
Semantics of Query Answering in Data Exchange

André Hernich

Department of Computer Science
Humboldt University Berlin

DEIS 2010, Dagstuhl

1 / 35



Outline

1 Goals of Query Answering in Data Exchange

2 The Basic Query Answering Semantics

3 Alternative Semantics

2 / 35



Query Answering in Data Exchange

Goal: Answer queries posed against target data
(Fagin, Kolaitis, Miller, Popa ’03)

source-
schema

target-
schema

schema mapping

source-
instance solution

query
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Example

Source instance: Solution:
Book title author

Algebra Lang
Logic Hodges

Author id name
1 Lang
2 Hodges

Publ title a_id
Algebra 1
Logic 2

Schema mapping:
• ∀t ∀a

(
Book(t, a) → ∃id Author(id, a)∧ Publ(t, id)

)

Example query over target schema
Who are the authors of “Algebra”?

Q(a) := ∃id
(
Publ(“Algebra”, id)∧ Author(id, a)

)
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Fundamental Issues

1 What is the “right” answer to/semantics of a query?

Problem: many solutions with different sets of answers

2 Which solutions are appropriate for query answering?
Problem: queries have to be answered without source instance

3 What is the complexity of query answering?
(computing the solution & evaluating the query)
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The Certain Answers Semantics

Idea: return “safe” answers

M

S

Q

T1

T2

T3

...

Q(T1) = {a1, a2, . . .}

Q(T2) = {b1, b2, . . .}

Q(T3) = {c1, c2, . . .}

Definition (Fagin, Kolaitis, Miller, Popa ’03)
a is a certain answer to Q on M and S⇐⇒ a ∈ Q(T ) for all solutions T for S under M
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The Certain Answers and UCQs

Consensus: suitable for unions of conjunctive queries (UCQs)

Theorem (Fagin, Kolaitis, Miller, Popa ’03)
For every schema mapping M, source instance S for M, universal
solution T for S, and UCQ Q

certain answers to Q = {a ∈ Q(T ) | a is null-free}

“Ingredients” for the proof:

Solutions for S

T

T ′

h

+ ā ∈ Q(T ) =⇒ h(ā)︸︷︷︸
=ā

∈ Q(T ′)

More general: for queries preserved under homomorphisms
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=ā

∈ Q(T ′)

More general: for queries preserved under homomorphisms

11 / 35



The Certain Answers and UCQs

Consensus: suitable for unions of conjunctive queries (UCQs)

Theorem (Fagin, Kolaitis, Miller, Popa ’03)
For every schema mapping M, source instance S for M, universal
solution T for S, and UCQ Q

certain answers to Q = {a ∈ Q(T ) | a is null-free}

“Ingredients” for the proof:

Solutions for S

T

T ′

h
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. . . and Monotonic Queries in General

+ Widely agreed: the certain answers semantics is suitable
– issue of appropriate solutions and query answering

less well understood

(Data) complexity results:

• evaluation of UCQs with ≤ 1 inequality per disjunct in PTIME
on universal solutions (Fagin, Kolaitis, Miller, and Popa ’03)

• co-NP-complete for CQs with ≥ 2 inequalities (Mądry ’05)
• fragments of UCQs with ≤ 2 inequalities per disjunct in PTIME
on universal solutions (Arenas, Barceló, Reutter ’09)

“Generic” approach: based on extension of universal solutions
(Deutsch, Nash, Remmel ’08)
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. . . and Beyond?

Counter-intuitive answers possible on non-monotonic queries
(Fagin, Arenas, Barceló, Libkin ’04; Libkin ’06)

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c

Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}

• The certain answers: ∅
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Dealing with Non-Monotonic Queries

1 Use the certain answers semantics

• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics

(this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”
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Motivating Example Revisited

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)

∀x∀y
(
¬E (x , y) → ¬E ′(x , y)

)

Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c
Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}
• The certain answers: ∅

16 / 35



Motivating Example Revisited

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
∀x∀y

(
¬E (x , y) → ¬E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c
Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}
• The certain answers: ∅

16 / 35



Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints

• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics

(this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35



Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics

(this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35



Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics (this talk)

• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35



Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics (this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35



Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics (this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35



Motivating Example Revisited

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
∀x∀y

(
¬E (x , y) → ¬E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c
Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}
• The certain answers: ∅

18 / 35



CWA-Semantics

• for schema mappings defined by s-t tgds, t-tgds, and egds
(Libkin ’06; H., Schweikardt ’07)

• family of semantics, based on CWA-solutions
(= solutions valid under the CWA-semantics)

• CWA-certain answers semantics:
M

S

Q
T1

T2

...

. . . like the certain answers semantics, except:

• the Ti are CWA-solutions
• Q is evaluated under a special semantics for instances with nulls
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CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria

1 Derivability
2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)

Solution:

a c

db

not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution
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Query Evaluation under the CWA-Semantics

Theorem (Libkin ’06)
For every schema mapping M defined by s-t tgds, every source
instance S, and every query Q,

CWA-certain answers to Q on M and S = �Q(T ),

where T = canonical solution for S under M.

What is �Q(T )?

• T may contain incomplete information
in the form of nulls

• Possible worlds of T : instances arising
from T by assigning constants to nulls

• �Q(T ) : the certain answers to Q
over the possible worlds of T

Example

a ⊥

Possible worlds:

a , a b ,

a c ,
. . .
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Generalization and Restriction of the CWA-Semantics

Modifications of the CWA-semantics
(both for schema mappings defined by s-t tgds only):

• “Mixed world” semantics (Libkin, Sirangelo ’08)

• based on generalized notion of possible worlds of an instance
• generalized constraint language (annotated s-t tgds)

• Endomorphic images semantics (Afrati, Kolaitis ’08)

• based on restricted notion of possible worlds of an instance
• shown to be suitable for special aggregate queries
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Two Natural Properties

Two natural properties are “missing”:

1 Invariance under logically equivalent schema mappings
2 Reflection of “standard semantics” of constraints
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Reflection of “Standard Semantics” of Constraints

Example
Schema mapping:

∀x
(
P(x) → ∃y E (x , y) )

≡ ∀x
(
P(x) → ∨

y∈Const
E (x , y)

)

Source instance: S = {P(a)}

Unique CWA-solution: a ⊥

Example query: Q := Is there exactly one y with E (a, y)?
CWA-answers: yes
Desired answer: no
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The GCWA∗-Semantics

Definition (H. ’10, restricted version)

1 GCWA∗-solutions:
ground solutions that are unions of minimal solutions

2 GCWA∗-answers:
the certain answers over GCWA∗-solutions

• inspired by semantics for deductive databases:
GCWA (Minker ’82) and EGCWA (Yahya, Henschen ’85)

• invariant under logically equivalent schema mappings
• intuitively: reflects “standard semantics” of constraints
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Motivating Example Revisited

Example
Schema mapping: ∀x

(
P(x) → ∃y E (x , y) )

Source instance: S = {P(a)}

GCWA∗solutions:

a b

union of one minimal solution
c

union of two minimal solutions

d
...

union of three minimal solutions

Query: Q := Is there exactly one y with E (a, y)?
GCWA∗-answers: no (as desired)
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Basic Results

• for monotonic queries: GCWA∗-answers = certain answers
(actually true for almost all of the preceding semantics)

• There is a simple schema mapping M defined by s-t tgds,
and a Boolean CQ Q with one negated atom for which

EVAL(M,Q)
Input: source instance S
Question: Are the GCWA∗-answers to Q on M and S

non-empty?

is co-NP-hard
(simple reduction from clique problem)

• There is a simple schema mapping M defined by s-t tgds,
and a Boolean FO query Q for which EVAL(M,Q)
is undecidable.
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Evaluation of Universal Queries

universal query: FO query of the form ∀x̄ ϕ, ϕ quantifier-free

Theorem (H. ’10)
For every properly restricted schema mapping M and for each
universal query Q there is a polynomial time algorithm for:

Input: the core solution for some source instance S for M
Output: the GCWA∗-answers to Q on M and S

Restriction: M specified by packed s-t tgds

∀x̄∀ȳ
(
ϕ(x̄ , ȳ) → ∃z̄ · · ·R(· · · z · · · )∧ · · ·∧ R ′(· · · z · · · ) · · ·

)
Recall: Here the core solution can be computed in polynomial time
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ϕ(x̄ , ȳ) → ∃z̄ · · ·R(· · · z · · · )∧ · · ·∧ R ′(· · · z · · · ) · · ·

)
Recall: Here the core solution can be computed in polynomial time

28 / 35



Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡
∨n

i=1 ∃x̄i ϕi(x̄i) ϕi : conjunction of atoms
or negated atoms

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with

1 ≤ |T | ≤ |ϕi | and

⋃
T |= ∃x̄i ϕi(x̄i)

T1 T2 T3 . . .
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Step 2/4: Reformulation in Terms of the Core

Query: ∃x̄ ϕ(x̄), ϕ conjunction of atoms and neg. atoms
Question: Are there ground minimal solutions T1, . . . ,T|ϕ| for S

with ⋃
i
Ti |= ∃x̄ ϕ(x̄) ?

Lemma
ground minimal solutions for S

= minimal possible worlds of the core solution for S

New question: Are there minimal possible worlds T1, . . . ,T|ϕ| of
the core solution for S with

⋃
i Ti |= ∃x̄ ϕ(x̄)?
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Step 3/4: Find Appropriate Minimal Instances

Lemma
M: schema mapping defined by packed s-t tgds
Q: query ∃x̄ ϕ(x̄), ϕ conjunction of atoms and negated atoms

There is a polynomial time algorithm for

Input: core solution C for some source instance S for M
Question: Are there minimal possible worlds T1, . . . ,T|ϕ| of

C with
⋃

i Ti |= Q

Problems to overcome:
• In general, infinitely many minimal possible worlds of C
Solution: canonical representation

• Still exponentially many instances
Solution: reduce set of instances that need to be considered

to polynomial size
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Step 4/4: A Special Case

Reduction for special case: given atom R(ā), test whether R(ā)
belongs to some minimal instance in poss(C)

1 Key property: number of nulls in atom blocks of C bounded by
a constant (Fagin, Kolaitis, Popa ’03)

C = {E (a,⊥),
E (b, a)
R(a,⊥,⊥ ′)}

Gaifman graph:

atom block 1

atom block 2

E (a,⊥) E (b, a)

R(a,⊥,⊥ ′)

2 First idea: use minimal instances arising from atom blocks of C
by replacing nulls with constants . . .

fails

3 Instead: consider the cores of images of C under special
mappings

. . . here packed s-t tgds come into play
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Summary

• Widely agreed: for monotonic queries use the certain answers

• answering queries preserved under homomorphisms well understood
• few results for more general monotonic queries

• Several semantics for non-monotonic queries

• based on rules for excluding undesired solutions
• each reflects a certain intuition about what “not mentioned”

by a source instance and schema mapping means
• query evaluation may be hard, is not really understood
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Open Problems

Lots of open problems, e.g.:
• When is (non-monotonic) query answering tractable?

• For which queries and schema mappings?
• . . . and under which semantics?
• Data complexity? Combined complexity?

• Alternative approaches, e.g., stick with the certain answers,
but use richer constraint language
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