
Semantics of Query Answering in Data Exchange

André Hernich

Department of Computer Science
Humboldt University Berlin

DEIS 2010, Dagstuhl

1 / 35

Outline

1 Goals of Query Answering in Data Exchange

2 The Basic Query Answering Semantics

3 Alternative Semantics

2 / 35

Query Answering in Data Exchange

Goal: Answer queries posed against target data
(Fagin, Kolaitis, Miller, Popa ’03)

source-
schema

target-
schema

schema mapping

source-
instance solution

query

3 / 35

Example

Source instance: Solution:
Book title author

Algebra Lang
Logic Hodges

Author id name
1 Lang
2 Hodges

Publ title a_id
Algebra 1
Logic 2

Schema mapping:
• ∀t ∀a

(
Book(t, a) → ∃id Author(id, a)∧ Publ(t, id)

)

Example query over target schema
Who are the authors of “Algebra”?

Q(a) := ∃id
(
Publ(“Algebra”, id)∧ Author(id, a)

)

4 / 35

Example

Source instance: Solution:
Book title author

Algebra Lang
Logic Hodges

Author id name
1 Lang
2 Hodges

Publ title a_id
Algebra 1
Logic 2

Schema mapping:
• ∀t ∀a

(
Book(t, a) → ∃id Author(id, a)∧ Publ(t, id)

)
Example query over target schema
Who are the authors of “Algebra”?

Q(a) := ∃id
(
Publ(“Algebra”, id)∧ Author(id, a)

)
4 / 35

Fundamental Issues

1 What is the “right” answer to/semantics of a query?

Problem: many solutions with different sets of answers

2 Which solutions are appropriate for query answering?
Problem: queries have to be answered without source instance

3 What is the complexity of query answering?
(computing the solution & evaluating the query)

5 / 35

Example

Source instance: Solution:
Book title author

Algebra Lang
Logic Hodges

Author id name
1 Lang
2 Hodges

Publ title a_id
Algebra 1
Logic 2

Schema mapping:
• ∀t ∀a

(
Book(t, a) → ∃id Author(id, a)∧ Publ(t, id)

)
Example query over target schema
Who are the authors of “Algebra”?

Q(a) := ∃id
(
Publ(“Algebra”, id)∧ Author(id, a)

)
6 / 35

Fundamental Issues

1 What is the “right” answer to/semantics of a query?
Problem: many solutions with different sets of answers

2 Which solutions are appropriate for query answering?
Problem: queries have to be answered without source instance

3 What is the complexity of query answering?
(computing the solution & evaluating the query)

7 / 35

Fundamental Issues

1 What is the “right” answer to/semantics of a query?
Problem: many solutions with different sets of answers

2 Which solutions are appropriate for query answering?
Problem: queries have to be answered without source instance

3 What is the complexity of query answering?
(computing the solution & evaluating the query)

7 / 35

Fundamental Issues

1 What is the “right” answer to/semantics of a query?
Problem: many solutions with different sets of answers

2 Which solutions are appropriate for query answering?
Problem: queries have to be answered without source instance

3 What is the complexity of query answering?
(computing the solution & evaluating the query)

7 / 35

Outline

1 Goals of Query Answering in Data Exchange

2 The Basic Query Answering Semantics

3 Alternative Semantics

8 / 35

The Certain Answers Semantics

Idea: return “safe” answers

M

S

Q

T1

T2

T3

...

Q(T1) = {a1, a2, . . .}

Q(T2) = {b1, b2, . . .}

Q(T3) = {c1, c2, . . .}

Definition (Fagin, Kolaitis, Miller, Popa ’03)
a is a certain answer to Q on M and S⇐⇒ a ∈ Q(T) for all solutions T for S under M

9 / 35

The Certain Answers Semantics

Idea: return “safe” answers

M

S

Q

T1

T2

T3

...

Q(T1) = {a1, a2, . . .}

Q(T2) = {b1, b2, . . .}

Q(T3) = {c1, c2, . . .}

Definition (Fagin, Kolaitis, Miller, Popa ’03)
a is a certain answer to Q on M and S⇐⇒ a ∈ Q(T) for all solutions T for S under M

9 / 35

The Certain Answers Semantics

Idea: return “safe” answers

M

S

Q

T1

T2

T3

...

Q(T1) = {a1, a2, . . .}

Q(T2) = {b1, b2, . . .}

Q(T3) = {c1, c2, . . .}

Definition (Fagin, Kolaitis, Miller, Popa ’03)
a is a certain answer to Q on M and S⇐⇒ a ∈ Q(T) for all solutions T for S under M

9 / 35

The Certain Answers Semantics

Idea: return “safe” answers

M

S

Q

T1

T2

T3

...

Q(T1) = {a1, a2, . . .}

Q(T2) = {b1, b2, . . .}

Q(T3) = {c1, c2, . . .}

Definition (Fagin, Kolaitis, Miller, Popa ’03)
a is a certain answer to Q on M and S⇐⇒ a ∈ Q(T) for all solutions T for S under M

9 / 35

The Certain Answers Semantics

Idea: return “safe” answers

M

S

Q

T1

T2

T3

...

Q(T1) = {a1, a2, . . .}

Q(T2) = {b1, b2, . . .}

Q(T3) = {c1, c2, . . .}

Definition (Fagin, Kolaitis, Miller, Popa ’03)
a is a certain answer to Q on M and S⇐⇒ a ∈ Q(T) for all solutions T for S under M

9 / 35

The Certain Answers Semantics

Idea: return “safe” answers

M

S

Q

T1

T2

T3

...

Q(T1) = {a1, a2, . . .}

Q(T2) = {b1, b2, . . .}

Q(T3) = {c1, c2, . . .}

Definition (Fagin, Kolaitis, Miller, Popa ’03)
a is a certain answer to Q on M and S⇐⇒ a ∈ Q(T) for all solutions T for S under M

9 / 35

Example

Source instance: Solution:
Book title author

Algebra Lang
Logic Hodges

Author id name
1 Lang
2 Hodges

Publ title a_id
Algebra 1
Logic 2

Schema mapping:
• ∀t ∀a

(
Book(t, a) → ∃id Author(id, a)∧ Publ(t, id)

)

Query: Who are the authors of “Algebra”?

Q(a) := ∃id
(
Publ(“Algebra”, id)∧ Author(id, a)

)
Certain answers: {“Lang”}

10 / 35

Example

Source instance: Solution:
Book title author

Algebra Lang
Logic Hodges

Author id name
1 Lang
2 Hodges

Publ title a_id
Algebra 1
Logic 2

Schema mapping:
• ∀t ∀a

(
Book(t, a) → ∃id Author(id, a)∧ Publ(t, id)

)
Query: Who are the authors of “Algebra”?

Q(a) := ∃id
(
Publ(“Algebra”, id)∧ Author(id, a)

)

Certain answers: {“Lang”}

10 / 35

Example

Source instance: Solution:
Book title author

Algebra Lang
Logic Hodges

Author id name
1 Lang
2 Hodges

Publ title a_id
Algebra 1
Logic 2

Schema mapping:
• ∀t ∀a

(
Book(t, a) → ∃id Author(id, a)∧ Publ(t, id)

)
Query: Who are the authors of “Algebra”?

Q(a) := ∃id
(
Publ(“Algebra”, id)∧ Author(id, a)

)
Certain answers: {“Lang”}

10 / 35

Example

Source instance: Solution:
Book title author

Algebra Lang
Logic Hodges

Author id name
1 Lang
2 Hodges

Publ title a_id
Algebra 1
Logic 2

Schema mapping:
• ∀t ∀a

(
Book(t, a) → ∃id Author(id, a)∧ Publ(t, id)

)
Query: Who are the authors of “Algebra”?

Q(a) := ∃id
(
Publ(“Algebra”, id)∧ Author(id, a)

)
Certain answers: {“Lang”}

10 / 35

The Certain Answers and UCQs

Consensus: suitable for unions of conjunctive queries (UCQs)

Theorem (Fagin, Kolaitis, Miller, Popa ’03)
For every schema mapping M, source instance S for M, universal
solution T for S, and UCQ Q

certain answers to Q = {a ∈ Q(T) | a is null-free}

“Ingredients” for the proof:

Solutions for S

T

T ′

h

+ ā ∈ Q(T) =⇒ h(ā)︸︷︷︸
=ā

∈ Q(T ′)

More general: for queries preserved under homomorphisms

11 / 35

The Certain Answers and UCQs

Consensus: suitable for unions of conjunctive queries (UCQs)

Theorem (Fagin, Kolaitis, Miller, Popa ’03)
For every schema mapping M, source instance S for M, universal
solution T for S, and UCQ Q

certain answers to Q = {a ∈ Q(T) | a is null-free}

“Ingredients” for the proof:

Solutions for S

T

T ′

h

+ ā ∈ Q(T) =⇒ h(ā)︸︷︷︸
=ā

∈ Q(T ′)

More general: for queries preserved under homomorphisms

11 / 35

The Certain Answers and UCQs

Consensus: suitable for unions of conjunctive queries (UCQs)

Theorem (Fagin, Kolaitis, Miller, Popa ’03)
For every schema mapping M, source instance S for M, universal
solution T for S, and UCQ Q

certain answers to Q = {a ∈ Q(T) | a is null-free}

“Ingredients” for the proof:

Solutions for S

T

T ′

h

+ ā ∈ Q(T) =⇒ h(ā)︸︷︷︸
=ā

∈ Q(T ′)

More general: for queries preserved under homomorphisms

11 / 35

The Certain Answers and UCQs

Consensus: suitable for unions of conjunctive queries (UCQs)

Theorem (Fagin, Kolaitis, Miller, Popa ’03)
For every schema mapping M, source instance S for M, universal
solution T for S, and UCQ Q

certain answers to Q = {a ∈ Q(T) | a is null-free}

“Ingredients” for the proof:

Solutions for S

T

T ′

h

+ ā ∈ Q(T) =⇒ h(ā)︸︷︷︸
=ā

∈ Q(T ′)

More general: for queries preserved under homomorphisms
11 / 35

. . . and Monotonic Queries in General

+ Widely agreed: the certain answers semantics is suitable
– issue of appropriate solutions and query answering

less well understood

(Data) complexity results:

• evaluation of UCQs with ≤ 1 inequality per disjunct in PTIME
on universal solutions (Fagin, Kolaitis, Miller, and Popa ’03)

• co-NP-complete for CQs with ≥ 2 inequalities (Mądry ’05)
• fragments of UCQs with ≤ 2 inequalities per disjunct in PTIME
on universal solutions (Arenas, Barceló, Reutter ’09)

“Generic” approach: based on extension of universal solutions
(Deutsch, Nash, Remmel ’08)

12 / 35

. . . and Monotonic Queries in General

+ Widely agreed: the certain answers semantics is suitable
– issue of appropriate solutions and query answering

less well understood

(Data) complexity results:

• evaluation of UCQs with ≤ 1 inequality per disjunct in PTIME
on universal solutions (Fagin, Kolaitis, Miller, and Popa ’03)

• co-NP-complete for CQs with ≥ 2 inequalities (Mądry ’05)
• fragments of UCQs with ≤ 2 inequalities per disjunct in PTIME
on universal solutions (Arenas, Barceló, Reutter ’09)

“Generic” approach: based on extension of universal solutions
(Deutsch, Nash, Remmel ’08)

12 / 35

. . . and Monotonic Queries in General

+ Widely agreed: the certain answers semantics is suitable
– issue of appropriate solutions and query answering

less well understood

(Data) complexity results:

• evaluation of UCQs with ≤ 1 inequality per disjunct in PTIME
on universal solutions (Fagin, Kolaitis, Miller, and Popa ’03)

• co-NP-complete for CQs with ≥ 2 inequalities (Mądry ’05)
• fragments of UCQs with ≤ 2 inequalities per disjunct in PTIME
on universal solutions (Arenas, Barceló, Reutter ’09)

“Generic” approach: based on extension of universal solutions
(Deutsch, Nash, Remmel ’08)

12 / 35

. . . and Beyond?

Counter-intuitive answers possible on non-monotonic queries
(Fagin, Arenas, Barceló, Libkin ’04; Libkin ’06)

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c

Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}

• The certain answers: ∅

13 / 35

. . . and Beyond?

Counter-intuitive answers possible on non-monotonic queries
(Fagin, Arenas, Barceló, Libkin ’04; Libkin ’06)

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c
Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}

• The certain answers: ∅

13 / 35

. . . and Beyond?

Counter-intuitive answers possible on non-monotonic queries
(Fagin, Arenas, Barceló, Libkin ’04; Libkin ’06)

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c

Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}

• The certain answers: ∅

13 / 35

. . . and Beyond?

Counter-intuitive answers possible on non-monotonic queries
(Fagin, Arenas, Barceló, Libkin ’04; Libkin ’06)

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c

Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}
• The certain answers: ∅

13 / 35

. . . and Beyond?

Counter-intuitive answers possible on non-monotonic queries
(Fagin, Arenas, Barceló, Libkin ’04; Libkin ’06)

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c
Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}
• The certain answers: ∅

13 / 35

Outline

1 Goals of Query Answering in Data Exchange

2 The Basic Query Answering Semantics

3 Alternative Semantics

14 / 35

Dealing with Non-Monotonic Queries

1 Use the certain answers semantics

• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics

(this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

15 / 35

Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints

• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics

(this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

15 / 35

Motivating Example Revisited

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)

∀x∀y
(
¬E (x , y) → ¬E ′(x , y)

)

Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c
Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}
• The certain answers: ∅

16 / 35

Motivating Example Revisited

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
∀x∀y

(
¬E (x , y) → ¬E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c
Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}
• The certain answers: ∅

16 / 35

Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints

• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics

(this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35

Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics

(this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35

Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics (this talk)

• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35

Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics (this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35

Dealing with Non-Monotonic Queries

1 Use the certain answers semantics
• manually rule out undesired solutions via suitable constraints
• requires richer constraint language
• almost no research in this direction

2 Use alternative semantics (this talk)
• automatically rule out undesired solutions via heuristics
• no richer constraint language
• can build on research from non-monotonic reasoning

Basis: variants of Closed World Assumption (CWA) (Reiter ’78)
“If something is not mentioned, take it to be false.”

17 / 35

Motivating Example Revisited

Example (copy relation E to E ′)
Schema mapping: ∀x∀y

(
E (x , y) → E ′(x , y)

)
∀x∀y

(
¬E (x , y) → ¬E ′(x , y)

)
Source instance:

a b
E

Solution:

a b
E ′

Another solution:

a b
E ′

c
Query: Q(x) := Is there exactly one y with E ′(x , y)?

• Expected answers: {a}
• The certain answers: ∅

18 / 35

CWA-Semantics

• for schema mappings defined by s-t tgds, t-tgds, and egds
(Libkin ’06; H., Schweikardt ’07)

• family of semantics, based on CWA-solutions
(= solutions valid under the CWA-semantics)

• CWA-certain answers semantics:
M

S

Q
T1

T2

...

. . . like the certain answers semantics, except:

• the Ti are CWA-solutions
• Q is evaluated under a special semantics for instances with nulls

19 / 35

CWA-Semantics

• for schema mappings defined by s-t tgds, t-tgds, and egds
(Libkin ’06; H., Schweikardt ’07)

• family of semantics, based on CWA-solutions
(= solutions valid under the CWA-semantics)

• CWA-certain answers semantics:
M

S

Q
T1

T2

...

. . . like the certain answers semantics, except:

• the Ti are CWA-solutions
• Q is evaluated under a special semantics for instances with nulls

19 / 35

CWA-Semantics

• for schema mappings defined by s-t tgds, t-tgds, and egds
(Libkin ’06; H., Schweikardt ’07)

• family of semantics, based on CWA-solutions
(= solutions valid under the CWA-semantics)

• CWA-certain answers semantics:
M

S

Q
T1

T2

...

. . . like the certain answers semantics, except:
• the Ti are CWA-solutions

• Q is evaluated under a special semantics for instances with nulls

19 / 35

CWA-Semantics

• for schema mappings defined by s-t tgds, t-tgds, and egds
(Libkin ’06; H., Schweikardt ’07)

• family of semantics, based on CWA-solutions
(= solutions valid under the CWA-semantics)

• CWA-certain answers semantics:
M

S

Q
T1

T2

...

. . . like the certain answers semantics, except:
• the Ti are CWA-solutions
• Q is evaluated under a special semantics for instances with nulls

19 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria

1 Derivability
2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)

Solution:

a c

db

not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability

2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)

Solution:

a c

db

not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability

2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a c

db

not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability

2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a c

db not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability

2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a c

d

b not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability
2 Parsimony

3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a c

d

b not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability
2 Parsimony

3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a c

d

b not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability
2 Parsimony

3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a c

db not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability
2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a c

db not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability
2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a c

db not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability
2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
Solution:

a ⊥

db not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability
2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
unique CWA-solution:

a ⊥

db not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

CWA-Solutions

Rule: all atoms and facts in CWA-solutions must be justified
by the source instance and the schema mapping

Criteria
1 Derivability
2 Parsimony
3 No invented facts

Example
S = {P(a) } ∀x

(
P(x) → ∃y E (x , y)

)
unique CWA-solution:

a ⊥

db not derivable

same justification
used twice

contant c
is invented

Characterization (Libkin ’06; H., Schweikardt ’07)

CWA-solutions = universal solutions derivable from the source
instance using a certain variant of the chase
E.g., core solution = minimal CWA-solution

20 / 35

Query Evaluation under the CWA-Semantics

Theorem (Libkin ’06)
For every schema mapping M defined by s-t tgds, every source
instance S, and every query Q,

CWA-certain answers to Q on M and S = �Q(T),

where T = canonical solution for S under M.

What is �Q(T)?

• T may contain incomplete information
in the form of nulls

• Possible worlds of T : instances arising
from T by assigning constants to nulls

• �Q(T) : the certain answers to Q
over the possible worlds of T

Example

a ⊥

Possible worlds:

a , a b ,

a c ,
. . .

21 / 35

Query Evaluation under the CWA-Semantics

Theorem (Libkin ’06)
For every schema mapping M defined by s-t tgds, every source
instance S, and every query Q,

CWA-certain answers to Q on M and S = �Q(T),

where T = canonical solution for S under M.

What is �Q(T)?

• T may contain incomplete information
in the form of nulls

• Possible worlds of T : instances arising
from T by assigning constants to nulls

• �Q(T) : the certain answers to Q
over the possible worlds of T

Example

a ⊥

Possible worlds:

a , a b ,

a c ,
. . .

21 / 35

Query Evaluation under the CWA-Semantics

Theorem (Libkin ’06)
For every schema mapping M defined by s-t tgds, every source
instance S, and every query Q,

CWA-certain answers to Q on M and S = �Q(T),

where T = canonical solution for S under M.

What is �Q(T)?

• T may contain incomplete information
in the form of nulls

• Possible worlds of T : instances arising
from T by assigning constants to nulls

• �Q(T) : the certain answers to Q
over the possible worlds of T

Example

a ⊥

Possible worlds:

a , a b ,

a c ,
. . .

21 / 35

Query Evaluation under the CWA-Semantics

Theorem (Libkin ’06)
For every schema mapping M defined by s-t tgds, every source
instance S, and every query Q,

CWA-certain answers to Q on M and S = �Q(T),

where T = canonical solution for S under M.

What is �Q(T)?

• T may contain incomplete information
in the form of nulls

• Possible worlds of T : instances arising
from T by assigning constants to nulls

• �Q(T) : the certain answers to Q
over the possible worlds of T

Example

a ⊥

Possible worlds:
a

, a b ,

a c ,
. . .

21 / 35

Query Evaluation under the CWA-Semantics

Theorem (Libkin ’06)
For every schema mapping M defined by s-t tgds, every source
instance S, and every query Q,

CWA-certain answers to Q on M and S = �Q(T),

where T = canonical solution for S under M.

What is �Q(T)?

• T may contain incomplete information
in the form of nulls

• Possible worlds of T : instances arising
from T by assigning constants to nulls

• �Q(T) : the certain answers to Q
over the possible worlds of T

Example

a ⊥

Possible worlds:
a , a b

,

a c ,
. . .

21 / 35

Query Evaluation under the CWA-Semantics

Theorem (Libkin ’06)
For every schema mapping M defined by s-t tgds, every source
instance S, and every query Q,

CWA-certain answers to Q on M and S = �Q(T),

where T = canonical solution for S under M.

What is �Q(T)?

• T may contain incomplete information
in the form of nulls

• Possible worlds of T : instances arising
from T by assigning constants to nulls

• �Q(T) : the certain answers to Q
over the possible worlds of T

Example

a ⊥

Possible worlds:
a , a b ,

a c ,
. . .

21 / 35

Query Evaluation under the CWA-Semantics

Theorem (Libkin ’06)
For every schema mapping M defined by s-t tgds, every source
instance S, and every query Q,

CWA-certain answers to Q on M and S = �Q(T),

where T = canonical solution for S under M.

What is �Q(T)?

• T may contain incomplete information
in the form of nulls

• Possible worlds of T : instances arising
from T by assigning constants to nulls

• �Q(T) : the certain answers to Q
over the possible worlds of T

Example

a ⊥

Possible worlds:
a , a b ,

a c ,
. . .

21 / 35

Generalization and Restriction of the CWA-Semantics

Modifications of the CWA-semantics
(both for schema mappings defined by s-t tgds only):

• “Mixed world” semantics (Libkin, Sirangelo ’08)

• based on generalized notion of possible worlds of an instance
• generalized constraint language (annotated s-t tgds)

• Endomorphic images semantics (Afrati, Kolaitis ’08)

• based on restricted notion of possible worlds of an instance
• shown to be suitable for special aggregate queries

22 / 35

Generalization and Restriction of the CWA-Semantics

Modifications of the CWA-semantics
(both for schema mappings defined by s-t tgds only):

• “Mixed world” semantics (Libkin, Sirangelo ’08)
• based on generalized notion of possible worlds of an instance
• generalized constraint language (annotated s-t tgds)

• Endomorphic images semantics (Afrati, Kolaitis ’08)

• based on restricted notion of possible worlds of an instance
• shown to be suitable for special aggregate queries

22 / 35

Generalization and Restriction of the CWA-Semantics

Modifications of the CWA-semantics
(both for schema mappings defined by s-t tgds only):

• “Mixed world” semantics (Libkin, Sirangelo ’08)
• based on generalized notion of possible worlds of an instance
• generalized constraint language (annotated s-t tgds)

• Endomorphic images semantics (Afrati, Kolaitis ’08)
• based on restricted notion of possible worlds of an instance
• shown to be suitable for special aggregate queries

22 / 35

Two Natural Properties

Two natural properties are “missing”:

1 Invariance under logically equivalent schema mappings
2 Reflection of “standard semantics” of constraints

23 / 35

Two Natural Properties

Two natural properties are “missing”:

1 Invariance under logically equivalent schema mappings
2 Reflection of “standard semantics” of constraints

23 / 35

Reflection of “Standard Semantics” of Constraints

Example
Schema mapping:

∀x
(
P(x) → ∃y E (x , y))

≡ ∀x
(
P(x) → ∨

y∈Const
E (x , y)

)

Source instance: S = {P(a)}

Unique CWA-solution: a ⊥

Example query: Q := Is there exactly one y with E (a, y)?
CWA-answers: yes
Desired answer: no

24 / 35

Reflection of “Standard Semantics” of Constraints

Example
Schema mapping:

∀x
(
P(x) → ∃y E (x , y))

≡ ∀x
(
P(x) → ∨

y∈Const
E (x , y)

)

Source instance: S = {P(a)}

Unique CWA-solution: a ⊥

Example query: Q := Is there exactly one y with E (a, y)?
CWA-answers: yes

Desired answer: no

24 / 35

Reflection of “Standard Semantics” of Constraints

Example
Schema mapping:

∀x
(
P(x) → ∃y E (x , y)) ≡ ∀x(P(x) → ∨

y∈Const
E (x , y)

)
Source instance: S = {P(a)}

Unique CWA-solution: a ⊥

Example query: Q := Is there exactly one y with E (a, y)?
CWA-answers: yes

Desired answer: no

24 / 35

Reflection of “Standard Semantics” of Constraints

Example
Schema mapping:

∀x
(
P(x) → ∃y E (x , y)) ≡ ∀x(P(x) → ∨

y∈Const
E (x , y)

)
Source instance: S = {P(a)}

Unique CWA-solution: a ⊥

Example query: Q := Is there exactly one y with E (a, y)?
CWA-answers: yes
Desired answer: no

24 / 35

The GCWA∗-Semantics

Definition (H. ’10, restricted version)

1 GCWA∗-solutions:
ground solutions that are unions of minimal solutions

2 GCWA∗-answers:
the certain answers over GCWA∗-solutions

• inspired by semantics for deductive databases:
GCWA (Minker ’82) and EGCWA (Yahya, Henschen ’85)

• invariant under logically equivalent schema mappings
• intuitively: reflects “standard semantics” of constraints

25 / 35

The GCWA∗-Semantics

Definition (H. ’10, restricted version)

1 GCWA∗-solutions:
ground solutions that are unions of minimal solutions

2 GCWA∗-answers:
the certain answers over GCWA∗-solutions

• inspired by semantics for deductive databases:
GCWA (Minker ’82) and EGCWA (Yahya, Henschen ’85)

• invariant under logically equivalent schema mappings
• intuitively: reflects “standard semantics” of constraints

25 / 35

Motivating Example Revisited

Example
Schema mapping: ∀x

(
P(x) → ∃y E (x , y))

Source instance: S = {P(a)}

GCWA∗solutions:

a b

union of one minimal solution
c

union of two minimal solutions

d
...

union of three minimal solutions

Query: Q := Is there exactly one y with E (a, y)?
GCWA∗-answers: no (as desired)

26 / 35

Motivating Example Revisited

Example
Schema mapping: ∀x

(
P(x) → ∃y E (x , y))

Source instance: S = {P(a)}

GCWA∗solutions: a b union of one minimal solution

c

union of two minimal solutions

d
...

union of three minimal solutions

Query: Q := Is there exactly one y with E (a, y)?
GCWA∗-answers: no (as desired)

26 / 35

Motivating Example Revisited

Example
Schema mapping: ∀x

(
P(x) → ∃y E (x , y))

Source instance: S = {P(a)}

GCWA∗solutions: a b

union of one minimal solution

c
union of two minimal solutions

d
...

union of three minimal solutions

Query: Q := Is there exactly one y with E (a, y)?
GCWA∗-answers: no (as desired)

26 / 35

Motivating Example Revisited

Example
Schema mapping: ∀x

(
P(x) → ∃y E (x , y))

Source instance: S = {P(a)}

GCWA∗solutions: a b

union of one minimal solution

c

union of two minimal solutions

d
...

union of three minimal solutions

Query: Q := Is there exactly one y with E (a, y)?
GCWA∗-answers: no (as desired)

26 / 35

Motivating Example Revisited

Example
Schema mapping: ∀x

(
P(x) → ∃y E (x , y))

Source instance: S = {P(a)}

GCWA∗solutions: a b

union of one minimal solution

c

union of two minimal solutions

d
...

union of three minimal solutions

Query: Q := Is there exactly one y with E (a, y)?
GCWA∗-answers: no (as desired)

26 / 35

Basic Results

• for monotonic queries: GCWA∗-answers = certain answers
(actually true for almost all of the preceding semantics)

• There is a simple schema mapping M defined by s-t tgds,
and a Boolean CQ Q with one negated atom for which

EVAL(M,Q)
Input: source instance S
Question: Are the GCWA∗-answers to Q on M and S

non-empty?

is co-NP-hard
(simple reduction from clique problem)

• There is a simple schema mapping M defined by s-t tgds,
and a Boolean FO query Q for which EVAL(M,Q)
is undecidable.

27 / 35

Basic Results

• for monotonic queries: GCWA∗-answers = certain answers
(actually true for almost all of the preceding semantics)

• There is a simple schema mapping M defined by s-t tgds,
and a Boolean CQ Q with one negated atom for which

EVAL(M,Q)
Input: source instance S
Question: Are the GCWA∗-answers to Q on M and S

non-empty?

is co-NP-hard
(simple reduction from clique problem)

• There is a simple schema mapping M defined by s-t tgds,
and a Boolean FO query Q for which EVAL(M,Q)
is undecidable.

27 / 35

Basic Results

• for monotonic queries: GCWA∗-answers = certain answers
(actually true for almost all of the preceding semantics)

• There is a simple schema mapping M defined by s-t tgds,
and a Boolean CQ Q with one negated atom for which

EVAL(M,Q)
Input: source instance S
Question: Are the GCWA∗-answers to Q on M and S

non-empty?

is co-NP-hard
(simple reduction from clique problem)

• There is a simple schema mapping M defined by s-t tgds,
and a Boolean FO query Q for which EVAL(M,Q)
is undecidable.

27 / 35

Evaluation of Universal Queries

universal query: FO query of the form ∀x̄ ϕ, ϕ quantifier-free

Theorem (H. ’10)
For every properly restricted schema mapping M and for each
universal query Q there is a polynomial time algorithm for:

Input: the core solution for some source instance S for M
Output: the GCWA∗-answers to Q on M and S

Restriction: M specified by packed s-t tgds

∀x̄∀ȳ
(
ϕ(x̄ , ȳ) → ∃z̄ · · ·R(· · · z · · ·)∧ · · ·∧ R ′(· · · z · · ·) · · ·

)
Recall: Here the core solution can be computed in polynomial time

28 / 35

Evaluation of Universal Queries

universal query: FO query of the form ∀x̄ ϕ, ϕ quantifier-free

Theorem (H. ’10)
For every properly restricted schema mapping M and for each
universal query Q there is a polynomial time algorithm for:

Input: the core solution for some source instance S for M
Output: the GCWA∗-answers to Q on M and S

Restriction: M specified by packed s-t tgds

∀x̄∀ȳ
(
ϕ(x̄ , ȳ) → ∃z̄ · · ·R(· · · z · · ·)∧ · · ·∧ R ′(· · · z · · ·) · · ·

)

Recall: Here the core solution can be computed in polynomial time

28 / 35

Evaluation of Universal Queries

universal query: FO query of the form ∀x̄ ϕ, ϕ quantifier-free

Theorem (H. ’10)
For every properly restricted schema mapping M and for each
universal query Q there is a polynomial time algorithm for:

Input: the core solution for some source instance S for M
Output: the GCWA∗-answers to Q on M and S

Restriction: M specified by packed s-t tgds

∀x̄∀ȳ
(
ϕ(x̄ , ȳ) → ∃z̄ · · ·R(· · · z · · ·)∧ · · ·∧ R ′(· · · z · · ·) · · ·

)
Recall: Here the core solution can be computed in polynomial time

28 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡
∨n

i=1 ∃x̄i ϕi(x̄i) ϕi : conjunction of atoms
or negated atoms

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with

1 ≤ |T | ≤ |ϕi | and

⋃
T |= ∃x̄i ϕi(x̄i)

T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q

• Observation:
¬Q ≡

∨n
i=1 ∃x̄i ϕi(x̄i) ϕi : conjunction of atoms

or negated atoms

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with

1 ≤ |T | ≤ |ϕi | and

⋃
T |= ∃x̄i ϕi(x̄i)

T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡ ¬∀x̄ ϕ(x̄) ϕ: quantifier-free

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with

1 ≤ |T | ≤ |ϕi | and

⋃
T |= ∃x̄i ϕi(x̄i)

T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡ ∃x̄ ¬ϕ(x̄) ϕ: quantifier-free

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with

1 ≤ |T | ≤ |ϕi | and

⋃
T |= ∃x̄i ϕi(x̄i)

T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡ ∃x̄
∨n

i=1 ϕi(x̄i) ϕi : conjunction of atoms
or negated atoms

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with

1 ≤ |T | ≤ |ϕi | and

⋃
T |= ∃x̄i ϕi(x̄i)

T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡
∨n

i=1 ∃x̄i ϕi(x̄i) ϕi : conjunction of atoms
or negated atoms

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with

1 ≤ |T | ≤ |ϕi | and

⋃
T |= ∃x̄i ϕi(x̄i)

T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡
∨n

i=1 ∃x̄i ϕi(x̄i) ϕi : conjunction of atoms
or negated atoms

• Remains: test whether for some i there is a GCWA∗-solution T
for S with

1 ≤ |T | ≤ |ϕi | and

T |= ∃x̄i ϕi(x̄i)

T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡
∨n

i=1 ∃x̄i ϕi(x̄i) ϕi : conjunction of atoms
or negated atoms

• Remains: test whether for some i there is a GCWA∗-solution T
for S with

1 ≤ |T | ≤ |ϕi | and

T |= ∃x̄i ϕi(x̄i)
T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡
∨n

i=1 ∃x̄i ϕi(x̄i) ϕi : conjunction of atoms
or negated atoms

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with 1 ≤ |T | and⋃

T |= ∃x̄i ϕi(x̄i)
T1 T2 T3 . . .

29 / 35

Step 1/4: Reduction to Satisfiability Problem

M: schema mapping, defined by packed s-t tgds
Q: universal query (Boolean)

Input: source instance S (for the moment)
Question: Are the GCWA∗-answers to Q non-empty?

• Idea: test whether there is a GCWA∗-solution T with T |= ¬Q
• Observation:

¬Q ≡
∨n

i=1 ∃x̄i ϕi(x̄i) ϕi : conjunction of atoms
or negated atoms

• Remains: test whether for some i there is a set T of ground
minimal solutions for S with 1 ≤ |T | ≤ |ϕi | and⋃

T |= ∃x̄i ϕi(x̄i)
T1 T2 T3 . . .

29 / 35

Step 2/4: Reformulation in Terms of the Core

Query: ∃x̄ ϕ(x̄), ϕ conjunction of atoms and neg. atoms
Question: Are there ground minimal solutions T1, . . . ,T|ϕ| for S

with ⋃
i
Ti |= ∃x̄ ϕ(x̄) ?

Lemma
ground minimal solutions for S

= minimal possible worlds of the core solution for S

New question: Are there minimal possible worlds T1, . . . ,T|ϕ| of
the core solution for S with

⋃
i Ti |= ∃x̄ ϕ(x̄)?

30 / 35

Step 2/4: Reformulation in Terms of the Core

Query: ∃x̄ ϕ(x̄), ϕ conjunction of atoms and neg. atoms
Question: Are there ground minimal solutions T1, . . . ,T|ϕ| for S

with ⋃
i
Ti |= ∃x̄ ϕ(x̄) ?

Lemma
ground minimal solutions for S

= minimal possible worlds of the core solution for S

New question: Are there minimal possible worlds T1, . . . ,T|ϕ| of
the core solution for S with

⋃
i Ti |= ∃x̄ ϕ(x̄)?

30 / 35

Step 2/4: Reformulation in Terms of the Core

Query: ∃x̄ ϕ(x̄), ϕ conjunction of atoms and neg. atoms
Question: Are there ground minimal solutions T1, . . . ,T|ϕ| for S

with ⋃
i
Ti |= ∃x̄ ϕ(x̄) ?

Lemma
ground minimal solutions for S

= minimal possible worlds of the core solution for S

New question: Are there minimal possible worlds T1, . . . ,T|ϕ| of
the core solution for S with

⋃
i Ti |= ∃x̄ ϕ(x̄)?

30 / 35

Step 3/4: Find Appropriate Minimal Instances

Lemma
M: schema mapping defined by packed s-t tgds
Q: query ∃x̄ ϕ(x̄), ϕ conjunction of atoms and negated atoms

There is a polynomial time algorithm for

Input: core solution C for some source instance S for M
Question: Are there minimal possible worlds T1, . . . ,T|ϕ| of

C with
⋃

i Ti |= Q

Problems to overcome:
• In general, infinitely many minimal possible worlds of C
Solution: canonical representation

• Still exponentially many instances
Solution: reduce set of instances that need to be considered

to polynomial size

31 / 35

Step 3/4: Find Appropriate Minimal Instances

Lemma
M: schema mapping defined by packed s-t tgds
Q: query ∃x̄ ϕ(x̄), ϕ conjunction of atoms and negated atoms

There is a polynomial time algorithm for

Input: core solution C for some source instance S for M
Question: Are there minimal possible worlds T1, . . . ,T|ϕ| of

C with
⋃

i Ti |= Q

Problems to overcome:
• In general, infinitely many minimal possible worlds of C
Solution: canonical representation

• Still exponentially many instances
Solution: reduce set of instances that need to be considered

to polynomial size

31 / 35

Step 3/4: Find Appropriate Minimal Instances

Lemma
M: schema mapping defined by packed s-t tgds
Q: query ∃x̄ ϕ(x̄), ϕ conjunction of atoms and negated atoms

There is a polynomial time algorithm for

Input: core solution C for some source instance S for M
Question: Are there minimal possible worlds T1, . . . ,T|ϕ| of

C with
⋃

i Ti |= Q

Problems to overcome:
• In general, infinitely many minimal possible worlds of C
Solution: canonical representation

• Still exponentially many instances
Solution: reduce set of instances that need to be considered

to polynomial size
31 / 35

Step 4/4: A Special Case

Reduction for special case: given atom R(ā), test whether R(ā)
belongs to some minimal instance in poss(C)

1 Key property: number of nulls in atom blocks of C bounded by
a constant (Fagin, Kolaitis, Popa ’03)

C = {E (a,⊥),
E (b, a)
R(a,⊥,⊥ ′)}

Gaifman graph:

atom block 1

atom block 2

E (a,⊥) E (b, a)

R(a,⊥,⊥ ′)

2 First idea: use minimal instances arising from atom blocks of C
by replacing nulls with constants . . .

fails

3 Instead: consider the cores of images of C under special
mappings

. . . here packed s-t tgds come into play

32 / 35

Step 4/4: A Special Case

Reduction for special case: given atom R(ā), test whether R(ā)
belongs to some minimal instance in poss(C)

1 Key property: number of nulls in atom blocks of C bounded by
a constant (Fagin, Kolaitis, Popa ’03)

C = {E (a,⊥),
E (b, a)
R(a,⊥,⊥ ′)}

Gaifman graph:

atom block 1

atom block 2

E (a,⊥) E (b, a)

R(a,⊥,⊥ ′)

2 First idea: use minimal instances arising from atom blocks of C
by replacing nulls with constants . . .

fails

3 Instead: consider the cores of images of C under special
mappings

. . . here packed s-t tgds come into play

32 / 35

Step 4/4: A Special Case

Reduction for special case: given atom R(ā), test whether R(ā)
belongs to some minimal instance in poss(C)

1 Key property: number of nulls in atom blocks of C bounded by
a constant (Fagin, Kolaitis, Popa ’03)

C = {E (a,⊥),
E (b, a)
R(a,⊥,⊥ ′)}

Gaifman graph:

atom block 1

atom block 2E (a,⊥) E (b, a)

R(a,⊥,⊥ ′)

2 First idea: use minimal instances arising from atom blocks of C
by replacing nulls with constants . . .

fails

3 Instead: consider the cores of images of C under special
mappings

. . . here packed s-t tgds come into play

32 / 35

Step 4/4: A Special Case

Reduction for special case: given atom R(ā), test whether R(ā)
belongs to some minimal instance in poss(C)

1 Key property: number of nulls in atom blocks of C bounded by
a constant (Fagin, Kolaitis, Popa ’03)

C = {E (a,⊥),
E (b, a)
R(a,⊥,⊥ ′)}

Gaifman graph:

atom block 1

atom block 2E (a,⊥) E (b, a)

R(a,⊥,⊥ ′)

2 First idea: use minimal instances arising from atom blocks of C
by replacing nulls with constants . . .

fails
3 Instead: consider the cores of images of C under special

mappings

. . . here packed s-t tgds come into play

32 / 35

Step 4/4: A Special Case

Reduction for special case: given atom R(ā), test whether R(ā)
belongs to some minimal instance in poss(C)

1 Key property: number of nulls in atom blocks of C bounded by
a constant (Fagin, Kolaitis, Popa ’03)

C = {E (a,⊥),
E (b, a)
R(a,⊥,⊥ ′)}

Gaifman graph:

atom block 1

atom block 2E (a,⊥) E (b, a)

R(a,⊥,⊥ ′)

2 First idea: use minimal instances arising from atom blocks of C
by replacing nulls with constants . . . fails

3 Instead: consider the cores of images of C under special
mappings

. . . here packed s-t tgds come into play

32 / 35

Step 4/4: A Special Case

Reduction for special case: given atom R(ā), test whether R(ā)
belongs to some minimal instance in poss(C)

1 Key property: number of nulls in atom blocks of C bounded by
a constant (Fagin, Kolaitis, Popa ’03)

C = {E (a,⊥),
E (b, a)
R(a,⊥,⊥ ′)}

Gaifman graph:

atom block 1

atom block 2E (a,⊥) E (b, a)

R(a,⊥,⊥ ′)

2 First idea: use minimal instances arising from atom blocks of C
by replacing nulls with constants . . . fails

3 Instead: consider the cores of images of C under special
mappings

. . . here packed s-t tgds come into play

32 / 35

Step 4/4: A Special Case

Reduction for special case: given atom R(ā), test whether R(ā)
belongs to some minimal instance in poss(C)

1 Key property: number of nulls in atom blocks of C bounded by
a constant (Fagin, Kolaitis, Popa ’03)

C = {E (a,⊥),
E (b, a)
R(a,⊥,⊥ ′)}

Gaifman graph:

atom block 1

atom block 2E (a,⊥) E (b, a)

R(a,⊥,⊥ ′)

2 First idea: use minimal instances arising from atom blocks of C
by replacing nulls with constants . . . fails

3 Instead: consider the cores of images of C under special
mappings . . . here packed s-t tgds come into play

32 / 35

Summary

• Widely agreed: for monotonic queries use the certain answers

• answering queries preserved under homomorphisms well understood
• few results for more general monotonic queries

• Several semantics for non-monotonic queries

• based on rules for excluding undesired solutions
• each reflects a certain intuition about what “not mentioned”

by a source instance and schema mapping means
• query evaluation may be hard, is not really understood

33 / 35

Summary

• Widely agreed: for monotonic queries use the certain answers
• answering queries preserved under homomorphisms well understood

• few results for more general monotonic queries

• Several semantics for non-monotonic queries

• based on rules for excluding undesired solutions
• each reflects a certain intuition about what “not mentioned”

by a source instance and schema mapping means
• query evaluation may be hard, is not really understood

33 / 35

Summary

• Widely agreed: for monotonic queries use the certain answers
• answering queries preserved under homomorphisms well understood
• few results for more general monotonic queries

• Several semantics for non-monotonic queries

• based on rules for excluding undesired solutions
• each reflects a certain intuition about what “not mentioned”

by a source instance and schema mapping means
• query evaluation may be hard, is not really understood

33 / 35

Summary

• Widely agreed: for monotonic queries use the certain answers
• answering queries preserved under homomorphisms well understood
• few results for more general monotonic queries

• Several semantics for non-monotonic queries

• based on rules for excluding undesired solutions
• each reflects a certain intuition about what “not mentioned”

by a source instance and schema mapping means
• query evaluation may be hard, is not really understood

33 / 35

Summary

• Widely agreed: for monotonic queries use the certain answers
• answering queries preserved under homomorphisms well understood
• few results for more general monotonic queries

• Several semantics for non-monotonic queries
• based on rules for excluding undesired solutions

• each reflects a certain intuition about what “not mentioned”
by a source instance and schema mapping means

• query evaluation may be hard, is not really understood

33 / 35

Summary

• Widely agreed: for monotonic queries use the certain answers
• answering queries preserved under homomorphisms well understood
• few results for more general monotonic queries

• Several semantics for non-monotonic queries
• based on rules for excluding undesired solutions
• each reflects a certain intuition about what “not mentioned”

by a source instance and schema mapping means

• query evaluation may be hard, is not really understood

33 / 35

Summary

• Widely agreed: for monotonic queries use the certain answers
• answering queries preserved under homomorphisms well understood
• few results for more general monotonic queries

• Several semantics for non-monotonic queries
• based on rules for excluding undesired solutions
• each reflects a certain intuition about what “not mentioned”

by a source instance and schema mapping means
• query evaluation may be hard, is not really understood

33 / 35

Open Problems

Lots of open problems, e.g.:
• When is (non-monotonic) query answering tractable?

• For which queries and schema mappings?
• . . . and under which semantics?
• Data complexity? Combined complexity?

• Alternative approaches, e.g., stick with the certain answers,
but use richer constraint language

34 / 35

Open Problems

Lots of open problems, e.g.:
• When is (non-monotonic) query answering tractable?

• For which queries and schema mappings?

• . . . and under which semantics?
• Data complexity? Combined complexity?

• Alternative approaches, e.g., stick with the certain answers,
but use richer constraint language

34 / 35

Open Problems

Lots of open problems, e.g.:
• When is (non-monotonic) query answering tractable?

• For which queries and schema mappings?
• . . . and under which semantics?

• Data complexity? Combined complexity?
• Alternative approaches, e.g., stick with the certain answers,
but use richer constraint language

34 / 35

Open Problems

Lots of open problems, e.g.:
• When is (non-monotonic) query answering tractable?

• For which queries and schema mappings?
• . . . and under which semantics?
• Data complexity? Combined complexity?

• Alternative approaches, e.g., stick with the certain answers,
but use richer constraint language

34 / 35

Open Problems

Lots of open problems, e.g.:
• When is (non-monotonic) query answering tractable?

• For which queries and schema mappings?
• . . . and under which semantics?
• Data complexity? Combined complexity?

• Alternative approaches, e.g., stick with the certain answers,
but use richer constraint language

34 / 35

Bibliography

Fagin, Kolaitis, Miller, and Popa. Data exchange: Semantics and
query answering. ICDT 2003

Libkin. Data exchange and incomplete information. PODS 2006

H. and Schweikardt. CWA-solutions for data exchange settings with
target dependencies. PODS 2007

Libkin and Sirangelo. Data exchange and schema mappings in open
and closed worlds. PODS 2008

Afrati and Kolaitis. Answering aggregate queries in data exchange.
PODS 2008

H. and Schweikardt. Logic and data exchange: Which solutions are
good solutions? In Logic and the Foundations of Game and Decision
Theory (LOFT 8), 2008

H. Answering non-monotonic queries in relational data exchange.
ICDT 2010

35 / 35

	Goals of Query Answering in Data Exchange
	The Basic Query Answering Semantics
	Alternative Semantics
	CWA-Semantics
	GCWA*-Semantics

	Summary

