
Marwan Hassani
Data Management and Data Exploration Group

RWTH Aachen University, Germany

DEIS'10
Advanced School on Data Exchange, Integration, and Streams

Nov 11, 2010, Schloss Dagstuhl

http://www.tks.informatik.uni-frankfurt.de/events/deis10�
http://www.dagstuhl.de/en/about-dagstuhl/�

Agenda

2Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 Distributed Stream Processing (DSP) Systems
 Examples on Continuous DSP Systems
 Distributing Computations of Large Data Sets
 Mud algorithms as a model for MapReduce-like

frameworks

Agenda

3Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 Distributed Stream Processing (DSP) Systems
 Examples on Continuous DSP Systems
 Distributing Computations of Large Data Sets
 Mud algorithms as a model for MapReduce-like

frameworks

Distributed Stream Processing Systems

4Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Distributed Stream Processing Systems

5

 Stream processing systems: manage multiple parallel stream data
originated from physically distributed sources (e.g. IP
monitoring)

Centralized stream processing systems use algorithms that
ignore communication-efficiency issues

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

6Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Categorization of Distributed Stream
Processing System

W.r.t. the
communication model

W.r.t. the class of queries
applied over systems

(Non)-Holistic aggregates

Duplicate-(in)sensitive aggregates

W.r.t. the querying model

One-Shot DSP Systems

Continuous DSP Systems

Hierarchical

Fully-distributed

(Non)-Holistic aggregates

Non-holistic vs. Holistic Aggregates

7Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 In non-holistic aggregates (e.g. MIN, MAX, AVERAGE): partial
answers over a subset of streams are usable for final answers

 In holostic aggregates (e.g. MEDIAN): no useful partial
aggregates can be done, all the data must be brought together
to perform the aggregate. The introduce more challenges for
designing the DSP

8Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Categorization of Distributed Stream
Processing System

W.r.t. the
communication model

W.r.t. the class of queries
applied over systems

(Non)-Holistic aggregates

Duplicate-(in)sensitive aggregates

W.r.t. the querying model

One-Shot DSP Systems

Continuous DSP Systems

Hierarchical

Fully-distributed

Duplicate: Sensitive vs. Insensitive Aggregates

9Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Duplicate-insensitive aggregates (e.g. MIN, Count
Distinct): are unaffected by duplicate readings from a
single site

Duplicate-sensitive aggregates (e.g. SUM, top-k): will change
when a duplicate reading is reported. They demand more
robust DSP system

10Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Categorization of Distributed Stream
Processing System

W.r.t. the
communication model

W.r.t. the class of queries
applied over systems

(Non)-Holistic aggregates

Duplicate-(in)sensitive aggregates

W.r.t. the querying model

One-Shot DSP Systems

Continuous DSP Systems

Hierarchical

Fully-distributed

Hierarchical vs. Fully Distributed DSP Systems

11Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The characteristics of underlying network communication
protocol have an impact on the design of the DSP system

One coordinator is responsible
for answering queries, robustness
is key concern

No centralized authority, the
goal is having an agreement on
the answer of a query

12Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Taxonomy of Distributed Stream Processing
System

W.r.t. the
communication model

W.r.t. the class of queries
applied over systems

(Non)-Holistic aggregates

Duplicate-(in)sensitive aggregates

Complex correlation
queries

W.r.t. the querying model

One-Shot DSP Systems

Continuous DSP Systems

Hierarchical

Fully-distributed

One-Shot vs. Continuous DSP Systems

13Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Continuous DSP Systems:
Remote sites must collaborate to continuously

maintain a query answer that describes (within
specified error bound) the current state of the streams

Approximation is used to design communication-
efficient solutions

Applications: Monitoring in sensor networks [HMS
SensorKDD ’09, HM+, SensorKDD ’10] enterprise
network security (intrusion detection) [HS 2010]

One-Shot DSP Systems:
Initiated by user queries

TAG is a tree-based aggregation system for sensor
networks given by [Madden et. al., OSDI 2002]

Agenda

14Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 Distributed Stream Processing (DSP) Systems
 Examples on Continuous DSP Systems
 Distributing Computations of Large Data Sets
 Mud algorithms as a model for MapReduce-like

frameworks

Motivating Scenario

Application [Akyiyildiz et al. 2005]
Let m sensor nodes be distributed in an underwater acoustic monitoring
system
Task: each node keeps track of certain school of fishes based on a given
wave length and reports the results to a central base stations
The base station maintains a k -clustering of the schools
Target: deploying k attracting or dispelling acoustic devices near the k
center points to use minimum energy for covering the whole region

Settings

Underwater sensor networks are a particularly resource constrained
because of physical conditions (reduced channel capacity, harsh
environment).
Nodes: unattached for a long time [or not at all] (lifetime= battery lifetime)

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Motivating Scenario

Application [Akyiyildiz et al. 2005]
Let m sensor nodes be distributed in an underwater acoustic monitoring
system
Task: each node keeps track of certain school of fishes based on a given
wave length and reports the results to a central base stations
The base station maintains a k -clustering of the schools
Target: deploying k attracting or dispelling acoustic devices near the k
center points to use minimum energy for covering the whole region

Settings
Underwater sensor networks are a particularly resource constrained
because of physical conditions (reduced channel capacity, harsh
environment).

Nodes: unattached for a long time [or not at all] (lifetime= battery lifetime)

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Motivating Scenario

Application [Akyiyildiz et al. 2005]
Let m sensor nodes be distributed in an underwater acoustic monitoring
system
Task: each node keeps track of certain school of fishes based on a given
wave length and reports the results to a central base stations
The base station maintains a k -clustering of the schools
Target: deploying k attracting or dispelling acoustic devices near the k
center points to use minimum energy for covering the whole region

Settings
Underwater sensor networks are a particularly resource constrained
because of physical conditions (reduced channel capacity, harsh
environment).
Nodes: unattached for a long time [or not at all] (lifetime= battery lifetime)

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

K -Center Clustering

Offline approach
Given a group |P| = n, find: k ≤ n centers for disks with smallest radius
R to cover all p ∈ P
Out of

(n
k

)
possible ways, find the one which minimizes the cost

NP-hard to find better than 2-approximation to the optimal clustering
[Feder et al., 1988]
Approximation solutions to the optimal clustering are seeked

Main idea of the online (incremental) approach
For the current points in the sliding window of the stream points, find a
current solution S = {c1, c2, . . . , ck ,R}
Continuously updates S to keep it valid as the stream evolves

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

K -Center Clustering

Offline approach
Given a group |P| = n, find: k ≤ n centers for disks with smallest radius
R to cover all p ∈ P
Out of

(n
k

)
possible ways, find the one which minimizes the cost

NP-hard to find better than 2-approximation to the optimal clustering
[Feder et al., 1988]
Approximation solutions to the optimal clustering are seeked

Main idea of the online (incremental) approach
For the current points in the sliding window of the stream points, find a
current solution S = {c1, c2, . . . , ck ,R}
Continuously updates S to keep it valid as the stream evolves

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Distributed k -center Clustering

Suggested Global Clustering
The coordinator receives k -center clusterings from m sites and forwards
that to a far base station
Estimate the residual energy of nodes⇒ change coordinator

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Global Parallel Guessing [Cormode et al., ICDE 2007]

The PG Algorithm (Initialization phase, performed on the
coordinator)

Pick an arbitrary point as the first center C = {c1}
Get a big enough initialization sample I from the stream
Since we do not know R in advance, we make multiple guessing of R as
(1 + ε

2), (1 + ε
2)2

, (1 + ε
2)3

, · · · for 0 < ε < 1
Drop guesses that are smaller than minp,q∈Pd(p,q)

Also drop guesses that are larger than maxp,q∈Pd(p,q)

Run the algorithm in parallel on each of these radii like this:
while |C| < k

For each p ∈ I compute: rp = minc∈Cd(p, c)
If rp > R ⇒ C = C ∪ {p}

Drop guesses that result in more than k centers
Store the resulted {c1i , c2i , . . . , cki ,Ri} for each guess Ri

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Global Parallel Guessing [Cormode et al., ICDE 2007]

The PG Algorithm (Running Phase, on the site side)
1. While there is input stream point p compute: rp = minc∈Cd(p, c)
2. If rp > R Then
3. If |C| < k Then
4. C = C ∪ {p}
5. update the coordinator with the new center
6. else
7. ask the coordinator for a new (bigger) guess of R
9. end while

The PG Algorithm (Running Phase, on the coordinator side)
1. Consider one global guess Rglobal picked from the guesses for all sites
1. Whenever there is a request for a bigger R from site m
2. update m with a Rglobal

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Clustering Quality and Complexity

Clustering quality and storage demand
(2 + ε)−approximation to optimal clustering is guaranteed
Stores at most O(k

ε log∆) (∆ = maxp,q∈Pd(p,q)/minp,q∈P,p 6=qd(p,q))
Recent work from [Guha, EDBT 2009] presented a centralized,
2(1 + ε)−approximation version using O(k

ε log 1
ε) space

The Communication Complexity
Worst case: all m nodes simultaneously observe a new non-covered
point p for a guess R and send an update request to the coordinator
This results in updating k centers for each guess, there are at most
O(1

ε log∆) guesses

The communication cost is O(km
ε log∆)

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Clustering Quality and Complexity

Clustering quality and storage demand
(2 + ε)−approximation to optimal clustering is guaranteed
Stores at most O(k

ε log∆) (∆ = maxp,q∈Pd(p,q)/minp,q∈P,p 6=qd(p,q))
Recent work from [Guha, EDBT 2009] presented a centralized,
2(1 + ε)−approximation version using O(k

ε log 1
ε) space

The Communication Complexity
Worst case: all m nodes simultaneously observe a new non-covered
point p for a guess R and send an update request to the coordinator
This results in updating k centers for each guess, there are at most
O(1

ε log∆) guesses

The communication cost is O(km
ε log∆)

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Collecting Sensor Data
The Problem at Hand

15Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The Problem at Hand

Collecting Sensor Data

16Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The Problem at Hand

Better: group the neighbours

17Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The Problem at Hand

Select coordinators

18Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The Problem at Hand

Let cluster members send their
readings locally to coordinators

19Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The Problem at Hand

And let coordinators forward it to
the base station

20Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The Problem at Hand

Even better: let the grouping depend on the
similarity of sensed data

21Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The Problem at Hand

Then select the best representative of each
physical cluster

22Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The Problem at Hand

Use only the readings of the representatives to update
the base station of the status of the whole network

23Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 The number of nodes sensing similar data decreases as
the dimensionality of sensed data gets higher

Curse of Dimensionality

24Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

The ECLUN* Algorithm

25Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

* - Hassani et al. . In SsensorKDD‘10

Agenda

26Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 Distributed Stream Processing (DSP) Systems
 Examples on Continuous DSP Systems
 Distributing Computations of Large Data Sets
 Mud algorithms as a model for MapReduce-like

frameworks

Motivation

27Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 Processing large data sets

 Single-pass streaming systems are ideal for rapidly processing
items in such data sets using local storage

With truly massive data like logs of internet activity, stream
algorithms are not sufficient.

The input size in such applications is so big that no single
processor can perform even a single pass over it in a
reasonable time

The solution is to distribute the computation over different
sites

Challenges when Distributing Computations of
Large Data Sets

28Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Designing a distributed version of data processing algorithms

Communication cost amongst sites (communication efficiency)

 Load balancing between sites

Availability in the presence of failure

MapReduce

29

 a programming model and an associated implementation for
processing and generating large datasets

Applicable to a variety of real-world tasks

Users specify the computation using map and reduce functions

The underlying runtime system automatically:
1. Parallelizes the computation across large-scale clusters and machines

2. Handles machine failures

3. Schedules inter-machines communication for efficient use of network
and disks

 Easy, widely used. On Google clusters daily:
− 105 jobs executed
− 20+ petabytes of data processed

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

MapReduce

30Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

MapReduce: Execution Model

31Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

User
Program

Assign as
mapper

Assign as
reducer

Intermediate
Files

Mapper

Mapper

Mapper

Mapper

Map Phase

Split 3

Split 0

Split 1

Split 2

Input Files

Reducer

Reducer

Reduce Phase

Part 0

Part 1

Output Files

MapReduce: Execution Model - Data Flow

32Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Intermediate
Files

Mapper

Mapper

Mapper

Mapper

Map Phase

Split 3

Split 0

Split 1

Split 2

Input Files

Reducer

Reducer

Reduce Phase

Part 0

Part 1

Output Files

John Smith
David Brown
John Miller

Fred Taylor
John Harris
Jack Moore

John 2; David 1

Fred 1; John 1;...

John 2

John 3John 3

MapReduce: Execution Model - Operations

33Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Intermediate
Files

Mapper

Mapper

Mapper

Mapper

Map Phase

Split 3

Split 0

Split 1

Split 2

Input Files

Reducer

Reducer

Reduce Phase

Part 0

Part 1

Output Files

Sequential scan

All-to-all, hash partitioning

Sort-Merge

MapReduce: Execution Model - Types

34Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Intermediate
Files

Mapper

Mapper

Mapper

Mapper

Map Phase

Split 3

Split 0

Split 1

Split 2

Input Files

Reducer

Reducer

Reduce Phase

Part 0

Part 1

Output Files

(Document_range, Document_contents)

(List (name, count))

(name, List (count))

(name, count)

MapReduce: Execution Model - Placement

35Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Split 0
Replica 1/3

Split 1
Replica 2/3

Split 3
Replica 2/3

Split 0
Replica 2/3

Split 4
Replica 2/3

Split 3
Replica 1/3

Split 3
Replica 2/3

Split 2
Replica 2/3

Split 0
Replica 3/3

Split 2
Replica 3/3

Split 1
Replica 1/3

Split 4
Replica 2/3

HOST 1
HOST 2

HOST 3

HOST 4

HOST 5HOST 6

Mapper

Mapper

Mapper

Mapper

Reducer

Unavoidable Rack/Network traffic⇒
Locality Optimization feature of MapReduce⇒

MapReduce: Discussion

36

How do different classes of algorithms fit when applying on
MapReduce systems?

1. One iteration algorithms (e.g. single-pass clustering, kNN
classification): perfectly fit

2. Multiple-iteration algorithms (KMeans, Guassian Mixture
classifiation): partially fit (some common data has to be
shared between iterations)

3. Multiple-Iteration algorithms with large shared data
between iterations (SVM): do not fit

How about streaming computations?

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

A Model of mud Algorithms (1/5)

37

Algorithms written for MapReduce or Hadoop platforms
contain massive, unordered, distributed (mud) computations*

mud algorithms consist of three functions:
1. A local function to take a single input data and output a message

(applied independently in parallel)

2. An aggregation function applied to pairs of messages in any order

3. In some cases: a final post-processing step

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

* - J. Feldman et. al. On Distributing Symmetric Streaming Computations. In SODA'08

A Model of mud Algorithms (2/5)

38

An algorithmic model for mud algorithms :
− represents the local function which maps an input item to

a message

− represents the aggregator which maps two
messages to a single message

− produces the final output

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

),,(η⊕Φ=m
Q→ΣΦ :

QQQ →×⊕ :

Σ→Q:η

39

An example of a mud algorithm for calculating
the total span of a set of integers:

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

),,(η⊕Φ=m

>=<Φ→ΣΦ xxxQ ,)(;:

>=<><><⊕

→×⊕

),max(),,min(),,,(

;:

21212211 bbaababa

QQQ

abbaQ −=><Σ→),(;: ηη

A Model of mud Algorithms (4/5)

40

 For any binary tree with leaves and for any permutation
of , let denote the message that
results from applying along the topology of with the
sequence with an arbitrary . The overall
output of the mud algorithm is then which is a
function

 This is to ensure the ability of the mud algorithm to
serve as an abstract model of distributed computations
that are independent of the underlying implementation

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

))((, Xm πτη

⊕

τ n π
},,1{ n)(, Xm πτ Qq∈

τ
)(,),(1 nxx ΦΦ π

Σ→Σn

A Model of mud Algorithms (3/5)

41Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

A Model of mud Algorithms (5/5)

 Let , one possible application of is:

This sequential application corresponds to the conventional
streaming model

Qq∈ ⊕

))()),(,)),()),(,((((121 kk xxxxq ΦΦΦΦ⊕⊕⊕⊕ −

Model of Streaming Algorithms

42Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

A streaming algorithm is given by where:

– is an operator applied repeatedly to the
input stream

– converts the final state to the output

 Let denotes the state of the streaming algorithm after
starting at state , and operating on the sequence

exactly in that order such that :

Then: the streaming algorithm computes

),(ησ=s
QQ →Σ×:σ

Σ→Q:η

)(Xsq

q
n

n xxXX ,; 1=Σ∈
)),),),,(((()(121 nn

q xxxxqXs −= σσσσ
))((0 Xsη

43Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Streaming Computations vs. MapReduce Computations

How do mud algorithms and streaming algorithms compare?

 Obviously any mud algorithm can be simulated by a
stream algorithm in a straightforward way

The question: is it possible to simulate any streaming
algorithm using a mud algorithm?

Preliminaries

We say that a streaming algorithms computes a function if

We say that a function is computed by a mud
algorithm if for all .

Σ→Σnf :
A nX Σ∈

f
))(()(;: 0 XsXff n η=Σ→Σ

))(()(, XmXf πτη=

44

Theorem*:
For any symmetric function computed by a
streaming algorithm with a space there
exists a mud algorithm with a space
and a comparable communication complexity that also
computes

Any order-invariant function that can be computed by a
streaming algorithm can also be computed by a mud algorithm
with comparable space and communication complexity

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Streaming Computations vs. MapReduce Computations

Σ→Σnf :

*- J. Feldman et. al. On Distributing Symmetric Streaming Computations. In SODA'08

−)(ng
−Ο))((2 ng

),(ησ
),,(η⊕Φ

f

45

mud algorithms are equivalent in power to symmetric
streaming algorithms

 For applications on massive data sizes, where even single-pass
algorithms are too much: MapReduce-like frameworks are
powerful in maintaining parallel single-passes if applied on
algorithms which compute symmetric functions

Recent work on modeling MapReduce: [Karloff et al., SODA
2010]

Streaming Computations vs. MapReduce Computations
Summary

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

Summary

46Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

 Distributed Stream Processing (DSP) Systems
 Examples on Continuous DSP Systems
 Distributing Computations of Large Data Sets

47

1. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Etintemel,
U., Xing, Y., Zdonik S. B.: Scalable Distributed Stream Processing. CIDR
2003.

2. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed
functional monitoring. In SODA 2008

3. Cormode, G., Muthukrishnan, S., Zhuang, W.: Conquering the divide:
Continuous clustering of distributed data streams In ICDE 2007.

4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large
clusters. Communications of the ACM 51(1): 107-113 (2008)

5. Feldman, J., Muthukrishnan, S., Sidiropoulos, A., Stein, C., Svitkina, Z.:
On distributing symmetric streaming computations. In SODA 2008

6. Garofalakis, M. N.: Distributed Data Streams. Pages 883-890 in: Ling Liu,
M. Tamer zsu (Eds.): Encyclopedia of Database Systems. 2009

7. Hassani, M., Muller, E., Spaus, P., Faqolli, A., Palpanas, T., Seidl, T.: Self-
Organizing Energy Aware Clustering of Nodes in Sensor Networks using
Relevant Attributes. In: SensorKDD (2010)

References (1/2)

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

48

8. Hassani, M., Muller, E., Seidl, T.: EDISKCO: Energy Efficient Distributed
In-Sensor-Network K-center Clustering with Outliers. In: SensorKDD
(2009)

9. Karloff, H, Suriy, S. , Vassilvitskii, S.: A Model of Computation for
MapReduce . In SODA (2010)

10. Madden S., Franklin M.J., Hellerstein J.M., and HongW. TAG: a tiny
aggregation service for ad-hoc sensor networks. USENIX Symp. on
Operating System Design and Implementation, (2002)

References (2/2)

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

49

Thanks for your attention!

Questions?!

Marwan Hassani: Distributed Processing of Data Streams and Large Data Sets

	Distributed Processing of Data Streams and Large Data Sets
	�Agenda
	�Agenda
	Distributed Stream Processing Systems
	Distributed Stream Processing Systems
	Slide Number 6
	Non-holistic vs. Holistic Aggregates
	Slide Number 8
	Duplicate: Sensitive vs. Insensitive Aggregates
	Slide Number 10
	Hierarchical vs. Fully Distributed DSP Systems
	Slide Number 12
	One-Shot vs. Continuous DSP Systems
	�Agenda
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	�Agenda
	Motivation
	Challenges when Distributing Computations of Large Data Sets
	MapReduce
	MapReduce
	MapReduce: Execution Model
	MapReduce: Execution Model - Data Flow
	MapReduce: Execution Model - Operations
	MapReduce: Execution Model - Types
	MapReduce: Execution Model - Placement
	MapReduce: Discussion
	A Model of mud Algorithms (1/5)
	A Model of mud Algorithms (2/5)
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Model of Streaming Algorithms
	Slide Number 43
	Slide Number 44
	Slide Number 45
	�Summary
	Slide Number 47
	Slide Number 48
	Slide Number 49

