
Marwan Hassani
Data Management and Data Exploration Group

RWTH Aachen University, Germany

DEIS'10 
Advanced School on Data Exchange, Integration, and Streams 

Nov 11, 2010, Schloss Dagstuhl

http://www.tks.informatik.uni-frankfurt.de/events/deis10�
http://www.dagstuhl.de/en/about-dagstuhl/�


Agenda

2Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 Distributed Stream Processing (DSP) Systems
 Examples on Continuous DSP Systems 
 Distributing Computations of Large Data Sets
 Mud algorithms as a model for MapReduce-like 

frameworks



Agenda

3Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 Distributed Stream Processing (DSP) Systems
 Examples on Continuous DSP Systems 
 Distributing Computations of Large Data Sets
 Mud algorithms as a model for MapReduce-like 

frameworks



Distributed Stream Processing Systems
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Distributed Stream Processing Systems
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 Stream processing systems: manage multiple parallel stream data 
originated from physically distributed sources (e.g. IP 
monitoring) 

Centralized stream processing systems use algorithms that 
ignore communication-efficiency issues
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Categorization of Distributed Stream 
Processing System

W.r.t. the 
communication model

W.r.t. the class of queries 
applied over systems

(Non)-Holistic aggregates

Duplicate-(in)sensitive aggregates

W.r.t. the querying model

One-Shot DSP Systems

Continuous DSP Systems

Hierarchical

Fully-distributed

(Non)-Holistic aggregates



Non-holistic vs. Holistic Aggregates
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 In non-holistic aggregates (e.g.  MIN, MAX, AVERAGE): partial 
answers over a subset of streams are usable for final answers

 In holostic aggregates (e.g. MEDIAN):  no useful partial 
aggregates can be done, all the data must be brought together 
to perform the aggregate. The introduce more challenges for 
designing the DSP
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Duplicate: Sensitive vs. Insensitive Aggregates
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Duplicate-insensitive aggregates (e.g. MIN, Count 
Distinct):  are unaffected by duplicate readings from a 
single site

Duplicate-sensitive aggregates (e.g.  SUM, top-k): will change 
when a duplicate reading is reported. They demand more 
robust DSP system
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Hierarchical vs. Fully Distributed DSP Systems
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The characteristics of underlying network communication 
protocol have an impact on the design of the DSP system

One coordinator is responsible 
for answering queries, robustness 
is key concern

No centralized authority, the 
goal is having an agreement on 
the answer of a query 
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Taxonomy of Distributed Stream Processing 
System

W.r.t. the 
communication model

W.r.t. the class of queries 
applied over systems

(Non)-Holistic aggregates

Duplicate-(in)sensitive aggregates

Complex correlation
queries

W.r.t. the querying model

One-Shot DSP Systems

Continuous DSP Systems

Hierarchical

Fully-distributed
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Continuous DSP Systems:
Remote sites must collaborate to continuously

maintain a query answer that describes (within 
specified error bound) the current state of the streams

Approximation is used to design communication-
efficient solutions

Applications:  Monitoring in sensor networks [HMS 
SensorKDD ’09,  HM+, SensorKDD ’10] enterprise 
network security (intrusion detection) [HS 2010]

One-Shot DSP Systems:
Initiated by user queries

TAG is a tree-based aggregation system for sensor 
networks given by [Madden et. al., OSDI 2002]
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Motivating Scenario

Application [Akyiyildiz et al. 2005]
Let m sensor nodes be distributed in an underwater acoustic monitoring
system
Task: each node keeps track of certain school of fishes based on a given
wave length and reports the results to a central base stations
The base station maintains a k -clustering of the schools
Target: deploying k attracting or dispelling acoustic devices near the k
center points to use minimum energy for covering the whole region

Settings

Underwater sensor networks are a particularly resource constrained
because of physical conditions (reduced channel capacity, harsh
environment).
Nodes: unattached for a long time [or not at all] (lifetime= battery lifetime)
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K -Center Clustering

Offline approach
Given a group |P| = n, find: k ≤ n centers for disks with smallest radius
R to cover all p ∈ P
Out of

(n
k

)
possible ways, find the one which minimizes the cost

NP-hard to find better than 2-approximation to the optimal clustering
[Feder et al., 1988]
Approximation solutions to the optimal clustering are seeked

Main idea of the online (incremental) approach
For the current points in the sliding window of the stream points, find a
current solution S = {c1, c2, . . . , ck ,R}
Continuously updates S to keep it valid as the stream evolves
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Distributed k -center Clustering

Suggested Global Clustering
The coordinator receives k -center clusterings from m sites and forwards
that to a far base station
Estimate the residual energy of nodes⇒ change coordinator

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets



Global Parallel Guessing [Cormode et al., ICDE 2007]

The PG Algorithm (Initialization phase, performed on the
coordinator)

Pick an arbitrary point as the first center C = {c1}
Get a big enough initialization sample I from the stream
Since we do not know R in advance, we make multiple guessing of R as
(1 + ε

2 ), (1 + ε
2 )2

, (1 + ε
2 )3

, · · · for 0 < ε < 1
Drop guesses that are smaller than minp,q∈Pd(p,q)

Also drop guesses that are larger than maxp,q∈Pd(p,q)

Run the algorithm in parallel on each of these radii like this:
while |C| < k

For each p ∈ I compute: rp = minc∈Cd(p, c)
If rp > R ⇒ C = C ∪ {p}

Drop guesses that result in more than k centers
Store the resulted {c1i , c2i , . . . , cki ,Ri} for each guess Ri
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Global Parallel Guessing [Cormode et al., ICDE 2007]

The PG Algorithm (Running Phase, on the site side)
1. While there is input stream point p compute: rp = minc∈Cd(p, c)
2. If rp > R Then
3. If |C| < k Then
4. C = C ∪ {p}
5. update the coordinator with the new center
6. else
7. ask the coordinator for a new (bigger) guess of R
9. end while

The PG Algorithm (Running Phase, on the coordinator side)
1. Consider one global guess Rglobal picked from the guesses for all sites
1. Whenever there is a request for a bigger R from site m
2. update m with a Rglobal

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets



Clustering Quality and Complexity

Clustering quality and storage demand
(2 + ε)−approximation to optimal clustering is guaranteed
Stores at most O( k

ε log∆) (∆ = maxp,q∈Pd(p,q)/minp,q∈P,p 6=qd(p,q))
Recent work from [Guha, EDBT 2009] presented a centralized,
2(1 + ε)−approximation version using O( k

ε log 1
ε ) space

The Communication Complexity
Worst case: all m nodes simultaneously observe a new non-covered
point p for a guess R and send an update request to the coordinator
This results in updating k centers for each guess, there are at most
O( 1

ε log∆) guesses

The communication cost is O( km
ε log∆)
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Collecting Sensor Data
The Problem at Hand
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The Problem at Hand

Collecting Sensor Data
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The Problem at Hand

Better: group the neighbours
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The Problem at Hand

Select coordinators
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The Problem at Hand

Let cluster members send their 
readings locally to coordinators
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The Problem at Hand

And let coordinators forward it to 
the base station
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The Problem at Hand

Even better: let the grouping depend on the 
similarity of sensed data 
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The Problem at Hand

Then select the best representative of each 
physical cluster
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The Problem at Hand

Use only the readings of the representatives to update 
the base station of the status of the whole network
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 The number of nodes sensing similar data decreases as 
the dimensionality of sensed data gets higher

Curse of Dimensionality
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The ECLUN* Algorithm
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* - Hassani et al. . In SsensorKDD‘10 
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 Processing large data sets

 Single-pass streaming systems are ideal for rapidly processing 
items in such data sets using local storage

With truly massive data like logs of internet activity, stream 
algorithms are not sufficient. 

The input size in such applications is so big that no single
processor can perform even a single pass over it in a 
reasonable time

The solution is to distribute the computation over different 
sites



Challenges when Distributing Computations of 
Large Data Sets
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Designing a distributed version of data processing algorithms

Communication cost amongst sites (communication efficiency)

 Load balancing between sites

Availability in the presence of failure



MapReduce
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 a programming model and an associated implementation for 
processing and generating large datasets

Applicable to a variety of real-world tasks

Users specify the computation using map and reduce functions

The underlying runtime system automatically:
1. Parallelizes the computation across large-scale clusters and machines

2. Handles machine failures

3. Schedules inter-machines communication for efficient use of network 
and disks

 Easy, widely used. On Google clusters daily:
− 105 jobs executed
− 20+ petabytes of data processed 

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets



MapReduce
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MapReduce: Execution Model
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User 
Program

Assign as 
mapper

Assign as 
reducer

Intermediate 
Files

Mapper

Mapper

Mapper

Mapper

Map Phase

Split 3

Split 0

Split 1

Split 2

Input Files

Reducer

Reducer

Reduce Phase

Part 0

Part 1

Output Files



MapReduce: Execution Model - Data Flow
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Intermediate 
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Mapper

Mapper

Mapper

Map Phase

Split 3

Split 0

Split 1

Split 2

Input Files

Reducer
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MapReduce: Execution Model - Operations
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Intermediate 
Files

Mapper

Mapper

Mapper

Mapper

Map Phase

Split 3

Split 0

Split 1

Split 2

Input Files

Reducer

Reducer

Reduce Phase

Part 0

Part 1

Output Files

Sequential scan

All-to-all, hash partitioning 

Sort-Merge



MapReduce: Execution Model - Types
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Intermediate 
Files

Mapper

Mapper

Mapper

Mapper

Map Phase

Split 3

Split 0

Split 1

Split 2

Input Files

Reducer

Reducer

Reduce Phase

Part 0

Part 1

Output Files

(Document_range, Document_contents)
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(name, List ( count))
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MapReduce: Execution Model - Placement
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Split 0
Replica 1/3

Split 1
Replica 2/3

Split 3
Replica 2/3

Split 0
Replica 2/3

Split 4
Replica 2/3
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Split 3
Replica 2/3

Split 2
Replica 2/3

Split 0
Replica 3/3
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Replica 3/3

Split 1
Replica 1/3

Split 4
Replica 2/3

HOST 1
HOST 2

HOST 3

HOST 4

HOST 5HOST 6

Mapper

Mapper

Mapper

Mapper

Reducer

Unavoidable Rack/Network traffic⇒
Locality Optimization feature of MapReduce⇒



MapReduce: Discussion 
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How do different classes of algorithms fit when applying on 
MapReduce systems?

1. One iteration algorithms (e.g. single-pass clustering,  kNN
classification):  perfectly fit

2. Multiple-iteration algorithms (KMeans, Guassian Mixture 
classifiation): partially fit (some common data has to be 
shared between iterations)

3. Multiple-Iteration algorithms with large shared data 
between iterations (SVM): do not fit

How about streaming computations?

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets



A Model of mud Algorithms (1/5) 
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Algorithms written for MapReduce or Hadoop platforms 
contain massive, unordered, distributed (mud) computations*

mud algorithms consist of three functions:
1. A local function to take a single input data and output a message 

(applied independently in parallel)

2. An aggregation function applied to pairs of messages in any order

3. In some cases: a final post-processing step

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

* - J. Feldman et. al.  On Distributing Symmetric Streaming Computations. In SODA'08 



A Model of mud Algorithms (2/5) 
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An algorithmic model for mud algorithms                       :
− represents the local function which maps an input item to 

a message

− represents the aggregator which maps two 
messages to a single message

− produces the final output                          

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets
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An example of a mud algorithm                        for calculating 
the total span of a set of integers:
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A Model of mud Algorithms (4/5) 
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 For any binary tree    with     leaves and for any permutation        
of                 ,  let denote the message           that 
results from applying     along the topology of    with the 
sequence                            with an arbitrary     . The overall 
output of the mud algorithm is then which is a 
function 

 This is to ensure the ability of the mud algorithm to 
serve as an abstract model of distributed computations 
that are independent of the underlying implementation

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets
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A Model of mud Algorithms (3/5) 
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A Model of mud Algorithms (5/5) 

 Let           , one possible application of     is:

This sequential application corresponds to the conventional 
streaming model

Qq∈ ⊕

))()),(,)),()),(,(((( 121 kk xxxxq ΦΦΦΦ⊕⊕⊕⊕ −



Model of Streaming Algorithms 
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A streaming algorithm is given by                  where:

– is an operator applied repeatedly to the 
input stream

– converts the final state to the output

 Let denotes the state of the streaming algorithm after 
starting at state , and operating on the sequence    

exactly in that order such that : 

Then: the streaming algorithm computes 

),( ησ=s
QQ →Σ×:σ

Σ→Q:η

)(Xsq

q
n

n xxXX ,; 1=Σ∈
)),),),,(((()( 121 nn

q xxxxqXs −=  σσσσ
))(( 0 Xsη
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Streaming Computations vs. MapReduce Computations

How do mud algorithms and streaming algorithms compare?

 Obviously any mud algorithm can be simulated by a 
stream algorithm in a straightforward way

The question: is it possible to simulate any streaming 
algorithm using a mud algorithm?

Preliminaries

We say that a streaming algorithms computes a function    if

We say that a function                    is computed by a mud 
algorithm     if                                 for all             .

Σ→Σnf :
A nX Σ∈

f
))(()(;: 0 XsXff n η=Σ→Σ

))(()( , XmXf πτη=
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Theorem*:
For any symmetric function                    computed by a 
streaming algorithm           with a           space there
exists a mud algorithm with a                    space 
and a comparable communication complexity that also 
computes 

Any order-invariant function that can be computed by a 
streaming algorithm can also be computed by a mud algorithm 
with comparable space and communication complexity

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Streaming Computations vs. MapReduce Computations

Σ→Σnf :

*- J. Feldman et. al.  On Distributing Symmetric Streaming Computations. In SODA'08 

−)(ng
−Ο ))(( 2 ng

),( ησ
),,( η⊕Φ
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mud algorithms are equivalent in power to symmetric 
streaming algorithms

 For applications on massive data sizes, where even single-pass 
algorithms are too much: MapReduce-like frameworks are 
powerful in maintaining parallel single-passes if applied on 
algorithms which compute symmetric functions 

Recent work on modeling MapReduce: [Karloff et al., SODA 
2010]

Streaming Computations vs. MapReduce Computations 
Summary

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets
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Thanks for your attention!

Questions?!

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets
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