem:

� GLAV schema mappings are not closed under composition.

In symbols, GLAV ◦ GLAV ⊄⊄⊄⊄ GLAV.

� In fact, there is a LAV schema mapping M1 and a GAV
schema mapping M2 such that M1 ◦ M2 is not expressible in
least fixed-point logic LFP (hence, not in FO or in Datalog).

In symbols, LAV ◦ GAV ⊄⊄⊄⊄ LFP.

71

LAV ◦ GAV ⊄⊄⊄⊄ LFP

� M1 : LAV schema mapping

∀x ∀y (E(x,y) → ∃u∃v (C(x,u) ∧ C(y,v)))

∀x ∀y (E(x,y) → F(x,y))

� M2 : GAV schema mapping

∀x ∀y ∀u ∀v (C(x,u) ∧ C(y,v) ∧ F(x,y) → D(u,v))

� Given graph G=(V, E):

� Let I1 = E

� Let I3 = { D(r,g), D(g,r), D(b,r), D(r,b), D(g,b), D(b,g) }

Fact:

G is 3-colorable if and only if (I1, I3) ∈ Inst(M1) ◦ Inst(M2)

� Theorem (Dawar – 1998):

3-Colorability is not expressible in LFP.

72

The Language of Composition

Question:

What is the “right” language for expressing the composition of

two GLAV schema mappings?

Answer:

A fragment of existential second-order logic turns out to be

the “right” language for this task.

73

Second-Order Logic to the Rescue

� M1 : LAV schema mapping

� ∀e (Emp(e) → ∃m Rep(e,m))

� M2 : GAV schema mapping

� ∀e ∀m (Rep(e,m) → Mgr(e,m))

� ∀e (Rep(e,e) → SelfMgr(e))

� Theorem: M1 ◦ M2 is not definable by any set

(finite or infinite) of s-t tgds.

� Fact: This composition is definable in a well-behaved
fragment of existential second-order logic, called SO tgds,
that extends s-t tgds with Skolem functions.

Emp
e

Rep
e
m

Mgr
e
m

SelfMgr
e

74

Second-Order Logic to the Rescue

� M1 : LAV schema mapping

� ∀e (Emp(e) → ∃m Rep(e,m))

� M2 : GAV schema mapping

� ∀e ∀m (Rep(e,m) → Mgr(e,m))

� ∀e (Rep(e,e) → SelfMgr(e))

� Fact: M1 ◦ M2 is expressible by the SO-tgd

� ∃f (∀e (Emp(e) → Mgr(e,f(e)) ∧
∀e (Emp(e) ∧ (e=f(e)) → SelfMgr(e))).

75

Second-Order Tgds

Definition: Let S be a source schema and T a target schema.

A second-order tuple-generating dependency (SO tgd) is a
formula of the form:

∃f1 … ∃fm((∀x1(φ1 → ψ1)) ∧ … ∧ (∀xn(φn → ψn))), where

� Each fi is a function symbol.

� Each φi is a conjunction of atoms from S and equalities of

terms.

� Each ψi is a conjunction of atoms from T.

Example: ∃f (∀e(Emp(e) → Mgr(e,f(e)) ∧

∀e(Emp(e) ∧ (e=f(e)) → SelfMgr(e)))

76

Composing SO-Tgds and Data Exchange

Theorem (FKPT):

� The composition of two SO-tgds is definable by a SO-tgd.

� There is an algorithm for composing SO-tgds.

� The chase procedure can be extended to SO-tgds;

it produces universal solutions in polynomial time.

� Every SO tgd is the composition of finitely many GLAV
schema mappings. Hence, SO tgds are the “right” language
for the composition of GLAV schema mappings.

77

Synopsis of Schema Mapping Composition

� GAV ◦ GAV = GAV

� GAV ◦ GLAV = GLAV.

� GLAV ◦ GLAV ⊄⊄⊄⊄ GLAV. In fact, LAV ◦ GAV ⊄⊄⊄⊄ LFP.

� GLAV ◦ GLAV = SO-tgds = SO-tgds ◦ SO-tgds

� SO-tgds are the “right” language for composing GLAV
schema mappings.

� SO-tgds are “chasable”: Universal solutions in PTIME.

� SO-tgds and the composition algorithm are supported in
Clio.

78

Related Work (partial list)

� Earlier work on composition

Madhavan and Halevy - 2003

� Composing richer schema mappings

Nash, Bernstein, Melnik – 2007

� Composing schema mappings in open & closed worlds

Libkin and Sirangelo – 2008

� XML Schema Mappings

Amano, Libkin, Murlak – 2009

� Composing schema mappings with target constraints

Arenas, Fagin, Nash – 2010

� Composing LAV schema mappings with distinct variables

Arocena, Fuxman, Miller - 2010

79

Inverting Schema Mapping

� Given M, derive M’ that “undoes” M.

� Question:

What is the “right” semantics of the inverse operator?

� Note:

In general, M may have no “good” inverse, because M may
have information loss (e.g., projection schema mapping).

Schema S Schema T

M

M’

80

The Semantics of the Inverse Operator

� Several different approaches:

� (Exact) Inverses of schema mappings

Fagin - 2006

� Quasi-inverses of schema mappings

Fagin, K …, Popa, Tan - 2007

� Maximum recoveries of schema mappings

Arenas, Pérez, Riveros - 2008

� Extended maximum recoveries of schema mappings

Fagin, K …, Popa, Tan – 2009

� No definitive semantics of the inverse operator has emerged.

81

Related Presentations at DEIS ‘10

� Adrian Onet: Chase and its Applications to Data Exchange

� Vadim Savenkov: Core Computation for Data Exchange

� Jorge Pérez: Inverting Schema Mappings

� André Hernich: Closed World Reasoning in Data Exchange

� Amelie Greebranddt: XML Data Exchange

� Víctor Gutiérrez-Basulto: Integrity Constraints in Data
Exchange

� Emanuel Salinger: Analyzing, Comparing, and Debugging
Schema Mappings

82

Data Interoperability:
The Elephant and the Six Blind Men

� Data interoperability remains a
major challenge:

“Information integration is a
beast.” (L. Haas – 2007)

� Schema mappings specified by
tgds offer a formalism that
covers only some aspects of
data interoperability.

� However, theory and practice
can inform each other.

