

Learning mappings and queries

Marie Jacob University Of Pennsylvania

DEIS 2010

Schema mappings

- Denote relationships between schemas
- Relates source schema S and target schema T
- Defined in a query language like Datalog or first-order logic.

Informal problem

- Two variants:
 - Given schemas S and T, and instances I and J, find a set of s-t mappings that "naturally" translate S to T.
 - Given a set of schemas, S₁, S₂..., S_n, find an integrated schema that best reflects combination of all source schemas, and their corresponding s-t mappings.

Mapping Tasks

[Chiticariu et al, 2008] [Das Sarma et al, 2008] Clio [Miller et al, 2000]

Mapping Tasks

[Chiticariu et al, 2008] [Das Sarma et al, 2008] Clio [Miller et al, 2000]

Schema matching

- Determine if two attributes relate to each other.
 - Is Employee(id) the same as Emp(eid)?
- Challenges:
 - Heterogeneity.
 - Types of relationships.
 - Complex matches.

S-Match [Giunchiglia et al, 2007]

- Matches elements in source and target tree-structured models (e.g.XML)
- Abstracts labels into high-level concepts, encoded in description logic.
- Label A has concept C_A
- Classifies pairwise concepts, C_A, C_B:
 - $-C_A = C_B$ (equivalent)
 - $-C_A \sqsubseteq C_B$ (less general)
 - $-C_A \supseteq C_B$ (more general)
 - $-C_A \perp C_B$ (disjoint)

S-Match [Giunchiglia et al, 2007] 1. Compute concept of labels

S-Match [Giunchiglia et al, 2007] 2. Compute concepts at nodes:

S-Match [Giunchiglia et al, 2007]

3. Compute relations between atomic concepts

S-Match [Giunchiglia et al, 2007]

- 4. Compute relationships between nodes
 - Is $C_{classes} \sqcap C_{math}$ the same as $C_{courses} \sqcap C_{mathematics}$?
 - Construct logical implication formula axioms \rightarrow **rel**(C_A, C_B)
 - If negation is unsatisfiable, $rel(C_A, C_B)$ holds.

rel(C _A , C _B)	Translation to prop. logic
$C_A = C_B$	$C_A \Leftrightarrow C_B$
$C_A \sqsubseteq C_B$	$C_A \rightarrow C_B$
$C_A \supseteq C_B$	$C_B \rightarrow C_A$
$C_A \perp C_B$	¬ ($C_A \land C_B$)

nodes

S-Match [Giunchiglia et al, 2007] 4. Compute relationships between

S-match

- Linguistic techniques a useful approach as attribute names/labels are described using natural language.
- Takes into account source structure.
- Would miss application-specific attribute namings (e.g. eid)
- Does not use type information

iMap [Dhanmankar, 04]

System for determining complex matches between schemas.

– Eg. concat(S.fname, S.Iname) → T.name

- Searches a space of possible matches:
 - Employing learning techniques
 Employing domain knowledge
 - Employing domain knowledge
- Designed to be flexible, "plug-in" type architecture

iMap [Dhanmankar, 04]

• Finding candidate matches:

list-price = price * (1+taxrate)

Map [Dhanmankar, 04]

- Searchers:
 - Search strategy: Keep only k-highest scoring candidates for each combination

Map[Dhanmankar, 04]

- Exploiting Domain Knowledge
 - Domain constraints (e.g name & emailaddress unrelated)
 - Overlap data: Test matches on overlapping data
 - External resources: thesaurus
- Generally higher accuracy when given domain knowledge.

Schema matching

- Discovering relationships between source and target attributes.
- Variety of work
 - Using instance-based approaches.
 - Using linguistic techniques.
 - Using structural constraints of schemas
- Survey on schema matching [Rahm, Bernstein, 2001]

Mapping Tasks

[Chiticariu et al, 2008] [Das Sarma et al, 2008] Clio [Miller et al, 2000]

Integrated Schemas

- Given:
 - A set of source schemas S_1 , S_2 ..., S_n
 - A set of pairs of source and target attributes (weighted correspondences)
- Find:
 - A unified target schema T best representing source schemas.

Integrated schemas [Chitacariu et al, 08]

 Interactive Generation of Integrated schemas

Concept graphs

- 1: Construct concept graph
- each relation is a node
- each edge denotes parent-child or keyforeign key relationship

Matching graph

- Step 2: Form matching edges x_i
- Step 3: Find assignments of boolean variables
 x_i
 Step 4: For every edge x_i set to true, merge concepts

Integrated schema

Assignment:
$$x_1 = x_2 = x_3 = x_5 = 0$$
,
 $x_0 = x_4 = x_6 = x_7 = 1$

Integrated schemas [Chitacariu et al, 08]

- Different assignments can lead to same schema
 - Add constraints to boolean variables
 - Find satisfying assignments for a set of Horn clauses
- Source-to-target mapping generation:
 - Use a variant of the chase in order to preserve source foreign key constraints in the target.

- Key idea: build *probabilistic* schemas
 - Models uncertainty behind merging concepts
- Considers single relation source, target schemas
- Each attribute is a concept
- Attribute correspondences have weights

- Algorithm
 - 1. Construct weighted graph using correspondences
 - 2. Remove edges with weight below T
 - Each connected component forms cluster

- Algorithm
 - 1. Construct weighted graph using correspondences
 - 2. Remove edges with weight below T
 - Each connected component forms cluster

- Algorithm
 - 1. Construct weighted graph using correspondences
 - 2. Remove edges with weight below T
 - Each connected component forms cluster

- Partition edges into certain and uncertain edges
- Each uncertain edge with weight between T+ε and T-ε
- Create new schema by including/excluding uncertain edges.

- Partition edges into certain and uncertain edges
- Each uncertain edge with weight between T+ε and T-ε
- Create new schema by including/excluding uncertain edges.

- Partition edges into certain and uncertain edges
- Each uncertain edge with weight between T+ε and T-ε
- Create new schema by including/excluding uncertain edges.

• Probability of schema M_i :

$$\Pr(M_i) = \frac{c_i}{\sum_{j=1}^l c_j}$$

where c_i = number of sources *consistent* with M_i

- Source is consistent if no two distinct attributes are grouped together

 Models uncertainty in grouping real-world concepts
- Also consider p-mappings: probablistic mappings.

Mapping Tasks

[Chiticariu et al, 2008] [Das Sarma et al, 2008] Clio [Miller et al, 2000]

Mapping generation [Miller et al,2000]

- Goal:
 - to discover mappings between *independently created* source and target schemas
- Given:
 - Source schema S, single-table target schema T, set of value correspondences.
 - Value correspondence (f_i, p_i) where f_i is a function:

 $f_i: dom(A_1) \times \cdots \times dom(A_q) \to dom(B)$

and pi is a predicate over the source attributes: $p_i: dom(A_1) \times \cdots \times dom(A_q) \rightarrow boolean$

Value Correspondences

• Example:

– f1: PayRate(HrRate)*WorksOn(Hrs) → Personnel(Sal)

Mapping generation

Sample mapping queries:

 $\begin{array}{l} \{(i,n,s,a) \mid Professor(i,n,s) \land Address(i,a) \} \\ \{(i,n,s,a) \mid \exists r,h,y,x \ Student(n,g,y) \land PayRate(y,h) \land \\ WorksOn(n,p,x,r) \land i = null \land a = null \land s = h * x \end{array} \}$

Algorithm

1. Input Value Correspondences

- 2. Group Correspondences into candidate sets:
 - At most one correspondence per target attribute for each candidate set

Candidate sets $\rightarrow \{\{f_1, f_2\}, \{f_2, f_3\}, \{f_1\}, \{f_2\}, \{f_3\}\}$

Algorithm

- 3. Prune candidate sets if they do not map to good queries
 - − For set { f_1 :S1.A→T.C, f_2 :S2.A→ T.D} prune if no way to join S1 and S2
- 4. Select covers
 - Cover: Subset of candidate sets with each correspondence in at least one set
- 5. Rank covers
 - According to number of candidate sets

Conclusions

- Deriving mappings consists of several tasks:
 - Schema matching
 - Generation of Integrated schemas
 - Generation of mappings
- In general, lots of uncertainty
 - No way to exactly know semantic relationships
 - Tackle through probabilistic models
 - Learn from user feedback

Bibliography

- F. Giunchiglia , M.Yatskevich and P. Shvaiko. Semantic Matching: Algorithms and Implementation. Journal on Data Semantics. 2007.
- L. Chiticariu, P.G. Kolatis, and L. Popa: Interactive generation of integrated schemas. SIGMOD'08
- R. Dhamankar, Y. Lee, A. Doan, A.Y. Halevy, and P. Domingos. iMAP: Discovering Complex Mappings between Database Schemas. SIGMOD 2004.
- A. Das Sarma, X. Dong, and A.Y. Halevy: Bootstrapping pay-as-you-go data integration systems. SIGMOD'08.
- R.J. Miller, L.M. Haas, and M.A. Hernandez. Schema Mapping as Query Discovery. VLDB'00