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Data stream models: Time series model

 A stream is a vector / point in space/ p p
 Items are arriving in order of their indices:

1 2 3{ , , ,...}x x x x

… coordinates of the vector1
x1

2
x2

3
x3

4
x4

1 2 3{ , , ,...}x x x x

 The value of the i-th item is the value of the i-th
coordinate of the vector

 Distance (similarity) between two streams is the 
distance between the two points
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Data stream models: Turnstile model

 Each arriving item is an update to some component of g p p
the vector:

1 2 3 4 1 2 3 4
(2, 4) ⇒

(2  x (5)) indicates the 5 th update to the 2 nd 

10 5 24 12 10 9 24 12

(2, x2
(5)) indicates the 5-th update to the 2-nd 

component of the vector 
 value: xi = xi

(1) + xi
(2) + xi

(3)… i i i i

 positive or negative update
 only nonnegative updates ⇒ cash register model
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Lp distances (p ≥ 0)p (p )

 Stream 1 {x1,x2,x3,…} & stream 2 {y1,y2,y3,…}  in {1,…,m} { 1 2 3 } { 1 2 3 } { }

Lp=Σi|xi
p-yi

p|1/p

 L0 distance (Hamming distance) ⇔ the number of  L0 distance (Hamming distance) the number of 
indices i such that xi≠yi
 A measure of dis(similarity) of two streams [CDI02]

 L∞ = maxi|xi - yi|

 L2=Σi|xi
2-yi

2|1/2  distance
 L2 norm (f2

2)- for approximating self-join sizes 
[AGM’99]     Q = COUNT(R AR)   |dom(A)| = m
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Basic requirementsq

 Naïve approach: store the points/vectors in memory  Naïve approach: store the points/vectors in memory 
and compute any distance/similarity measure or a 
statistic (norm, frequency moment)( , q y )

 Typically:
 Large quantities of data – single passg q g p
 Memory is constrained – O(log m)
 Real-time answers – linear time algorithms O(n)g ( )

 Allowed approximate answers (ε, δ)
 ε & δ are user-specified parametersp p
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Historical backgroundg

 [AMS’96] approximate F2 (inserts only) [AMS 96] approximate F2 (inserts only)
 [AGM’99]  approximate L2 norm (inserts and deletes)

 [FKS’99] approximate L1 distance [ ] pp 1

 [Indyk’00] approximate Lp distance for p (0,2]
 p-stable distributions (Caushy is 1-stable, Gaussian is 2-stable )

 [CDI’02] efficient approximation of L0 distance
 Approximate distances on windowed streams

 [DGI’02] approximate Lp distance
 [Datar-Muthukrishnan’02] approximate Jaccard similarity
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Estimating the L2 distance [AGM’99]g 2 [ ]

 Data streams (x1, x2 …, xn) and (y1, y2… yn)
 For each i = 1, 2, …n define a i.i.d. random variable Xi P[Xi = 1] = 

P[Xi = -1] = 1/2   E[Xi]=0
 Base idea: Simply maintain Σi=1,..,n Xi(xi - yi)

 For some i, j  and items (i, xi
(j)), (i, yi

(j)) : 
 Xi

·xi
(j) is added and Xi·yi

(j) is subtracted

E[(Σi=1,..,nXi(xi-yi))2] = 

E[Σi=1 nXi
2(xi-yi)2+ Σi≠jXiXj(xi-yi)(xj-yj)] = 

1 0
[ i=1,..,n i ( i yi) i≠j i j( i yi)( j yj)]

Σi=1,..,n(xi-yi)2
 The problem amounts to obtaining an unbiased estimate 
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Standard boosting techniqueg q

 Run the algorithm in parallel k=θ(1/ε2) times Run the algorithm in parallel k θ(1/ε ) times
1. Maintain sums Σi=1,..,n Xi(xi - yi) for k different random 

assignments for the random var.  Xi,ki,k

2. Take the average of their squares for a given run r 
⇒ v(r) (reduce the variance/error!)   Chebyshev

3. Repeat the procedure l = θ(log(1/δ)) times Xi,k,l

4. Output the median over {v(1),v(2),…,v(l)} Chernoff
5. Maintains nkl values in parallel for the random 

variables
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Result

The Chebyshev inequality + Chernoff:The Chebyshev inequality  Chernoff:
⇒ this estimates the square of L2 within (1±ε) 

factor with probability > (1 - δ)p y ( )
 Random variables needed: nkl !
 The random variables can be four-wise independentp

 This is enough so that Chebyshev still holds [AMS’96]
 pseudorandomly generated on the fly 
 O(kl) = O(1/ε2log(1/δ)) words + a logarithmic-length 

array of seeds O(log m)
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Estimating the Lp distance g p

 p-stable distributions [I’00]p [ ]
D is a p-stable distribution if:
 For all real numbers a1, a2, …, ak

If X1, X2,…,Xk are i.i.d. random var. drawn from D
⇒ Σa X has the same distribution as X(Σ |a |p)1/p⇒ ΣaiXi has the same distribution as X(Σi|ai|p)1/p

for random variable X with distribution D

 Cauchy distribution is 1-stable L1

 Gaussian distribution is 2-stable L2
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The algorithmg

z1, z2,…z is the stream vectorz1, z2,…zn is the stream vector
 Again… run in parallel k=θ(1/ε2log(1/δ)) 

procedures & maintain sums ΣiziXi for each run procedures & maintain sums ΣiziXi for each run 
1,…k

 The value of ΣiziXi in the l-th run is Z(l)e va ue o  i i i  e u  s 
 Z(l) is a random variable itself
 Let D is p-stable: e  s p s ab e: 

Z(l) = X(l) (Σi|zi|p)1/p

for some random variable X(l) drawn from D
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Estimating the Lp distance cont.g p

 The output is:p
(1/γ)median{|Z(1)|, |Z(2)|,…, |Z(k)|} 
 where γ is the median of |X|, for X random variable 

Ddistributed according to D
 Chebyshev: This estimate is within a multiplicative factor 

(1±ε) of the true norm with probability (1-δ)( ) p y ( )
 Observation [CDI’02]: 

 Lp is a good approximation of the L0 norm for p sufficiently 
ll small 

 p=ε/log(m) where m is the maximum absolute value of any 
item in the stream
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The Jaccard similarityy

SA={a1,a2,..an}  SB={b1,b2,…,bn}
 Let A (and B) denote the set of distinct elements

|A∩B|/|AUB| = Jaccard similarity

 Example:  (view sets as columns)  m=6
A B

item1 0 1 |AUB|=5

item2 1 0
1 1 simJ(A,B) = 2/5 = 0.41 1 simJ(A,B)  2/5  0.4
0 0
1 1

item6 0 1
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Signature ideag

 Represent the sets A and B by signatures Sig(A) and  Represent the sets A and B by signatures Sig(A) and 
Sig(B)
 Compute the similarity over the signaturesp y g
 E[simH(Sig(A),Sig(B))]=simJ(A,B)

 Simplest approachS p pp
 Sample the sets (rows) uniformly at random k times to 

get k-bit signature Sig (instead of m bits)
 Problems!
 Sparsity – sampling might miss important information
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Tool: Min-Wise Hashingg

 π ‐ randomly chosen permutation over {1,…,m}y p { , , }
 For any subset A⊆[m] the min-hash of A is:

 hπ(A) = mini∊A{π(i)} π( ) i∊A{ ( )}
 Index of the first row with value 1  random 

permutation of the rows
O  bi  f h  k bi  i  f A   Si (A) One bit of the k-bit signature of A,  Sig(A)

 When π is chosen uniformly at random from the set 
of all permutations on [m] for any two subsets A B of all permutations on [m] for any two subsets A,B 
of [m] then:  

Pr[h (A) = h (B)] = |A∩B|/|AUB|
Advanced School on Data Exchange, Integration, and Streams - Dagstuhl, 

November 2010

Pr[hπ(A)  hπ(B)]  |A∩B|/|AUB|



Examplep

 Consider the following permutations:  for m=5
k=1 1 = (1 2 3 4 5) 
k=2 2 = (5 4 3 2 1)
k=3 3 = (3 4 5 1 2) 

 And the sets: A = {1,3,4} B = {1,2,5}

The min-hash values are as follows:

k=1 h1(A) = 1 h1(B) = 1
k=2 h2(A) = 4 h2(B) = 5 
k=3 h (A) = 3 h (B) = 5 k=3 h3(A) = 3 h3(B) = 5 

the expectation of the fraction of permutations where min-
hash values agree is simJ(A,B)
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Estimation of Jaccard similarityy

 To get a good estimate of the expectation ⇒ g g p
 Run the procedure multiple times (k) in parallel

 Choose independently k random permutations: π1,.. πk

 Count number of agreements: |{j: hπj(A)= hπj(B)}|
 Output the fraction!

How many times is good enough?
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Lemma
[D M h k i h ’02][Datar-Muthukrishnan’02]

Let {h1(A), h2(A),…,hk(A )} and {h1(B), h2(B),…,hk(B )} be k{ 1 ) 2 ) k )} { 1 ) 2 ) k )}
independent min-hash values for the sets A and B 
respectively

L t S(A B) b  th  f ti  f th  i h h l  th t th  Let S(A,B) be the fraction of the min-hash values that they 
agree on:

S(A,B)=|{j|1≤j ≤k, hj(A)=hj(B)}|/k( ) {j j j( ) j( )} /

 For 0 < ε < 1, and k = O(ε-3 log 1/δ) with success 
b bilit  t l t 1 δprobability at least 1 - δ
S(A,B) (1±ε)|A∩B|/|AUB|
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The algorithmg

 Choose k min-hash functions h1, h2, …hk randomly Choose k min hash functions h1, h2, …hk randomly
 Maintain hi*(t) = minaj,j≤thi(aj) at every time t
 For each new at+1 compute the hash value hi(at+1) under the t+1 p i( t+1)

corresponding permutation I (1,..k) and compare with hi*(t)
 If hi(at+1) < hi*(t) update the min-hash value

Storing one π takes O(m log m) space!

O(km log m) = O(ε-3 log 1/δ m log m)
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Approximate min-wise hashingpp g

 It suffices to use approximately min-wise pp y
independent hash functions (introduces additional 
error)

 For any hash function h chosen randomly from the 
family of ∊’-min-wise independent functions 

P  [h(A)  h(B)] |A∩B|/|AUB| ± ∊’Pr [h(A) = h(B)] = |A∩B|/|AUB| ± ∊’
S(A,B) (1±ε)|A∩B|/|AUB| ± ∊’

  ffi i t i  t  f  O(l  (1/∊’) l  ) very efficient in terms of space: O(log (1/∊’) log m)
 each hash function takes: O(log (1/∊’)) time

 The Lemma still holds  but k has to be adjusted
Advanced School on Data Exchange, Integration, and Streams - Dagstuhl, 

November 2010

 The Lemma still holds, but k has to be adjusted



Key applicationsy pp

 Tracking network traffic Tracking network traffic
 Measure and detect large changes

 Query optimizationy p
 L2 norm to approximate self-join sizes / for selectivity estimation 
 L0 norm number of distinct elements 

 Genetic data
 Similarity of two base-pair sequences

 Data mining: Data mining:
 Identifying similar entities (purchases, phone calls, IP 

addresses, Web page visits, bank transactions)
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What’s Hot and What’s Not!

 Problem definition [Cormode-Muthukrishnan’05]
 What is a hot item?
 How to dynamically maintain a set of hot items under the 

presence of delete and insert transactions?p
 Preliminaries

 Lemma on the space lower bound
G    2 h d  d Group testing : 2 methods proposed
 Non-adaptive method

 Results Results
 Applications - measure of the skew of the data/ iceberg 

aggregate queries, outliers detection
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Hot items

A sequence of n transactions on items, ID’s ∈ [1, m] m = 6
1,2,1,3,4,5,1,2,2,3,1,1,3,5,2,6,1,2,… (turnstile model)

1 2 3 4 5 6

 nx(t) = #inserted - #deleted fx(t) = nx(t)/Σy=1,mny(t)
f (t) > 1/(k+1) ⇒hot itemfx(t) > 1/(k+1) ⇒hot item

k=3 f1(t)=6/18=1/3  > 1/4
f2(t)=5/18  > 1/4       
f3(t)=3/18=1/6

hot items are only {1,2}
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Preliminaries

 If allowed O(m) space (simple heap data structure)( ) p ( p p )
 Each insert/delete will take O(log m) time
 All k hot items: O(k log m) time in the worst case

Ω( ) BUT … if we are to use less than Ω(m) space:
 Only approximate answers are possible (ε, δ)!
 We can guarantee (with success probability 1 δ) that ALL  We can guarantee (with success probability 1 - δ) that ALL 

HOT items are output and NO item which has frequency less 
than 1/(k+1) – ε

 Lemma: Any algorithm which guarantees to find ALL 
AND ONLY items which have frequency greater than 
1/(k+1) must store Ω(m) bits
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Proof (from information theory)( y)

 Let S [1…m]
 Transform into a sequence of n =|S| insertions of items
 x is included only once if and only if x S

/ f Insert n/k copies of x
 If x S
n/k /(n+ n/k ) = n/k / n(k+1)/k ≤ n/k /(k+1) n/k = n/k /(n+ n/k ) = n/k / n(k+1)/k ≤ n/k /(k+1) n/k = 
1/(k+1)  x is not output

 If x S
( n/k +1)/(n+ n/k ) > (n/k)/(n+n/k)  = 1/(k+1) x is output
So, you can determine whether x S or not!
The set S can be extracted  must store Ω(m) bitsThe set S can be extracted  must store Ω(m) bits
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Puzzle (adaptive GT)( p )

 A man has m coins, where m = 3x, x > 0
 One is slightly heavier than others

 What is the minimum number of weightings with a balance 
pan required to find the heavier coin?p q
 How many coins do we put on each side?
 Obviously a same amount q (≤ m/2)

 If we place q coins on each side: If we place q coins on each side:
 Tip eliminate all but q coins
 Not tip eliminate m-2q coins

 m/2 or m/3? m/2 or m/3?
 Going to m/3
 Cannot eliminate more than 2m/3!

 Result: x = log3(m)
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Nonadaptive group testingp g p g

 Divide all m items up into several overlapping groups
 Each item x is included in several groups
 Each group is associated with a counter
 For an insertion of x increment the counters of all groups  For an insertion of x increment the counters of all groups 

where it belongs, for a deletion decrement
 “Weight” each group of items (test each counter) to identify 

if the group contains a hot item or not (if the set counter if the group contains a hot item or not (if the set counter 
exceeds a certain threshold)

 How many groups? (<< m)
H    h  i   i  ? How to represent them in a concise way?

 How to form the tests to obtain the hot items from the 
results efficiently?
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Find the Majority Item (k=1)j y ( )

 Maintain ⌈log2m⌉+1 counters : c[0],c[1],…,c[log m]
bit(x, j) – value of j-th bit of the binary representation

x=13 bin: 1101 = 1·23 +1·22 +0·21+1·20

bit(13, 0)=1, bit(13, 1)=0, bit(13, 2)=1, …( , ) , ( , ) , ( , ) ,

d=1 insertion, d=-1 deletion
 c[0] ← c[0] + d   (how many items are “live”) c[0] ← c[0] + d   (how many items are live )
 c[j] ← c[j] + bit(x, j)·d  takes O(log(m)) time

 The majority item (if any) Σj=1,… log(m) 2j gt(c[j],c[0]/2)
 D t i i ti   ti  O(l ( ))  Deterministic : time O(log(m)) 

 It there is no majority item it is not possible to distinguish the 
difference (based on the information stored)
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Illustration

 m=16 m 16
 We need 4+1 = 5 counters in total
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Finding k Hot itemsg

 To locate k items among m locations : 2 2log log ( / )m k m kk
 
 
 
 

g
 Suppose a group of items that happened to contain 

only one hot item

2 2k 
 
 

 Split the group on (log(m)) subgroups each associated with 
a counter

 Apply the previous algorithm to identify the hot item!pp y p g y
 To identify k hot items construct TxW groups

 For concise representation : Use T hash functions 
(representation in O(log m) space) 

fa,b(x)=((ax + b) mod P) mod W,   P > m > W
 a and b are drawn randomly from [0  P 1]
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Guarantees

 For appropriate choices of T and W we can: For appropriate choices of T and W we can:
1. Ensure that all hot items are being output
2. Ensure that no items are output which are “far” from 2. Ensure that no items are output which are far  from 

being hot 

 How?  
1. Using properties of hash functions [Carter-

Wegman’79]

Over all choices of a and b, for x ≠ y, 
Pr[fa,b(x) = fa,b(y)] ≤ 1/W
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Update & Testp

 TxW number of groups, each split into log(m) subgroups
 log(m)+1 counters per group O(TW log(m)) space
 T hash functions that map item x onto 0…W-1
 A group represents the items which are mapped to the same hash g p p pp

value {0 …W-1} by a particular hash function hi

 Update counters: c[1][0][0] → c[T][W-1][log m]  
 For i ← 1 to T : Update array c[i][hi(x)] as previously For i 1 to T : Update array c[i][hi(x)] as previously
 Update time is now O(T log(m))

 Test: If a group counts more than n/(k+1) items then might
contain a hot item contain a hot item 
 Further verification is carried out for each hot item found
 The search time is O(T2·W·log(m)) – a scan of the whole data 

structure + a check on the hot item
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Theorem

 With probability of at least (1 – δ) we can find all p y ( )
hot items whose frequency is > 1/(k+1), and given
ε≤1/(k+1) with probability of at least 1- δ/k each 
i  hi h i   h  f  f  l  item which is output has frequency of at least 
1/(k+1) – ε
 Using space O(log(k/δ) 1/ε log(m)) = O(k log(k) log(m)) Using space O(log(k/δ) 1/ε log(m)) = O(k log(k) log(m))
 Update time O(log(k/δ) log(m)) = O(log(k) log(m))
 Query time O(log2(k/δ) 1/ε log(m))=O(k log2(k) log(m))y ( g ( / ) g( )) ( g ( ) g( ))

 This follows by setting W ≥2/ε and T = log(k/δ) + 
applying 2 other lemmas
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Summary (Take Home)y ( )

 Intro to data stream models
 The concept of random linear sketches for obtaining 

reliable (ε,δ) estimates of Lp distances/norms
 Efficient algorithms based on Efficient algorithms based on:

 Min-wise hashing (Jaccard similarity + rarity)
 The concept of group testing for estimating HOT items in a 

stream
 Estimating rarity and similarity in a windowed data 

stream model
 Tight bounds for approximate histograms and the k-

center problem
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Appendix

Estimating rarity and similarity in the windowed 
model [Datar-Muthukrishnan’02]
Ad d lt  f  th   f [G h ’09]Advanced results from the paper of [Guha’09]
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Some advanced topicsp

 Rarity (Appendix) Rarity (Appendix)
 Definition
 Base ideas Base ideas
 Estimating rarity in the unbounded stream model

 Estimating rarity and similarity in the windowed  Estimating rarity and similarity in the windowed 
stream model (Appendix)

 Clustering and summarizing (Appendix) Clustering and summarizing (Appendix)
 Definitions / Preliminaries
 Some very tight bounds
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Rarityy

 An item is α-rare for integer α if it appears  An item is α rare for integer α if it appears 
precisely α times 
 #α-rare number of such items in the window
 ρα= #α-rare/#distinct (α-rarity)

S={2,3,2,4,3,1,2,4}     D={1,2,3,4}
1-rare={1} 1-rarity=1/4
2-rare={3,4} 2-rarity=1/2
3-rare={2} 3-rarity=1/4
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Base ideas

 Rα - set of α-rare items α
 D - set of distinct items 
 2 main observations:
1. Rα⊆D 
⇒ |Rα∩D|/|Rα∪D|=|Rα|/|D| | α |/| α | | α|/| |

 Rarity is the fraction of the time min-hash functions 
for Rα and D have agreed upon  

2. h(Rα)=h(D) iff the item in D belongs to Rα
 Need to maintain the min-hash values only for D
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Lemma [Datar-Muthukrishnan’02][ ]

 Let ρα’ be the fraction of counters ci(t) that eq. α :  Let ρα be the fraction of counters ci(t) that eq. α : 
ρα’(t) =|{l|1≤l ≤ k, ci(t) = α}|/k

For 0 < ε < 1 0 < p < 1 and k ≥ 2ε-3p-1logδ-1For 0 < ε < 1, 0 < p < 1 and k ≥ 2ε 3p 1logδ 1

ρα’(t) (1±ε)ρα(t) + εp
i h b bili l 1 δwith success probability at least 1 – δ

 Why?
/Pr[ci(t)= α] = Pr[hi*(t)=hi(x)|x∈ Rα]=|Rα(t)|/|Dt|

 α can be chosen at query time
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The windowed data stream model

 Consider the window of the last N observations:
at-100, at-99,….,at-(N-1), at-(N-2),…, at-2, at-1, at

 The data changes over time The data changes over time
 Interest over the “recently observed” data elements
 Eg. How many distinct customers made a call through a given 

switch in the past 24 hours?switch in the past 24 hours?
 We cannot store the entire window in memory

{12,89,23,45,34}  min=12 ⇒ {89,23,45,34,58}  min=23
We need to store each item in the window!We need to store each item in the window!
 Applications: sensor networks, switches, Internet routers,..
 Computing most functions exactly is impossible
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Estimating similarity - windowedg y

 Maintain k min-hash values for A and B
 σ - the fraction of min-hash values they agree on

 How to maintain min in a window?
 d1,d2 are items arrived at times t1 and t2 (t1<t2)
 If hi(d1)≥hi(d2) d2 dominates d1

 When both are active the minimum hi*(t) is not affected by hi(d1) i ( ) y i( 1)
⇒ no need to store hi(d1)

 For each min-hash function maintain a list:
L (t) = {(h (a ) j ) (h (a ) j ) (h (a ) j )}Li(t) = {(hi(aj1),j1),(hi(aj2),j2),…(hi(ajl),jl)}
 j1 < j2 < … < jl & hi(aj1) < hi(aj2) < …< hi(ajl)
 hi*(t) = hi(aj1)



Estimating similarity cont.g y

 Memory allocated |Li(t)| at time ty | i( )|
10
20

11
12

12
75

13
26

14
23

15
20

16
15

17
29

18
40

19
45

20
32

Min-hash list: 10
20
11
12

12
75
13
26
14
23
15
20
16
15

17
29

18
40

19
45

20
32

20

 With high probability, over the choice of min-hash 
function hi, expected |Li(t)| = Θ(logN)
 N is the size of the window N is the size of the window
 O((log N)(log u)) bits of space
 O(log log N) time per data item
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Estimating rarity - windowedg y

 Keep a linked-list of “dominant” min-hash valuesp
 But since now we need to find  instances of an item, we keep several 

arrival times of the item

L (t) = {(h (a )  Listt )  (h (a )  Listt )  (h (a )  Listt )}Li(t) = {(hi(aj1), List i,j1), (hi(aj2), List i,j2),…, (hi(ajl), List i,jl)}

 Where Listti,j1 is an ordered list of the last α instances mapped to the 
hash value hi(aj1)

 Concatenate: Listti,j1 + Listti,j2 +…+ Listti,jl ⇒ indexes strictly increasing

 Count the fraction of Listti,j1  over all i that have α elements and agree ,j

on the minimal hash value

 The total size of Li(t) is O(α log N) with high probability
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Clustering and summarizingg g

 Definitions  Definitions 
 Preliminaries (the main ideas)
 “Streamstrapping” Streamstrapping
 Upper bounds & lower bounds

R l Results:
 Guarantees

A li i    Applications  
MinMax objectives
MinSum objectives
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K-center clusteringg

 Given n points identify K centers such that the  Given n points identify K centers such that the 
maximal distance for each point from its closest 
center is minimized
 Find the smallest radius ε* such that if disks of radius ε* 

are placed on the chosen centers then every input point 
is covered

 Assume an oracle distance model
U f l f   l   f d Useful for more complex types of data
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Histogramsg

 Approximate a data distribution using a fixed pp g
amount of space while minimizing the overall error

 Given a sequence of n numbers x1,..,xn 
 Construct a piecewise constant representation H with at 

most B pieces (buckets)
 Th  l  i   i l  b k t  ti t d i    The values in a single bucket are estimated using a 

single value we suffer an error
 Choose the buckets such that an objective function f(X,H) j ( , )

is minimized
 f(X,H) can be the squared (VOPT) or the maximum error...
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Preliminaries - 3 main ideas

 “Thresholded approximation”
 If there exists a solution of size B’ and error ε then we can 

construct a summary of at most B’ such that the error is at most αε
(where α ≥ 1)
O h  l  h   (“f l”) Otherwise, no solution with error ε exists (“fail”)

 Run multiple copies (controlled in number) of the algorithm 
for different estimates of the error ε
 Try with several values
 If ε is too small the algorithm will return “fail”
 Restart with a bigger error estimate

 “Streamstrapping”  - bootstrapping streams
 Use the summarization results from the previous run
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“Streamstrapping“ [Guha’09]pp g [ ]

 Use a property of metric errors: Use a property of metric errors:
 Let ε(X,H) be summarization error for X using the 

summary H
 Let Xt◦Y a concatenation of input Xt followed by Y
 Y is Xt\Xt-1 that is Xt = Xt-1◦Y

 Let X(Ht) is the summarized input Xt using Ht

ε(Xt◦Y, Ht) is in the range: ε(X(Ht-1)◦Y, Ht) ± ε(Xt-1,Ht-1)
 Informs on the correct level of detail we need to be 

investigating the data
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Upper boundspp

 when input …xi… is presented in increasing order of ip i p g
 Any (1+∊) approximation algorithm requires:

 O((B/∊)log(1/∊)) space for maximum error histogram
 O((B2/∊)log(1/∊)) space for VOPT error histogram
 Running time is O(n) plus smaller order terms
A  2(1+ ) i i  l i h  i Any 2(1+∊) approximation algorithm requires:
 O((k/∊)log(1/∊)) space for the k-center problem

 First results (for the space bound) that are non First results (for the space bound) that are non-
dependent on: the size of the stream N, the 
precision M, nor the optimal solution ε*p p
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Lower bounds

 The minimal space that has to be used in order to  The minimal space that has to be used in order to 
provide some approximations

 For maximum error histograms: for all ∊≤1/(40B) For maximum error histograms: for all ∊≤1/(40B)
 Any (1+∊) approximation must use Ω(B/(∊log(B/ 
∊))) bits of space

 The first lower bound stronger than Ω(B)
 For k-center single pass deterministic algorithm: for g p g

all ∊≤1/(10k)
 (2+∊) approximation has to store Ω(k2) points
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The StreamStrap Algorithmp g

1. Read the first B items in the input. Keep reading as 1. Read the first B items in the input. Keep reading as 
long as the error is 0

2. At the first input that causes a non-zero error ε0⇒0
Run J = O((1/∊)·log(α/∊)) copies of the algorithm

 Each for error ε = ε0, (1+∊)ε0,… (1+∊)Jε0
3. At some point (for some ε) the algorithm will return 

“fail”, so we know that ε* > ε. 
W   h   f  ll ’ d  h  We terminate the copies for all ε’< ε and restart with 
(1+∊)ε’ using the summarization of ε’

4 Repeat step 2 until end of input
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Guarantees

 The answer corresponds to the lowest estimate ε for  The answer corresponds to the lowest estimate ε for 
which a copy of the thresholded algorithm is still 
runningg

 If a “thresholded” approximation exists for any 
∊<1/10 
 The algorithm provides a α/(1‐3∊)2 approximation
 The running time is the time to run O((1/∊)·log(α/∊)) 

copies of the thresholded algorithm + 
O((1/∊)·log(αε*M)) initializations
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Upper bounds: k-Centerpp

Use the previous guarantees…Use the previous guarantees…

 A single pass 2+∊ approximation for K center  A single pass 2+∊ approximation for K center 
problem using 
 O((K/∊)log(1/∊)) space and  O((K/∊)log(1/∊)) space and 
 O((Kn/∊)log(1/∊)+ (K/∊)log(Mε*)) time 
 when the points are input in an arbitrary order when the points are input in an arbitrary order

 The radius of any cluster is ±∊ε* of the true radius 
of that cluster using the same center
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Upper bounds: Max Error Histogrampp g

 A single pass 1+∊ streaming approximation for B  A single pass 1 ∊ streaming approximation for B 
bucket histogram construction using 
 O((B/∊)log(1/∊)) space and (( / ) g( / )) p
 O(n+(B/∊)log2(B/∊)log(Mε*)) time 
 the input …xi… is presented in increasing order of ip i p g
 Based on the “thresholded” optimum algorithm [Guha-

Shim’07]

 The error of any bucket found is ±∊ε* of the true 
error of that bucket
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Upper bounds – VOPT histogrampp g

 A single pass 1+∊ streaming approximation for  A single pass 1 ∊ streaming approximation for 
best B-bucket histogram for VOPT error using 
 O((B2/∊)log(1/∊)) space and (( / ) g( / )) p
 O(n+(B3/∊2)log2(B/∊)log(Mε*)) time 
 the input …xi… is presented in increasing order of ip i p g
 Based on AHIST-B  [GKS’06]

 A similar result for the K-median problemp
 Minimize ∑ of distances of all points to their closest 

centers
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