QUERYING AND MINING DATA STREAMS

Elena Ikonomovska

Outline

\square Definitions

- Datastream models
- Similarity measures
\square Historical background
\square Foundations
\square Estimating the L_{2} distance
- Estimating the Jaccard similarity: Min-Wise Hashing
\square Key applications
\square Maintaining statistics on streams
- Hot items
- Some advanced results (Appendix)
- Estimating rarity and similarity (the windowed model)
- Tight bounds for approximate histograms and cluster-based summaries

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Data stream models: Time series model

\square A stream is a vector / point in space
\square Items are arriving in order of their indices:

$$
\vec{X}=\left\{X_{1}, X_{2}, X_{3}, \ldots\right\}
$$

| 1 | 2 | 3 | 4 | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | coordinates of the vector | | | |

- The value of the i-th item is the value of the i-th coordinate of the vector
\square Distance (similarity) between two streams is the distance between the two points

Data stream models: Turnstile model

\square Each arriving item is an update to some component of the vector:

1	2	3	4
10	5	24	12

$(2,4) \Rightarrow \quad$| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 10 | 9 | 24 | 12 |

$\left(2, x_{2}^{(5)}\right)$ indicates the 5 -th update to the 2 -nd component of the vector
\square value: $\quad x_{i}=x_{i}^{(1)}+x_{i}^{(2)}+x_{i}^{(3)} \ldots$
\square positive or negative update
\square only nonnegative updates \Rightarrow cash register model

L_{p} distances ($p \geq 0$)

\square Stream $1\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ \& stream $2\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$ in $\{1, \ldots, m\}$

$$
L_{p}=\Sigma_{i}\left|x_{i}^{p}-y_{i}^{p}\right| 1 / p
$$

$\square \mathrm{L}_{0}$ distance (Hamming distance) \Leftrightarrow the number of indices i such that $x_{i} \neq y_{i}$

- A measure of dis(similarity) of two streams [CDIO2]
- $\mathrm{L}_{\infty}=\max _{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right|$
$\square L_{2}=\Sigma_{i}\left|x_{i}{ }^{2}-y_{i}{ }^{2}\right|^{1 / 2}$ distance
$\square L_{2}$ norm ($f_{2}{ }^{2}$)- for approximating self-join sizes
[AGM'99] $Q=\operatorname{COUNT}\left(R \bowtie_{A} R\right) \quad|\operatorname{dom}(A)|=m$

Basic requirements

\square Naïve approach: store the points/vectors in memory and compute any distance/similarity measure or a statistic (norm, frequency moment)
\square Typically:

- Large quantities of data - single pass
\square Memory is constrained - $O(\log m)$
\square Real-time answers - linear time algorithms $\mathrm{O}(\mathrm{n})$
- Allowed approximate answers (ε, δ)
$\square \varepsilon \& \delta$ are user-specified parameters

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Historical background

\square [AMS'96] approximate F_{2} (inserts only)

- [AGM'99] approximate L_{2} norm (inserts and deletes)
\square [FKS'99] approximate L_{1} distance
\square [Indyk'00] approximate L_{p} distance for $p \in(0,2]$
- p -stable distributions (Caushy is 1 -stable, Gaussian is 2 -stable)
\square [CDI'O2] efficient approximation of L_{0} distance
\square Approximate distances on windowed streams
- [DGI'O2] approximate L_{p} distance
- [Datar-Muthukrishnan'02] approximate Jaccard similarity

Estimating the L_{2} distance [AGM'99]

\square Data streams ($\mathrm{x}_{1}, \mathrm{x}_{2} \ldots, \mathrm{x}_{\mathrm{n}}$) and ($\mathrm{y}_{1}, \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{n}}$)
\square For each $i=1,2, \ldots$ n define a i.i.d. random variable $X_{i} P\left[X_{i}=1\right]=$ $P\left[X_{i}=-1\right]=1 / 2 \Rightarrow E\left[X_{i}\right]=0$
\square Base idea: Simply maintain $\sum_{i=1, \ldots, n} X_{i}\left(x_{i}-y_{i}\right)$
\square For some i, i and items $\left(i, x_{i}^{(i)}\right),\left(i, y_{i}^{(i)}\right)$:
$\square X_{i} \cdot x_{i}^{(i)}$ is added and $X_{i} \cdot y_{i}^{(i)}$ is subtracted

$$
\begin{gathered}
1^{E\left[\left(\Sigma_{i=1, \ldots, n} X_{i}\left(x_{i}-y_{i}\right)\right)^{2}\right]=} \\
E\left[\Sigma_{i=1, \ldots, n} X_{i}^{2}\left(x_{i}-y_{i}\right)^{2}+\sum_{i \neq j} y_{i} X_{j}\left(x_{i}-y_{i}\right)\left(x_{j}-y_{j}\right)\right]= \\
\Sigma_{i=1, \ldots, n}\left(x_{i}-y_{i}\right)^{2}
\end{gathered}
$$

\square The problem amounts to obtaining an unbiased estimate

Standard boosting technique

\square Run the algorithm in parallel $\mathrm{k}=\theta\left(1 / \varepsilon^{2}\right)$ times

1. Maintain sums $\sum_{i=1, \ldots, n} X_{i}\left(x_{i}-y_{i}\right)$ for k different random assignments for the random var. $\Rightarrow \mathrm{X}_{\mathrm{i}, \mathrm{k}}$
2. Take the average of their squares for a given run r $\Rightarrow v^{(r)}$ (reduce the variance/error!) Chebyshev
3. \quad Repeat the procedure $I=\theta(\log (1 / \delta))$ times $\Rightarrow X_{i, k, I}$
4. Output the median over $\left\{\mathbf{v}^{(\mathbf{1})}, \mathbf{v}^{(\mathbf{2})}, \ldots, \mathbf{v}^{(1)}\right\}$ Chernoff
5. Maintains nkl values in parallel for the random variables

Result

The Chebyshev inequality + Chernoff:

\Rightarrow this estimates the square of L_{2} within ($1 \pm \varepsilon$) factor with probability $>(1-\delta)$
\square Random variables needed: nkl!
\square The random variables can be four-wise independent
\square This is enough so that Chebyshev still holds [AMS'96]
\square pseudorandomly generated on the fly \Rightarrow
$\square \mathrm{O}(\mathrm{kl})=\mathrm{O}\left(1 / \varepsilon^{2} \log (1 / \delta)\right)$ words + a logarithmic-length array of seeds $\mathrm{O}(\log \mathrm{m})$

Estimating the L_{p} distance

\square p-stable distributions [l’OO]
D is a p-stable distribution if:
\square For all real numbers $a_{1}, a_{2}, \ldots, a_{k}$

If $X_{1}, X_{2}, \ldots, X_{k}$ are i.i.d. random var. drawn from D
$\Rightarrow \sum a_{i} X_{i}$ has the same distribution as $X\left(\sum_{i}\left|a_{i}\right| p\right)^{1 / p}$ for random variable X with distribution \mathbf{D}
\square Cauchy distribution is 1 -stable $\Rightarrow L_{1}$
\square Gaussian distribution is 2 -stable $\Rightarrow L_{2}$

The algorithm

$z_{1}, z_{2}, \ldots z_{n}$ is the stream vector
\square Again... run in parallel $k=\theta\left(1 / \varepsilon^{2} \log (1 / \delta)\right)$ procedures \& maintain sums $\boldsymbol{\Sigma}_{\mathbf{i}} \mathbf{z}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$ for each run 1,...k
\square The value of $\Sigma_{i} \mathbf{z}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$ in the l-th run is $\mathbf{Z}^{(I)}$
$\square Z^{(1)}$ is a random variable itself
\square Let \mathbf{D} is p-stable:
$Z^{(I)}=X^{(I)}\left(\sum_{i}\left|z_{i}\right| p\right)^{1 / p}$
for some random variable $X^{(1)}$ drawn from D

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Estimating the L_{p} distance cont.

\square The output is:
$(1 / Y)$ median $\left\{\left|Z^{(1)}\right|,\left|Z^{(2)}\right|, \ldots,\left|Z^{(k)}\right|\right\}$
\square where Y is the median of $|X|$, for X random variable distributed according to D
\square Chebyshev: This estimate is within a multiplicative factor $(1 \pm \varepsilon)$ of the true norm with probability ($1-\delta$)
\square Observation [CDI'02]:
$\square L_{p}$ is a good approximation of the L_{0} norm for p sufficiently small
$\square \mathrm{p}=\varepsilon / \log (\mathrm{m})$ where m is the maximum absolute value of any item in the stream

The Jaccard similarity

$S_{A}=\left\{a_{1}, a_{2}, . . a_{n}\right\} \quad S_{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$
\square Let A (and B) denote the set of distinct elements |AीB|/|AUB| = Jaccard similarity
\square Example: (view sets as columns) $\mathrm{m}=6$

	A	B	
item $_{1}$	0	1	$\|A U B\|=\mathbf{5}$
item $_{2}$	1	0	
	1	1	$\operatorname{simJ}(\mathbf{A}, \mathbf{B})=\mathbf{2 / 5}=\mathbf{0 . 4}$
	0	0	
	1	1	
item $_{6}$	0	1	

Signature idea

\square Represent the sets A and B by signatures $\operatorname{Sig}(A)$ and Sig(B)
\square Compute the similarity over the signatures
$\square E[\operatorname{simH}(\operatorname{Sig}(A), S i g(B))]=\operatorname{sim} J(A, B)$
\square Simplest approach
\square Sample the sets (rows) uniformly at random k times to get k-bit signature Sig (instead of m bits)
\square Problems!

- Sparsity - sampling might miss important information

Tool: Min-Wise Hashing

$\square \pi$ - randomly chosen permutation over $\{1, \ldots, m\}$
\square For any subset $A \subseteq[m]$ the min-hash of A is:
$\square h_{\pi}(A)=\min _{i \in A}\{\pi(i)\}$
\square Index of the first row with value $1 \Leftrightarrow$ random permutation of the rows
\square One bit of the k-bit signature of $A, \operatorname{Sig}(A)$
\square When π is chosen uniformly at random from the set of all permutations on [m] for any two subsets A, B of [m] then:

$$
\operatorname{Pr}\left[h_{\pi}(A)=h_{\pi}(B)\right]=|A \cap B| /|A U B|
$$

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Example

- Consider the following permutations: for $\mathrm{m}=5$

$$
\begin{array}{ll}
\mathrm{k}=1 & \pi_{1}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right) \\
\mathrm{k}=2 & \pi_{2}=\left(\begin{array}{llllll}
5 & 4 & 3 & 2 & 1
\end{array}\right) \\
\mathrm{k}=3 & \pi_{3}=\left(\begin{array}{llllll}
3 & 4 & 5 & 1 & 2
\end{array}\right)
\end{array}
$$

- And the sets: $A=\{1,3,4\} \quad B=\{1,2,5\}$

The min-hash values are as follows:

$$
\begin{array}{lll}
k=1 & h \pi_{1}(A)=1 & h \pi_{1}(B)=1 \\
k=2 & h \pi_{2}(A)=4 & h \pi_{2}(B)=5 \\
k=3 & h \pi_{3}(A)=3 & h \pi_{3}(B)=5
\end{array}
$$

\Rightarrow the expectation of the fraction of permutations where minhash values agree is $\operatorname{sim} J(A, B)$

Estimation of Jaccard similarity

\square To get a good estimate of the expectation \Rightarrow
\square Run the procedure multiple times (k) in parallel
\square Choose independently k random permutations: $\boldsymbol{\pi}_{1}, . . \boldsymbol{\pi}_{\mathrm{k}}$
\square Count number of agreements: $\left|\left\{i: h_{\pi i}(A)=h_{\pi i}(B)\right\}\right|$
\square Output the fraction!

How many times is good enough?

Lemma

[Datar-Muthukrishnan'02]

Let $\left\{h_{1}(A), h_{2}(A), \ldots, h_{k}(A)\right\}$ and $\left\{h_{1}(B), h_{2}(B), \ldots, h_{k}(B)\right\}$ be \mathbf{k} independent min-hash values for the sets A and B respectively

Let $S(A, B)$ be the fraction of the min-hash values that they agree on:

$$
\mathrm{S}(\mathrm{~A}, \mathrm{~B})=\left|\left\{i \mid 1 \leq i \leq \mathrm{k}, \mathrm{~h}_{\mathrm{i}}(\mathrm{~A})=\mathrm{h}_{\mathrm{i}}(\mathrm{~B})\right\}\right| / \mathrm{k}
$$

\square For $0<\varepsilon<1$, and $k=O\left(\varepsilon^{-3} \log 1 / \delta\right)$ with success probability at least $1-\delta$

$$
S(A, B) \in((1 \pm \varepsilon)|A \cap B| /|A U B|
$$

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

The algorithm

- Choose k min-hash functions $h_{1}, h_{2}, \ldots h_{k}$ randomly
- Maintain $h_{i}^{*}(t)=\min _{a, i, j \leq t} h_{i}\left(a_{i}\right)$ at every time t
- For each new a_{t+1} compute the hash value $h_{i}\left(a_{t+1}\right)$ under the corresponding permutation I (1,...k) and compare with $h_{i}{ }^{*}(t)$
- If $h_{i}\left(a_{t+1}\right)<h_{i}^{*}(t)$ update the min-hash value

Storing one π takes O (m log m) space!
$\Rightarrow O(k m \log m)=O\left(\varepsilon^{-3} \log 1 / \delta m \log m\right)$

Approximate min-wise hashing

\square It suffices to use approximately min-wise independent hash functions (introduces additional error)
\square For any hash function \mathbf{h} chosen randomly from the family of ϵ^{\prime}-min-wise independent functions

$$
\begin{aligned}
& \operatorname{Pr}[\mathrm{h}(\mathrm{~A})=\mathrm{h}(\mathrm{~B})]=|\mathrm{A} \cap \mathrm{~B}| /|\mathrm{A} U \mathrm{~B}| \pm \epsilon^{\prime} \\
& \mathbf{S}(\mathbf{A}, \mathrm{B}) \in(1 \pm \varepsilon)|\mathbf{A} \cap \mathrm{B}| /|\mathrm{A} \cup \mathrm{~B}| \pm \epsilon^{\prime}
\end{aligned}
$$

\square very efficient in terms of space: $O\left(\log \left(1 / \epsilon^{\prime}\right) \log m\right)$
\square each hash function takes: $O\left(\log \left(1 / \epsilon^{\prime}\right)\right)$ time
\square The Lemma still holds, but \mathbf{k} has to be adjusted
Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Key applications

\square Tracking network traffic
\square Measure and detect large changes
\square Query optimization

- L_{2} norm to approximate self-join sizes / for selectivity estimation
- L_{0} norm number of distinct elements
- Genetic data
- Similarity of two base-pair sequences
\square Data mining:
\square Identifying similar entities (purchases, phone calls, IP addresses, Web page visits, bank transactions)

What's Hot and What's Not!

\square Problem definition [Cormode-Muthukrishnan'05]
\square What is a hot item?

- How to dynamically maintain a set of hot items under the presence of delete and insert transactions?
\square Preliminaries
\square Lemma on the space lower bound
\square Group testing : 2 methods proposed
\square Non-adaptive method
\square Results
\square Applications - measure of the skew of the data/iceberg aggregate queries, outliers detection

Hot items

A sequence of n transactions on items, $I D$'s $\in[1, m] \quad m=6$ $1,2,1,3,4,5,1,2,2,3,1,1,3,5,2,6,1,2, \ldots$

1

2

4 $f_{x}(t)=n_{x}(t) / \sum_{y=1, m} n_{y}(t)$ $f_{x}(t)>1 /(k+1) \Rightarrow$ hot item

$$
k=3
$$

$$
f_{1}(t)=6 / 18=1 / 3>1 / 4
$$

$$
f_{2}(t)=5 / 18>1 / 4
$$

$$
f_{3}(t)=3 / 10=1 / \%
$$

hot items are only $\{1,2\}$

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,
November 2010

Preliminaries

\square If allowed $\mathrm{O}(\mathrm{m})$ space (simple heap data structure)
\square Each insert/delete will take O(log m) time
\square All k hot items: $\mathrm{O}(\mathrm{k} \log \mathrm{m})$ time in the worst case
\square BUT ... if we are to use less than $\Omega(\mathrm{m})$ space:
\square Only approximate answers are possible (ε, δ) !
\square We can guarantee (with success probability $1-\delta$) that ALL HOT items are output and NO item which has frequency less than $1 /(k+1)-\varepsilon$
\square Lemma: Any algorithm which guarantees to find ALL AND ONLY items which have frequency greater than $1 /(k+1)$ must store $\Omega(m)$ bits

Proof (from information theory)

- Let S $\subseteq[1 \ldots \mathrm{~m}]$
\square Transform into a sequence of $n=|S|$ insertions of items
$\square x$ is included only once if and only if $x \in S$
\square Insert 【n/k 〕copies of x
\square If $x \notin S \Rightarrow$
$\lfloor n / k\rfloor /(n+\lfloor n / k\rfloor)=\lfloor n / k\rfloor /\lfloor n(k+1) / k\rfloor \leq\lfloor n / k\rfloor /(k+1)\lfloor n / k\rfloor=$
$1 /(k+1) \times$ is not output
- If $x \in S \Rightarrow$
$(\lfloor n / k\rfloor+1) /(n+\lfloor n / k\rfloor)>(n / k) /(n+n / k)=1 /(k+1) x$ is output
So, you can determine whether $x \in S$ or not!
The set S can be extracted \Rightarrow must store $\Omega(m)$ bits

Puzzle (adaptive GT)

\square A man has m coins, where $m=3^{x}, x>0$

- One is slightly heavier than others
\square What is the minimum number of weightings with a balance pan required to find the heavier coin?
\square How many coins do we put on each side?
- Obviously a same amount q ($\leq \mathrm{m} / 2$)
\square If we place q coins on each side:
- Tip \Rightarrow eliminate all but \mathbf{q} coins
- Not tip \Rightarrow eliminate $\mathbf{m - 2 q}$ coins
- $\mathbf{m} / \mathbf{2}$ or $\mathbf{m} / \mathbf{3}$?
- Going to $\mathrm{m} / 3$
- Cannot eliminate more than $2 \mathrm{~m} / 3$!
\square Result: $x=\log _{3}(m)$

Nonadaptive group testing

\square Divide all m items up into several overlapping groups
\square Each item x is included in several groups
\square Each group is associated with a counter
\square For an insertion of x increment the counters of all groups where it belongs, for a deletion decrement

- "Weight" each group of items (test each counter) to identify if the group contains a hot item or not (if the set counter exceeds a certain threshold)
- How many groups? (\ll m)
- How to represent them in a concise way?
- How to form the tests to obtain the hot items from the results efficiently?

Find the Majority Item (k=1)

\square Maintain $\left\lceil\log _{2} m\right\rceil+1$ counters : $c[0], c[1], \ldots, c[\log m]$ $\operatorname{bit}(x, i)$ - value of j-th bit of the binary representation

$$
\begin{aligned}
& x=13 \quad \text { bin: } 1101=1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0} \\
& \operatorname{bit}(13,0)=1, \operatorname{bit}(13,1)=0, \operatorname{bit}(13,2)=1, \ldots
\end{aligned}
$$

$d=1$ insertion, $d=-1$ deletion
$\square \mathrm{c}[0] \leftarrow \mathrm{c}[0]+\mathrm{d}$ (how many items are "live")
$\square c[i] \leftarrow c[i]+\operatorname{bit}(x, i) \cdot d \Rightarrow$ takes $\mathbf{O}(\log (m))$ time
\square The majority item (if any) $\Rightarrow \sum_{i=1, \ldots . \log (m)} 2^{i} \operatorname{gt}(c[i], c[0] / 2)$

- Deterministic: time $\mathbf{O}(\log (\mathbf{m}))$
\square It there is no majority item it is not possible to distinguish the difference (based on the information stored)

Illustration

$$
m=16
$$

\square We need $4+1=5$ counters in total

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,
November 2010

Finding k Hot items

\square To locate k items among m locations: $\log _{2}\binom{m}{k} \geq k \log _{2}(m / k)$
\square Suppose a group of items that happened to contain only one hot item
\square Split the group on (log(m)) subgroups each associated with a counter

- Apply the previous algorithm to identify the hot item!
\square To identify k hot items \Rightarrow construct TxW groups
\square For concise representation : Use T hash functions (representation in $\mathrm{O}(\log \mathrm{m}$) space)

$$
f_{a, b}(x)=((a x+b) \bmod P) \bmod W, \quad P>m>W
$$

- a and b are drawn randomly from [0 ... P-1]

Guarantees

\square For appropriate choices of T and W we can:

1. Ensure that all hot items are being output
2. Ensure that no items are output which are "far" from being hot
\square How?
3. Using properties of hash functions [Carter-

Wegman'79]
Over all choices of a and b, for $x \neq y$,

$$
\operatorname{Pr}\left[f_{a, b}(x)=f_{a, b}(y)\right] \leq 1 / W
$$

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Update \& Test

\square TxW number of groups, each split into $\log (m)$ subgroups
$\square \log (m)+1$ counters per group $\Rightarrow O($ TW $\log (m))$ space
$\square \mathrm{T}$ hash functions that map item x onto $0 . . \mathrm{W}-1$
\square A group represents the items which are mapped to the same hash value $\{0 \ldots W-1\}$ by a particular hash function h_{i}
\square Update counters: c[1][0][0] $\rightarrow c[T][\mathrm{W}-1][\log \mathrm{m}]$
\square For $\mathrm{i} \leftarrow 1$ to $\mathrm{T}:$ Update array $\mathrm{c}[\mathrm{i}]\left[\mathrm{h}_{\mathrm{i}}(\mathrm{x})\right]$ as previously
\square Update time is now $O(T \log (m))$
\square Test: If a group counts more than $n /(k+1)$ items then might contain a hot item

- Further verification is carried out for each hot item found
- The search time is $\mathrm{O}\left(\mathrm{T}^{2} \cdot \mathrm{~W} \cdot \log (\mathrm{~m})\right)$ - a scan of the whole data structure + a check on the hot item

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Theorem

\square With probability of at least $(\mathbf{1}-\boldsymbol{\delta})$ we can find all hot items whose frequency is $>\mathbf{1} /(\mathbf{k}+1)$, and given $\varepsilon \leq \mathbf{1} /(\mathbf{k}+\mathbf{1})$ with probability of at least $\mathbf{1}-\boldsymbol{\delta} / \mathbf{k}$ each item which is output has frequency of at least $1 /(k+1)-\varepsilon$
$\square U$ sing space $O(\log (k / \delta) 1 / \varepsilon \log (m))=O(k \log (k) \log (m))$
\square Update time $O(\log (k / \delta) \log (m))=O(\log (k) \log (m))$
\square Query time $O\left(\log ^{2}(k / \delta) 1 / \varepsilon \log (m)\right)=O\left(k \log ^{2}(k) \log (m)\right)$
\square This follows by setting $W \geq 2 / \varepsilon$ and $T=\log (k / \delta)+$ applying 2 other lemmas

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Summary (Take Home)

\square Intro to data stream models
\square The concept of random linear sketches for obtaining reliable $\left(\varepsilon, \delta\right.$) estimates of L_{p} distances/norms
\square Efficient algorithms based on:

- Min-wise hashing (Jaccard similarity + rarity)
\square The concept of group testing for estimating HOT items in a stream
- Estimating rarity and similarity in a windowed data stream model
- Tight bounds for approximate histograms and the k center problem

References

$\square \quad$ [CDIO2] Comparing data streams using Hamming norms (How to zero in)

- [AGM'99] Tracking join and self-join sizes in limited storage
$\square \quad$ [Indyk'00] Stable distributions, pseudorandom generators, embeddings, and data stream computation
$\square \quad$ [DGl'O2] Maintaining stream statistics over sliding windows
- [Vee'09] Stream Similarity Mining
$\square \quad$ [Datar-Muthukrishnan'02] Estimating Rarity and Similarity over Data Stream Windows
- [Cormode-Muthukrishnan'05] What's hot and what's not: tracking most frequent items dynamically
\square [Guha'09] Tight results for clustering and summarizing data streams
\square [Guha-Shim'07] A note on linear time algorithms for maximum error histograms
\square [BSS'07] Space efficient streaming algorithms for the maximum error histogram
$\square \quad$ [GKS'06] Approximation and streaming algorithms for histogram construction problems
$\square \quad$ [Carter-Wegman'79] Universal classes of hash functions
Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,
November 2010

Appendix

Estimating rarity and similarity in the windowed model [Datar-Muthukrishnan'02]
Advanced results from the paper of [Guha'09]

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,
November 2010

Some advanced topics

\square Rarity (Appendix)
\square Definition
\square Base ideas
\square Estimating rarity in the unbounded stream model
\square Estimating rarity and similarity in the windowed stream model (Appendix)
\square Clustering and summarizing (Appendix)

- Definitions / Preliminaries
\square Some very tight bounds

Rarity

\square An item is α-rare for integer α if it appears precisely α times

- $\# \alpha$-rare number of such items in the window
- $\rho_{\alpha}=\# \alpha$-rare/\#distinct (α-rarity)

$$
\begin{array}{ll}
S=\{2,3,2,4,3,1,2,4\} & D=\{1,2,3,4\} \\
\text { 1-rare }=\{1\} & \text { 1-rarity }=1 / 4 \\
\text { 2-rare }=\{3,4\} & \text { 2-rarity }=1 / 2 \\
\text { 3-rare }=\{2\} & \text { 3-rarity }=1 / 4
\end{array}
$$

Base ideas

$\square \mathrm{R}_{\alpha}$ - set of α-rare items
\square D - set of distinct items
$\square 2$ main observations:

1. $R_{\alpha} \subseteq D$
$\Rightarrow\left|R_{\alpha} \cap D\right| /\left|R_{\alpha} \cup D\right|=\left|R_{\alpha}\right| /|D|$

- Rarity is the fraction of the time min-hash functions for R_{α} and D have agreed upon

2. $h\left(R_{\alpha}\right)=h(D)$ iff the item in D belongs to R_{α}

- Need to maintain the min-hash values only for D

Lemma [Datar-Muthukrishnan'02]

\square Let $\rho_{\alpha}{ }^{\prime}$ be the fraction of counters $c_{i}(t)$ that eq. $\boldsymbol{\alpha}$:

$$
\rho_{\alpha}^{\prime}(\mathrm{t})=\left|\left\{\left||1 \leq| \leq k_{1}, c_{i}(t)=\alpha\right\} \mid / k\right.\right.
$$

For $0<\varepsilon<1,0<p<1$ and $k \geq 2 \varepsilon^{-3} p^{-1} \log \delta^{-1}$

$$
\rho_{\alpha}{ }^{\prime}(\mathrm{t}) \in(1 \pm \varepsilon) \rho_{\alpha}(\mathrm{t})+\varepsilon p
$$

with success probability at least $1-\delta$
\square Why?

$$
\operatorname{Pr}\left[\mathbf{c}_{\mathbf{i}}(\mathbf{t})=\boldsymbol{\alpha}\right]=\operatorname{Pr}\left[\mathbf{h}_{\mathbf{i}}^{*}(\mathbf{t})=\mathbf{h}_{\mathbf{i}}(\mathbf{x}) \mid \mathbf{x} \in \mathbf{R}_{\alpha}\right]=\left|R_{\alpha}(\mathbf{t})\right| /\left|D_{\mathrm{t}}\right|
$$

$\square \boldsymbol{\alpha}$ can be chosen at query time

The windowed data stream model

\square Consider the window of the last N observations:
$a_{t-100}, a_{t-99}, \ldots, a_{t-(N-1)}, a_{t-(N-2)}, \cdots, a_{t-2}, a_{t-1}, a_{t}$
\square The data changes over time

- Interest over the "recently observed" data elements
\square Eg. How many distinct customers made a call through a given switch in the past 24 hours?
\square We cannot store the entire window in memory $\{12,89,23,45,34\} \min =12 \Rightarrow\{89,23,45,34,58\} \min =23$

We need to store each item in the window!

\square Applications: sensor networks, switches, Internet routers,..
\square Computing most functions exactly is impossible

Estimating similarity - windowed

\square Maintain k min-hash values for A and B
$\square \sigma$ - the fraction of min-hash values they agree on
\square How to maintain min in a window?
$\square d_{1}, d_{2}$ are items arrived at times t_{1} and $t_{2}\left(t_{1}<t_{2}\right)$

- If $h_{i}\left(d_{1}\right) \geq h_{i}\left(d_{2}\right) d_{2}$ dominates d_{1}
\square When both are active the minimum $h_{i}^{*}(t)$ is not affected by $h_{i}\left(d_{1}\right)$ \Rightarrow no need to store $h_{i}\left(d_{1}\right)$
\square For each min-hash function maintain a list:
$L_{i}(t)=\left\{\left(h_{i}\left(a_{i 1}\right), i_{1}\right),\left(h_{i}\left(a_{i 2}\right), i_{2}\right), \ldots\left(h_{i}\left(a_{i}\right), i_{1}\right)\right\}$
$\square \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{1} \& \mathrm{~h}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i} 1}\right)<\mathrm{h}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i} 2}\right)<\ldots<\mathrm{h}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}\right)$
$\square h_{i}^{*}(t)=h_{i}\left(a_{i 1}\right)$

Estimating similarity cont.

\square Memory allocated $\left|\mathrm{L}_{\mathrm{i}}(\mathrm{t})\right|$ at time \dagger

10	11	12	13	14	15	16	17	18	19	20
20	12	75	26	23	20	15	29	40	45	32

Min-hash list:	11	16	17	20
12	15	29	32	

\square With high probability, over the choice of min-hash function h_{i}, expected $\left|\mathrm{L}_{\mathrm{i}}(\mathrm{t})\right|=\Theta(\log \mathrm{N})$
$\square \mathrm{N}$ is the size of the window
$\square O((\log N)(\log u))$ bits of space
$\square O(\log \log N)$ time per data item

Estimating rarity - windowed

\square Keep a linked-list of "dominant" min-hash values
\square But since now we need to find α instances of an item, we keep several arrival times of the item

$$
L_{i}(t)=\left\{\left(h_{i}\left(a_{i 1}\right), \text { List }_{i, j}^{\dagger}\right),\left(h_{i}\left(a_{i 2}\right), \operatorname{List}_{i, i}^{\dagger}\right), \ldots,\left(h_{i}\left(a_{i j}\right), \text { List }_{i, j 1}^{\dagger}\right)\right\}
$$

- Where List ${ }_{i, j 1}$ is an ordered list of the last α instances mapped to the hash value $h_{i}\left(a_{i 1}\right)$
\square Concatenate: List ${ }_{i, 1,1}+$ List $^{\dagger}{ }_{i, 2}+\ldots+$ Liss $^{\dagger}{ }_{i, 1} \Rightarrow$ indexes strictly increasing
- Count the fraction of List ${ }_{i, j 1}$ over all i that have α elements and agree on the minimal hash value
\square The total size of $L_{i}(t)$ is $O(\alpha \log N)$ with high probability

Clustering and summarizing

\square Definitions
\square Preliminaries (the main ideas)
\square "Streamstrapping"
\square Upper bounds \& lower bounds
\square Results:
\square Guarantees
\square Applications

- MinMax objectives
- MinSum objectives

K-center clustering

\square Given n points identify K centers such that the maximal distance for each point from its closest center is minimized
\square Find the smallest radius ε^{*} such that if disks of radius ε^{*} are placed on the chosen centers then every input point is covered
\square Assume an oracle distance model

- Useful for more complex types of data

Histograms

\square Approximate a data distribution using a fixed amount of space while minimizing the overall error
\square Given a sequence of n numbers x_{1}, \ldots, x_{n}
\square Construct a piecewise constant representation H with at most B pieces (buckets)
\square The values in a single bucket are estimated using a single value \Rightarrow we suffer an error
\square Choose the buckets such that an objective function $f(X, H)$ is minimized

- $f(X, H)$ can be the squared (VOPT) or the maximum error...

Preliminaries - 3 main ideas

\square "Thresholded approximation"
\square If there exists a solution of size B^{\prime} and error ε then we can construct a summary of at most B^{\prime} such that the error is at most $\alpha \varepsilon$ (where $\alpha \geq 1$)

- Otherwise, no solution with error ε exists ("fail")
\square Run multiple copies (controlled in number) of the algorithm for different estimates of the error ε
\square Try with several values
\square If ε is too small the algorithm will return "fail"
\square Restart with a bigger error estimate
\square "Streamstrapping" - bootstrapping streams
\square Use the summarization results from the previous run

"Streamstrapping" [Guha'09]

\square Use a property of metric errors:
\square Let $\varepsilon(X, H)$ be summarization error for X using the summary H
\square Let $X_{t} \circ Y$ a concatenation of input X_{t} followed by Y
$-Y$ is $X_{t} \backslash X_{t-1}$ that is $X_{t}=X_{t-1} \circ Y$
\square Let $X\left(H_{t}\right)$ is the summarized input X_{t} using H_{t} $\varepsilon\left(X_{t} \circ Y, H_{t}\right)$ is in the range: $\varepsilon\left(X\left(H_{t-1}\right) \circ Y, H_{t}\right) \pm \varepsilon\left(X_{t-1}, H_{t-1}\right)$
\square Informs on the correct level of detail we need to be investigating the data

Upper bounds

\square when input $\ldots x_{i} \ldots$ is presented in increasing order of i
\square Any ($1+\epsilon$) approximation algorithm requires:
$\square O((B / \epsilon) \log (1 / \epsilon))$ space for maximum error histogram
$\square \mathrm{O}\left(\left(\mathrm{B}^{2} / \epsilon\right) \log (1 / \epsilon)\right)$ space for VOPT error histogram
\square Running time is $\mathrm{O}(\mathrm{n})$ plus smaller order terms
\square Any $2(1+\epsilon)$ approximation algorithm requires:
$\square \mathrm{O}((\mathrm{k} / \epsilon) \log (1 / \epsilon))$ space for the k -center problem
First results (for the space bound) that are nondependent on: the size of the stream N, the precision M, nor the optimal solution ε^{*}

Lower bounds

\square The minimal space that has to be used in order to provide some approximations
\square For maximum error histograms: for all $\epsilon \leq 1 /(40 B)$
\square Any $(1+\epsilon)$ approximation must use $\Omega(B /(\epsilon \log (B /$ $\epsilon)$)) bits of space
\square The first lower bound stronger than Ω (B)
\square For k-center single pass deterministic algorithm: for all $\epsilon \leq 1 /(10 k)$
$\square(2+\epsilon)$ approximation has to store $\Omega\left(\mathrm{k}^{2}\right)$ points

The StreamStrap Algorithm

1. Read the first B items in the input. Keep reading as long as the error is 0
2. At the first input that causes a non-zero error $\varepsilon_{0} \Rightarrow$ Run $J=O((1 / \epsilon) \cdot \log (\alpha / \epsilon))$ copies of the algorithm

- Each for error $\varepsilon=\varepsilon_{0},(1+\epsilon) \varepsilon_{0}, \ldots(1+\epsilon)^{\top} \varepsilon_{0}$

3. At some point (for some ε) the algorithm will return "fail", so we know that $\varepsilon^{*}>\varepsilon$.

- We terminate the copies for all $\varepsilon^{\prime}<\varepsilon$ and restart with $(1+\epsilon) \varepsilon^{\prime}$ using the summarization of ε^{\prime}

4. Repeat step 2 until end of input

Advanced School on Data Exchange, Integration, and Streams - Dagstuhl,

Guarantees

\square The answer corresponds to the lowest estimate ε for which a copy of the thresholded algorithm is still running
\square If a "thresholded" approximation exists for any $\epsilon<1 / 10$
\square The algorithm provides a $\alpha /(1-3 \epsilon)^{2}$ approximation
\square The running time is the time to run $O((1 / \epsilon) \cdot \log (\alpha / \epsilon))$
copies of the thresholded algorithm +
$O\left((1 / \epsilon) \cdot \log \left(\alpha \varepsilon^{*} M\right)\right)$ initializations

Upper bounds: k-Center

Use the previous guarantees...
\square A single pass $2+\epsilon$ approximation for K center problem using
$\square \mathrm{O}((\mathrm{K} / \epsilon) \log (1 / \epsilon))$ space and
$\square \mathrm{O}\left((\mathrm{Kn} / \epsilon) \log (1 / \epsilon)+(\mathrm{K} / \epsilon) \log \left(M \varepsilon^{*}\right)\right)$ time
\square when the points are input in an arbitrary order
\square The radius of any cluster is $\pm \epsilon \varepsilon^{*}$ of the true radius of that cluster using the same center

Upper bounds: Max Error Histogram

\square A single pass $1+\epsilon$ streaming approximation for B bucket histogram construction using
$\square O((B / \epsilon) \log (1 / \epsilon))$ space and
$\square O\left(n+(B / \epsilon) \log ^{2}(B / \epsilon) \log \left(M \varepsilon^{*}\right)\right)$ time
\square the input $\ldots x_{i} \ldots$ is presented in increasing order of i
\square Based on the "thresholded" optimum algorithm [GuhaShim'07]
\square The error of any bucket found is $\pm \epsilon \varepsilon^{*}$ of the true error of that bucket

Upper bounds - VOPT histogram

\square A single pass $1+\epsilon$ streaming approximation for best B-bucket histogram for VOPT error using
$\square O\left(\left(B^{2} / \epsilon\right) \log (1 / \epsilon)\right)$ space and
$\square O\left(n+\left(B^{3} / \epsilon^{2}\right) \log ^{2}(B / \epsilon) \log \left(M \varepsilon^{*}\right)\right)$ time
\square the input $\ldots x_{i} \ldots$ is presented in increasing order of i
\square Based on AHIST-B [GKS'06]
\square A similar result for the K-median problem
\square Minimize \sum of distances of all points to their closest centers

