Advanced School on Data Exchange, Integration, and Streams - Dagstuhl, November 2010

QUERYING AND MINING DATA STREAMS

Elena Ikonomovska

Jožef Stefan Institute – Department of Knowledge Technologies

Outline

- Definitions
 - Datastream models
 - Similarity measures
- Historical background
- Foundations
 - Estimating the L₂ distance
 - Estimating the Jaccard similarity: Min-Wise Hashing
- Key applications
- Maintaining statistics on streams
 - Hot items
 - Some advanced results (Appendix)
 - Estimating rarity and similarity (the windowed model)
 - Tight bounds for approximate histograms and cluster-based summaries

Data stream models: Time series model

- □ A stream is a vector / point in space
- Items are arriving in order of their indices:

$$\vec{x} = \{x_1, x_2, x_3, \dots\}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ x_1 & x_2 & x_3 & x_4 \end{bmatrix} \dots \text{ coordinates of the vector}$$

- The value of the i-th item is the value of the i-th coordinate of the vector
- Distance (similarity) between two streams is the distance between the two points

Data stream models: Turnstile model

Each arriving item is an update to some component of the vector:

(2, x₂⁽⁵⁾) indicates the 5-th update to the 2-nd component of the vector
 value: x_i = x_i⁽¹⁾ + x_i⁽²⁾ + x_i⁽³⁾...

positive or negative update

 \Box only nonnegative updates \Rightarrow cash register model

$$L_p$$
 distances ($p \ge 0$)

- □ Stream 1 {x₁,x₂,x₃,...} & stream 2 {y₁,y₂,y₃,...} in {1,...,m} $L_{p} = \sum_{i} |x_{i}^{p} - y_{i}^{p}|^{1/p}$
- □ L₀ distance (Hamming distance) ⇔ the number of indices *i* such that x_i≠y_i

A measure of dis(similarity) of two streams [CDI02]

$$\mathbf{L}_{\infty} = \max_{i} |\mathbf{x}_{i} - \mathbf{y}_{i}|$$

□
$$L_2 = \sum_i |x_i^2 - y_i^2|^{1/2}$$
 distance
□ L_2 norm (f_2^2)- for approximating self-join sizes
[AGM'99] Q = COUNT(R⋈_AR) |dom(A)| = m

Basic requirements

- Naïve approach: store the points/vectors in memory and compute any distance/similarity measure or a statistic (norm, frequency moment)
- Typically:
 - Large quantities of data single pass
 - Memory is constrained O(log m)
 - Real-time answers linear time algorithms O(n)
- Allowed approximate answers (ε, δ)
 ε & δ are user-specified parameters

Historical background

- \square [AMS'96] approximate F_2 (inserts only)
 - [AGM'99] approximate L₂ norm (inserts and deletes)
- □ [FKS'99] approximate L₁ distance
 - □ [Indyk'00] approximate L_p distance for $p \in (0,2]$
 - p-stable distributions (Caushy is 1-stable, Gaussian is 2-stable)
- [CDI'02] efficient approximation of L₀ distance
- Approximate distances on windowed streams
 - [DGI'02] approximate L_p distance
 - [Datar-Muthukrishnan'02] approximate Jaccard similarity

Estimating the L₂ distance [AGM'99]

- Data streams (x_1, x_2, \dots, x_n) and (y_1, y_2, \dots, y_n)
- □ For each i = 1, 2, ..., n define a i.i.d. random variable $X_i P[X_i = 1] = P[X_i = -1] = 1/2 \implies E[X_i] = 0$
- **Base idea:** Simply maintain $\sum_{i=1,..,n} X_i(x_i y_i)$
 - For some i, j and items (i, $x_i^{(i)}$), (i, $y_i^{(i)}$):
 - $X_i x_i^{(i)}$ is added and $X_i y_i^{(i)}$ is subtracted

$$E[\sum_{i=1,..,n} X_i (x_i - y_i))^2] = 0$$

$$E[\sum_{i=1,..,n} X_i^2 (x_i - y_i)^2 + \sum_{i \neq j} X_i X_j (x_i - y_i) (x_j - y_j)] = \sum_{i=1,..,n} (x_i - y_i)^2$$

The problem amounts to obtaining an <u>unbiased estimate</u>

Standard boosting technique

 \Box Run the algorithm in parallel k= $\theta(1/\epsilon^2)$ times

- 1. Maintain sums $\sum_{i=1,..,n} X_i(x_i y_i)$ for k different random assignments for the random var. $\Rightarrow X_{i,k}$
- 2. Take the average of their squares for a given run $r \Rightarrow v^{(r)}$ (reduce the variance/error!) Chebyshev
- 3. Repeat the procedure $I = \theta(\log(1/\delta))$ times $\Rightarrow X_{i,k,l}$
- 4. Output the median over $\{v^{(1)}, v^{(2)}, \dots, v^{(l)}\}$ Chernoff
- 5. Maintains *nkl* values in parallel for the random variables

Result

The Chebyshev inequality + Chernoff:

- \Rightarrow this estimates the square of L₂ within (1± ϵ) factor with probability > (1 δ)
- Random variables needed: nkl !
- The random variables can be four-wise independent
 - This is enough so that Chebyshev still holds [AMS'96]
 - □ <u>pseudorandomly</u> generated on the fly \Rightarrow
 - $O(kl) = O(1/\epsilon^2 \log(1/\delta))$ words + a logarithmic-length array of seeds $O(\log m)$

Estimating the L_p distance

□ p-stable distributions [I'00]

D is a p-stable distribution if:

\square For all real numbers a_1, a_2, \ldots, a_k

If $X_1, X_2, ..., X_k$ are i.i.d. random var. drawn from $D \Rightarrow \Sigma a_i X_i$ has the same distribution as $X(\Sigma_i |a_i|^p)^{1/p}$ for random variable X with distribution D

□ Cauchy distribution is 1-stable ⇒ L₁
 □ Gaussian distribution is 2-stable ⇒ L₂

The algorithm

- $z_1, z_2, \dots z_n$ is the stream vector
- Again... run in parallel k=θ(1/ε²log(1/δ))
 procedures & maintain sums Σ_iz_iX_i for each run
 1,...k
- \square The value of $\boldsymbol{\Sigma}_i \boldsymbol{z}_i \boldsymbol{X}_i$ in the *I*-th run is $\boldsymbol{Z}^{(\textit{I})}$
 - Z^(I) is a random variable itself
 - Let **D** is p-stable:

 $Z^{(I)} = X^{(I)} (\Sigma_i |z_i|^p)^{1/p}$

for some random variable $X^{(I)}$ drawn from D

Estimating the L_p distance cont.

□ The output is:

- $(1/\gamma)$ median $\{|Z^{(1)}|, |Z^{(2)}|, ..., |Z^{(k)}|\}$
 - where γ is the median of |X|, for X random variable distributed according to D
- Chebyshev: This estimate is within a multiplicative factor (1±ε) of the true norm with probability (1-δ)

□ Observation [CDI'02]:

- L_p is a good approximation of the L₀ norm for p sufficiently small
- p=ε/log(m) where m is the maximum absolute value of any item in the stream

The Jaccard similarity

S_A={a₁,a₂,...a_n} S_B={b₁,b₂,...,b_n} □ Let A (and B) denote the set of distinct elements |A∩B|/|AUB| = Jaccard similarity

Example	e: (view	sets as	columns) m=6
	Α	В	
item ₁	0	1	AUB =5
item ₂	1	0	
	1	1	simJ(A,B) = 2/5 = 0.4
	0	0	
	1	1	
item ₆	0	1	

Signature idea

- Represent the sets A and B by signatures Sig(A) and Sig(B)
 - Compute the similarity over the signatures
 - $\blacksquare E[simH(Sig(A),Sig(B))] = simJ(A,B)$
- Simplest approach
 - Sample the sets (rows) uniformly at random k times to get k-bit signature Sig (instead of m bits)
 - Problems!
 - Sparsity sampling might miss important information

Tool: Min-Wise Hashing

- \square π randomly chosen permutation over {1,...,m}
- \square For any subset A \subseteq [m] the *min-hash* of A is:
 - $\square h_{\pi}(A) = \min_{i \in A} \{\pi(i)\}$
 - Index of the first row with value 1 ⇔ random permutation of the rows
 - One bit of the k-bit signature of A, Sig(A)
- When π is chosen uniformly at random from the set of all permutations on [m] for any two subsets A,B of [m] then:

$\Pr[h_{\pi}(A) = h_{\pi}(B)] = |A \cap B| / |A \cup B|$

Example

• Consider the following permutations: for m=5

k=1	$\pi_1 =$	(1	2	3	4	5)
k=2	$\pi_2 =$	(5	4	3	2	1)
k=3	$\pi_3 =$	(3	4	5	1	2)

• And the sets: $A = \{1,3,4\}$ $B = \{1,2,5\}$

The min-hash values are as follows:

k=1	$h\pi_1(A) = 1$	$h\pi_1(B) = 1$
k=2	$h\pi_2(A) = 4$	$h\pi_2(B) = 5$
k=3	$h\pi_3(A) = 3$	$h\pi_3(B) = 5$

⇒ the <u>expectation</u> of the fraction of permutations where minhash values agree is simJ(A,B)

Estimation of Jaccard similarity

- \square To get a good estimate of the expectation \Rightarrow
- Run the procedure multiple times (k) in parallel
 - Choose independently k random permutations: $\pi_1, ..., \pi_k$
 - Count number of agreements: | {i: h_{ni}(A) = h_{ni}(B)}
 - Output the fraction!

How many times is good enough?

Lemma

[Datar-Muthukrishnan'02]

Let {h₁(A), h₂(A),...,h_k(A)} and {h₁(B), h₂(B),...,h_k(B)} be **k** independent **min-hash values** for the sets A and B respectively

Let S(A,B) be the fraction of the min-hash values that they agree on:

$$S(A,B) = |\{j | 1 \le j \le k, h_i(A) = h_i(B)\}|/k$$

For 0 < ε < 1, and k = O(ε⁻³ log 1/δ) with success probability at least 1 - δ
 S(A,B) ∈ (1±ε) A∩B|/|AUB|

The algorithm

- Choose k min-hash functions h₁, h₂, ..., h_k randomly
- Maintain $h_i^*(t) = \min_{a_{i,i} \le t} h_i(a_i)$ at every time t
 - For each new a_{t+1} compute the hash value h_i(a_{t+1}) under the corresponding permutation I (1,..k) and compare with h_i*(t)
 - If $h_i(a_{t+1}) < h_i^*(t)$ update the min-hash value

Storing one π takes O(m log m) space! \Rightarrow O(km log m) = O($\epsilon^{-3} \log 1/\delta$ m log m)

Approximate min-wise hashing

- It suffices to use approximately min-wise independent hash functions (introduces additional error)
- □ For any hash function h chosen randomly from the family of *€'-min-wise independent* functions
 Pr [h(A) = h(B)] = |A∩B|/|AUB| ± €'
 S(A,B) ∈ (1±ε) |A∩B|/|AUB| ± €'
 □ very efficient in terms of space: O(log (1/€') log m)
 □ each hash function takes: O(log (1/€')) time

 □ The Lemma still holds, but k has to be adjusted

Key applications

Tracking network traffic

Measure and detect large changes

Query optimization

- L₂ norm to approximate self-join sizes / for selectivity estimation
- L₀ norm number of distinct elements
- Genetic data
 - Similarity of two base-pair sequences
- Data mining:
 - Identifying similar entities (purchases, phone calls, IP addresses, Web page visits, bank transactions)

What's Hot and What's Not!

- Problem definition [Cormode-Muthukrishnan'05]
 - What is a hot item?
 - How to dynamically maintain a set of hot items under the presence of delete and insert transactions?
- Preliminaries
 - Lemma on the space lower bound
- □ Group testing : 2 methods proposed
 - Non-adaptive method
- Results
- Applications measure of the skew of the data/ iceberg aggregate queries, outliers detection

Hot items

A sequence of n transactions on items, $ID's \in [1, m]$ m = 6 1,2,1,3,4,5,1,2,2,3,1,1,3,5,2,6,1,2,... (turnstile model) 2 3 4 5 6 1 $f_x(t) = n_x(t)/\Sigma_{y=1.m}n_y(t)$ \square n_x(t) = #inserted - #deleted $f_{t}(t) > 1/(k+1) \Rightarrow hot item$ $f_1(t)=6/18=1/3 > 1/4$ $f_2(t)=5/18 > 1/4$ k=3 $f_3(t) = 3/18 = 1/6$ hot items are only {1,2}

Preliminaries

- □ If allowed O(m) space (simple heap data structure)
 - Each insert/delete will take O(log m) time
 - \Box All k hot items: O(k log m) time in the worst case
- \square BUT ... if we are to use less than $\Omega(m)$ space:
 - Only approximate answers are possible (ϵ , δ)!
 - We can guarantee (with success probability 1 δ) that ALL
 HOT items are output and NO item which has frequency less than 1/(k+1) ε
- □ Lemma: Any algorithm which guarantees to find ALL AND ONLY items which have frequency greater than 1/(k+1) must store $\Omega(m)$ bits

Proof (from information theory)

- Let S ⊆[1...m]
 - **Transform into a sequence of n = |S| insertions of items**
 - \blacksquare x is included only once if and only if $x \in S$
- Insert [n/k] copies of x
 - □ If $x \notin S \Rightarrow$
 - $\frac{\lfloor n/k \rfloor}{(n+\lfloor n/k \rfloor)} = \frac{\lfloor n/k \rfloor}{\lfloor n(k+1)/k \rfloor} \leq \frac{\lfloor n/k \rfloor}{(k+1)\lfloor n/k \rfloor} = \frac{1}{(k+1)} \times \text{ is not output}$
 - $\Box \text{ If } x \in S \Rightarrow$
 - $([n/k]+1)/(n+[n/k]) > (n/k)/(n+n/k) = 1/(k+1) \times is output$
 - So, you can determine whether $x \in S$ or not!

The set S can be extracted \Rightarrow must store $\Omega(m)$ bits

Puzzle (adaptive GT)

 \square A man has *m* coins, where $m = 3^x$, x > 0

One is slightly heavier than others

- What is the <u>minimum</u> number of weightings with a balance pan required to find the heavier coin?
 - How many coins do we put on each side?
 - Obviously a same amount $q (\leq m/2)$
 - If we place q coins on each side:
 - Tip \Rightarrow eliminate all but **q** coins
 - Not tip \Rightarrow eliminate **m-2q** coins
 - **m/2** or **m/3**?
 - Going to m/3
 - Cannot eliminate more than 2m/3!
 - **Result:** $x = \log_3(m)$

Nonadaptive group testing

Divide all *m* items up into several <u>overlapping</u> groups

- Each item x is included in several groups
- Each group is associated with a counter
- For an insertion of x increment the counters of all groups where it belongs, for a deletion decrement
- Weight" each group of items (test each counter) to identify if the group contains a hot item or not (if the set counter exceeds a certain threshold)
- How many groups? (<< m)</p>
- How to represent them in a concise way?
- How to form the tests to obtain the hot items from the results efficiently?

Find the Majority Item (k=1)

Maintain [log₂m]+1 counters : c[0],c[1],...,c[log m]
 bit(x, j) - value of j-th bit of the binary representation
 x=13 bin: 1101 = 1 · 2³ + 1 · 2² + 0 · 2¹ + 1 · 2⁰
 bit(13, 0)=1, bit(13, 1)=0, bit(13, 2)=1, ...

d=1 insertion, d=-1 deletion
c[0] ← c[0] + d (how many items are "live")
c[i] ← c[i] + bit(x, i) · d ⇒ takes O(log(m)) time
The majority item (if any) ⇒ Σ_{j=1,... log(m)} 2ⁱ gt(c[i],c[0]/2)

Deterministic : time O(log(m))

It there is no majority item it is not possible to distinguish the difference (based on the information stored)

Illustration

□ m=16

\square We need 4+1 = 5 counters in total

Finding k Hot items

- □ To locate k items among m locations : $\log_2 \binom{m}{k} \ge k \log_2(m/k)$
- Suppose a group of items that happened to contain only one hot item
 - Split the group on (log(m)) subgroups each associated with a counter
 - Apply the previous algorithm to identify the hot item!
- \square To identify k hot items \Rightarrow construct TxW groups
 - For concise representation : Use T hash functions (representation in O(log m) space)
 - $f_{a,b}(x)=((ax + b) \mod P) \mod W$, P > m > W
 - a and b are drawn randomly from [0 ... P-1]

Guarantees

□ For appropriate choices of T and W we can:

- 1. Ensure that all hot items are being output
- 2. Ensure that no items are output which are "far" from being hot
- □ How?
 - Using properties of hash functions [Carter-Wegman'79]

Over all choices of a and b, for $x \neq y$, $Pr[f_{a,b}(x) = f_{a,b}(y)] \leq 1/W$

Update & Test

- TxW number of groups, each split into log(m) subgroups
 - □ log(m)+1 counters per group $\Rightarrow O(TW log(m))$ space
 - T hash functions that map item x onto 0...W-1
 - A group represents the items which are mapped to the same hash value {0 ... W-1} by a particular hash function h_i
- $\Box \text{ Update counters: } c[1][0][0] \rightarrow c[T][W-1][log m]$
 - For i ← 1 to T : Update <u>array</u> c[i][$h_i(x)$] as previously
 - Update time is now O(T log(m))
- Test: If a group counts more than n/(k+1) items then <u>might</u> contain a hot item
 - Further verification is carried out for each hot item found
 - The search time is O(T²·W·log(m)) a scan of the whole data structure + a check on the hot item

Theorem

- □ With probability of at least (1δ) we can find all hot items whose frequency is > 1/(k+1), and given $\epsilon \le 1/(k+1)$ with probability of at least $1 - \delta/k$ each item which is output has frequency of at least $1/(k+1) - \epsilon$
 - **u** Using space $O(\log(k/\delta) 1/\epsilon \log(m)) = O(k \log(k) \log(m))$
 - **D** Update time $O(\log(k/\delta) \log(m)) = O(\log(k) \log(m))$
 - **Query time O(log²(k/\delta) 1/\epsilon log(m))=O(k log²(k) log(m))**
- \square This follows by setting W $\ge 2/\epsilon$ and T = log(k/ δ) + applying 2 other lemmas

Summary (Take Home)

- Intro to data stream models
- The concept of random linear sketches for obtaining reliable (ε,δ) estimates of L_p distances/norms
- Efficient algorithms based on:
 - Min-wise hashing (Jaccard similarity + rarity)
 - The concept of group testing for estimating HOT items in a stream
- Estimating rarity and similarity in a windowed data stream model
- Tight bounds for approximate histograms and the kcenter problem

References

- [CDI02] Comparing data streams using Hamming norms (How to zero in)
- □ [AGM'99] Tracking join and self-join sizes in limited storage
- [Indyk'00] Stable distributions, pseudorandom generators, embeddings, and data stream computation
- [DGI'02] Maintaining stream statistics over sliding windows
- □ [Vee'09] Stream Similarity Mining
- [Datar-Muthukrishnan'02] Estimating Rarity and Similarity over Data Stream Windows
- [Cormode-Muthukrishnan'05] What's hot and what's not: tracking most frequent items dynamically
- [Guha'09] Tight results for clustering and summarizing data streams
- □ [Guha-Shim'07] A note on linear time algorithms for maximum error histograms
- □ [BSS'07] Space efficient streaming algorithms for the maximum error histogram
- **GKS'06]** Approximation and streaming algorithms for histogram construction problems
- □ [Carter-Wegman'79] Universal classes of hash functions

Appendix

Estimating rarity and similarity in the windowed model [Datar-Muthukrishnan'02]

Advanced results from the paper of [Guha'09]

Some advanced topics

- Rarity (Appendix)
 - Definition
 - Base ideas
 - Estimating rarity in the unbounded stream model
- Estimating rarity and similarity in the windowed stream model (Appendix)
- Clustering and summarizing (Appendix)
 - Definitions / Preliminaries
 - Some very tight bounds

Rarity

An item is α-rare for integer α if it appears precisely α times
 #α-rare number of such items in the window
 ρ_α = #α-rare/#distinct (α-rarity)

$$S=\{2,3,2,4,3,1,2,4\} D=\{1,2,3,4\}$$

1-rare= $\{1\}$ 1-rarity= $1/4$
2-rare= $\{3,4\}$ 2-rarity= $1/2$
3-rare= $\{2\}$ 3-rarity= $1/4$

Base ideas

- \square R_{α} set of α -rare items
- D set of distinct items
- 2 main observations:
- 1. $R_{\alpha} \subseteq D$
 - $\Rightarrow |R_{\alpha} \cap D| / |R_{\alpha} \cup D| = |R_{\alpha}| / |D|$
 - $\hfill Rarity$ is the fraction of the time min-hash functions for R_α and D have agreed upon
- 2. $h(R_{\alpha})=h(D)$ iff the item in D belongs to R_{α}
 - Need to maintain the min-hash values only for D

Lemma [Datar-Muthukrishnan'02]

 \Box Let \mathbf{p}_{α} be the fraction of counters $c_i(t)$ that eq. α : $\rho_{\alpha}(t) = |\{l \mid 1 \le l \le k, c_i(t) = \alpha\}|/k$ For $0 < \varepsilon < 1$, $0 and <math>k \ge 2\varepsilon^{-3}p^{-1}\log\delta^{-1}$ $\rho_{\alpha}(t) \in (1 \pm \epsilon)\rho_{\alpha}(t) + \epsilon p$ with success probability at least $1 - \delta$ □ Why? $\Pr[\mathbf{c}_{i}(\mathbf{t}) = \alpha] = \Pr[\mathbf{h}_{i}^{*}(\mathbf{t}) = \mathbf{h}_{i}(\mathbf{x}) \mid \mathbf{x} \in \mathbf{R}_{\alpha}] = |\mathsf{R}_{\alpha}(\mathbf{t})| / |\mathsf{D}_{\mathbf{t}}|$ $\square \alpha$ can be chosen at query time

The windowed data stream model

Consider the window of the last N observations:

 $a_{t-100}, a_{t-99}, \dots, a_{t-(N-1)}, a_{t-(N-2)}, \dots, a_{t-2}, a_{t-1}, a_{t-1}$

□ The data changes over time

- Interest over the "recently observed" data elements
- Eg. How many distinct customers made a call through a given switch in the past 24 hours?
- □ We cannot store the entire window in memory {12,89,23,45,34} min=12 ⇒ {89,23,45,34,58} min=23
 We need to store each item in the window!
 - Applications: sensor networks, switches, Internet routers,...
 - Computing most functions exactly is impossible

Estimating similarity - windowed

- Maintain k min-hash values for A and B
 - $f \sigma$ the fraction of min-hash values they agree on
- □ How to maintain min in a window?
 - \Box d₁,d₂ are items arrived at times t₁ and t₂ (t₁ < t₂)
 - $\square \text{ If } h_i(d_1) \ge h_i(d_2) \ d_2 \ dominates \ d_1$
 - When both are <u>active</u> the minimum $h_i^*(t)$ is not affected by $h_i(d_1)$ ⇒ no need to store $h_i(d_1)$
- □ For each min-hash function maintain a list:

$$\begin{split} & \mathsf{L}_{\mathsf{i}}(\mathsf{t}) = \{(\mathsf{h}_{\mathsf{i}}(\mathsf{a}_{\mathsf{j}1}), \mathsf{j}_{1}), (\mathsf{h}_{\mathsf{i}}(\mathsf{a}_{\mathsf{j}2}), \mathsf{j}_{2}), \dots (\mathsf{h}_{\mathsf{i}}(\mathsf{a}_{\mathsf{j}|}), \mathsf{j}_{\mathsf{l}})\} \\ & \blacksquare \ \mathsf{j}_{1} < \mathsf{j}_{2} < \dots < \mathsf{j}_{\mathsf{l}} \ \& \ \mathsf{h}_{\mathsf{i}}(\mathsf{a}_{\mathsf{j}1}) < \mathsf{h}_{\mathsf{i}}(\mathsf{a}_{\mathsf{j}2}) < \dots < \mathsf{h}_{\mathsf{i}}(\mathsf{a}_{\mathsf{j}|}) \\ & \blacksquare \ \mathsf{h}_{\mathsf{i}}^{*}(\mathsf{t}) = \mathsf{h}_{\mathsf{i}}(\mathsf{a}_{\mathsf{j}1}) \end{split}$$

Estimating similarity cont.

 \square Memory allocated $|L_i(t)|$ at time t

10	11	12	13	14	15	16	17	18	19	20
20	12	75	26	23	20	15	29	40	45	32

Min-hash list:

11	16	17	20	
12	15	29	32	

- With high probability, over the choice of min-hash function h_i, expected |L_i(t)| = Θ(logN)
 - N is the size of the window
 - O((log N)(log u)) bits of space
 - O(log log N) time per data item

Estimating rarity - windowed

Keep a linked-list of "dominant" min-hash values

But since now we need to find α instances of an item, we keep several arrival times of the item

 $L_{i}(t) = \{(h_{i}(a_{1}), List_{i,1}^{t}), (h_{i}(a_{2}), List_{i,2}^{t}), \dots, (h_{i}(a_{1}), List_{i,1}^{t})\}$

- Where List[†]_{i,i1} is an ordered list of the last & instances mapped to the hash value h_i(a_{i1})
- Concatenate: List^t_{i,j1} + List^t_{i,j2} +...+ List^t_{i,j1} \Rightarrow indexes strictly increasing
- Count the fraction of List[†]_{i,i1} over all i that have α elements and agree on the minimal hash value
- \Box The total size of L_i(t) is O(α log N) with high probability

Clustering and summarizing

Definitions

Preliminaries (the main ideas)

- "Streamstrapping"
- Upper bounds & lower bounds
- Results:
 - Guarantees
 - Applications
 - MinMax objectives
 - MinSum objectives

K-center clustering

- Given n points identify K centers such that the maximal distance for each point from its closest center is minimized
 - Find the smallest radius ε* such that if disks of radius ε* are placed on the chosen centers then every input point is covered
 - Assume an oracle distance model
 - Useful for more complex types of data

Histograms

0.04

0.03

- \Box Given a sequence of *n* numbers $x_1, ..., x_n$
 - Construct a piecewise constant representation H with at most B pieces (buckets)
 - The values in a single bucket are estimated using a single value ⇒ we suffer an error
 - Choose the buckets such that an objective function f(X,H) is minimized
 - f(X,H) can be the squared (VOPT) or the maximum error...

Preliminaries - 3 main ideas

"Thresholded approximation"

- □ If there exists a solution of size B' and error ε then we can construct a summary of at most B' such that the error is at most $\alpha \varepsilon$ (where $\alpha \ge 1$)
- Otherwise, no solution with error ε exists ("fail")
- Run multiple copies (controlled in number) of the algorithm for different estimates of the error ε
 - Try with several values
 - If ε is too small the algorithm will return "fail"
 - Restart with a bigger error estimate
- "Streamstrapping" bootstrapping streams
 - Use the summarization results from the previous run

"Streamstrapping" [Guha'09]

□ Use a property of *metric errors*:

- Let E(X,H) be summarization error for X using the summary H
- Let X_t°Y a concatenation of input X_t followed by Y
 Y is X_t\X_{t-1} that is X_t = X_{t-1}°Y
 Let X(H_t) is the summarized input X_t using H_t
 E(X_t°Y, H_t) is in the range: E(X(H_{t-1})°Y, H_t) ± E(X_{t-1},H_{t-1})
 Informs on the correct level of detail we need to be investigating the data

Upper bounds

- \square when input ..., is presented in increasing order of i
- \Box Any (1+ ϵ) approximation algorithm requires:
 - $\Box O((B/\epsilon)\log(1/\epsilon))$ space for maximum error histogram
 - $O((B^2/\epsilon)\log(1/\epsilon))$ space for VOPT error histogram
 - Running time is O(n) plus smaller order terms
- Any 2(1+€) approximation algorithm requires:
 O((k/€)log(1/€)) space for the k-center problem

First results (for the space bound) that are nondependent on: the size of the stream N, the precision M, nor the optimal solution ε*

Lower bounds

- The minimal space that has to be used in order to provide some approximations
- \Box For maximum error histograms: for all $\epsilon \leq 1/(40B)$
 - Any (1+ε) approximation must use Ω(B/(εlog(B/ε))) bits of space

\square The first lower bound stronger than $\Omega(B)$

□ For k-center single pass deterministic algorithm: for all $\epsilon \leq 1/(10k)$

• (2+ ϵ) approximation has to store $\Omega(k^2)$ points

The StreamStrap Algorithm

- Read the first B items in the input. Keep reading as long as the error is 0
- 2. At the first input that causes a non-zero error $\varepsilon_0 \Rightarrow$ Run J = O((1/ ϵ) · log(α/ϵ)) copies of the algorithm

Each for error $\varepsilon = \varepsilon_0$, $(1+\epsilon)\varepsilon_0$,... $(1+\epsilon)^{J}\varepsilon_0$

- 3. At some point (for some ε) the algorithm will return "fail", so we know that $\varepsilon^* > \varepsilon$.
 - We terminate the copies for all $\varepsilon' < \varepsilon$ and restart with $(1+\varepsilon)\varepsilon'$ using the summarization of ε'
- 4. Repeat step 2 until end of input

Guarantees

- The answer corresponds to the lowest estimate & for which a copy of the thresholded algorithm is still running
- □ If a "thresholded" approximation exists for any $\epsilon < 1/10$
 - **The algorithm provides a** $\alpha/(1-3\epsilon)^2$ approximation
 - The running time is the time to run O((1/ε) · log(α/ε)) copies of the thresholded algorithm + O((1/ε) · log(αε*M)) initializations

Upper bounds: k-Center

Use the previous guarantees...

- □ A single pass 2+ ∈ approximation for K center problem using
 - $\Box O((K/\epsilon)\log(1/\epsilon))$ space and
 - $\square O((Kn/\epsilon)\log(1/\epsilon) + (K/\epsilon)\log(M\epsilon^*)) \text{ time}$

when the points are input in an arbitrary order

□ The radius of any cluster is ±∈ε* of the true radius of that cluster using the same center

Upper bounds: Max Error Histogram

- A single pass 1+€ streaming approximation for B bucket histogram construction using
 O((B/€)log(1/€)) space and
 - $\Box O(n+(B/\epsilon)\log^2(B/\epsilon)\log(M\epsilon^*)) \text{ time}$
 - **\square** the input $\ldots x_i \ldots$ is presented in increasing order of i
 - Based on the "thresholded" optimum algorithm [Guha-Shim'07]
- □ The error of any bucket found is ±∈ε* of the true error of that bucket

Upper bounds – VOPT histogram

- A single pass 1+€ streaming approximation for best B-bucket histogram for VOPT error using
 O((B²/€)log(1/€)) space and
 O(n+(B³/€²)log²(B/€)log(Mε*)) time
 - \blacksquare the input ..., x_i ... is presented in increasing order of i
 - Based on AHIST-B [GKS'06]
- □ A similar result for the K-median problem
 □ Minimize ∑ of distances of all points to their closest
 - centers