Integrity Constraints in Data Exchange

Víctor Gutiérrez-Basulto Universität Bremen

Basic Notions

Embedded Dependencies: Definition and sub-classes

FOL sentences of the form:

$$\varphi(\mathbf{x}) \to \exists \mathbf{y} \, \psi(\mathbf{x}, \mathbf{y})$$

- φ is a conjunction (possibly empty) of relational atoms;
- ullet ψ is a conjunction of relational atoms and equality atoms.

Three important sub-classes:

Full Dependency is a dependency that has no existential quantifiers.

Equality-Generating Dependency (EGD) allows only for equality atoms in ψ .

Tuple-Generating Dependency (TGD) allows only for relational atoms in ψ .

Schema Mappings

Provide:

High-Level & Declarative relationship between two schemas

Trade-Off:

Expressive vs Simple

Specification Language:

Use a well-behaved fragment of FOL

Data Exchange Setting with tgds and egds [FKMP 03]

Schema mapping $M = (\mathbf{S}, \mathbf{T}, \Sigma_{st} \cup \Sigma_t)$ such that

- Σ_{st} is a set of source to target tgds
- \bullet Σ_t is a set of target tgds and target egds

Composing Schema Mappings

Given
$$M_{12}=(\mathbf{S}_1,\mathbf{S}_2,\Sigma_{12})$$
 and $M_{23}=(\mathbf{S}_2,\mathbf{S}_3,\Sigma_{23})$ derive

a schema mapping
$$M_{13}=(\mathbf{S}_1,\mathbf{S}_3,\Sigma_{13})$$

that is equivalent to the successive application of M_{12} and M_{23}

$$M_{13}$$
 is a **composition** of M_{12} and M_{23}
$$M_{13} = M_{12} \circ M_{23}$$

Semantics of Composition

A relationship between instances:

Every schema mapping $M = (\mathbf{S}, \mathbf{T}, \Sigma)$ defines

$$\mathbf{Inst}(M) = \{ \langle I, J \rangle \mid \langle I, J \rangle \models \Sigma \}$$

A Formal Definition [FKPT05]

A schema mapping M_{13} is a **composition** of M_{12} and M_{23} if

$$Inst(M_{13}) = Inst(M_{12}) \circ Inst(M_{23}), i.e.,$$

$$\langle I_1, I_3 \rangle \models \Sigma_{13}$$

if and only if

there exists I_2 s.t. $\langle I_1, I_2 \rangle \models \Sigma_{12}$ and $\langle I_2, I_3 \rangle \models \Sigma_{13}$.

Issues in Composition of Schema Mappings

Closure of Schemma Mapping Language under Composition:

 M_{12} and M_{23} are specified by sets of formulas of some logic \mathcal{L} .

Is $M_{12} \circ M_{23}$ definable in \mathcal{L} ?

s-t tgds [FKPT05]

The language of s-t tgds is not closed under composition

SO tgds [FKPT05]

well-behaved fragment of second-order logic that extends s-t tgds with Skolem functions.

SO-tgds: Definition

Let ${f S}$ be a source schema and ${f T}$ be a target schema

A second-order tuple-generating dependency (SO-tgd)

is a formula of the form

$$\exists \mathbf{f_1} \dots \exists \mathbf{f_m} (\forall \mathbf{x_1} (\varphi_1 \to \psi_1)) \land \dots \land (\forall \mathbf{x_n} (\varphi_n \to \psi_n)), \text{ where }$$

- Each fi is a function symbol
- ullet Each $arphi_{f i}$ is a conjunction of atoms from ${f S}$ and equalities over terms
- ullet Each $\psi_{\mathbf{i}}$ is a conjunction of atoms from ${f T}$

Some Results [FKPT05]

Closed under Composition:

- The composition of two SO-tgds is definable by a SO-tgd
- Every SO tgd is the

composition of finitely many finite sets of s-t tgds.

• Hence, SO tgds are the "right" language for the composition of s-t tgds

Example [FKPT05]

```
\begin{split} \Sigma_{12}: \\ & \forall e \left( \mathbb{Emp}(e) \to \exists m \, \mathbb{Mgr}_1(e,m) \right) ) \\ \Sigma_{23}: \\ & \forall e \forall m \, (\mathbb{Mgr}_1(e,m) \to \mathbb{Mgr}(e,m)) \\ & \forall e \, (\mathbb{Mgr}_1(e,e) \to \mathbb{SelfMgr}(e))) \end{split}
```

$$\begin{split} \exists \mathbf{f} \left(\forall e (\mathbf{Emp}(e) \, \to \, \mathbf{Mgr}(e, \mathbf{f}(\mathbf{e})) \right) \wedge \\ \forall e \left(\mathbf{Emp}(e) \, \wedge \, \left(\mathbf{e} = \mathbf{f}(\mathbf{e}) \right) \to \mathbf{SelfMgr}(e) \right)) \end{split}$$

Beyond source to target

&

Back to FO

[Nash, Bernstein & Melnik 05]

Main Features

Prev. Work [FKPT 05]:

tgds & SO tgds.

Both source to target

SOtgds as a result of the composition

Motivation

Allow Schema Constraints

Deployment of composition in current DB systems

Mapping Languages

 $(\forall CQ_0^{=})$ FullD-mappings

Given by Full Dependencies

 $(\forall CQ^{=})$ ED-mappings

Given by Embedded Dependencies

 $(Sk\forall CQ^{=})$ SkED-mappings

Given by Second-Order Constraints

Without equality:

 $(\forall CQ_0)$ FullTGD

(∀CQ) TGD

Composing Embedded Dependencies

- 1. Skolemize ED-mappings to get SkED-mappings;
- 2. SKED-axiomatization of all the SkED constraints that hold in the composition;
- 3. de-Skolemize the SKED-axiomatization to get a ED-mapping

A difference:

The composition in [FKPT 05] is given by second-order constraints

Basic Questions

1. Is \mathcal{L} closed under composition?

2. **If not:**

Is there a decision procedure to determine whether the composition of two \mathcal{L} -mappings is a \mathcal{L} -mapping?

Note:

Whenever a result holds for a class without equality it also holds for the corresponding class with equality

Full Dependencies

Definability & Closure:

There are $\forall CQ_0$ -mappings whose composition is not an FO-mapping. In particular, $\forall CQ_0$ is not closed under composition

$$\Sigma_{12}$$
 is $R(x,y) \rightarrow S(x,y)$

$$S(x,y), S(y,z) \rightarrow S(x,y)$$

$$\Sigma_{23}$$
 is $S(x,y) \rightarrow T(x,y)$

$$R(x,v_1), R(v_1,v_2), \dots, R(v_{i-1},v_i), R(v_i,y) \rightarrow T(x,y)$$

No finite set expresses: $tc(R) \subseteq T$

Full Dependencies

Undecidability:

Checking whether the composition of two $\forall CQ_0$ -mappings is a $\forall CQ_0$ -mapping is undecidable. In fact, coRE-hard

Reduction from the Post Correspondence Problem

Full Dependencies: Other Results

- 1. Necessary and sufficient (but uncomputable) conditions for composition of FullTGDs (the same for $\forall CQ^{=}$).
- 2. Algorithms that compute the composition of FullTGD-mappings when these conditions are satisfied.
- 3. Definition of sub-classes of $\forall CQ_0$ and $\forall CQ_0^=$ that are closed under composition.

Full Dependencies: A Main Theorem

Theorem 1: If the $\forall \mathsf{CQ}_0^=$ -mappings M_{12} , M_{13} are given by $(\mathbf{S}_1, \mathbf{S}_2, \Sigma_{12})$ and $(\mathbf{S}_2, \mathbf{S}_3, \Sigma_{23})$ with $\Sigma_{123} := \Sigma_{12} \cup \Sigma_{23}$ and $\mathbf{S}_{13} = \mathbf{S}_1 \cup \mathbf{S}_3$, then the following are equivalent:

- 1. There is a finite set of constraints $\Sigma_{13} \subseteq \forall \mathsf{CQ}_0^=$ over the signature \mathbf{S}_{13} s.t. $M := M_{12} \circ M_{13}$ is given by $(\mathbf{S}_1, \mathbf{S}_3, \Sigma_{13})$.
- 2. There is a finite set of constraints $\Sigma_{13} \subseteq \forall \mathsf{CQ}_0^=$ over the signature \mathbf{S}_{13} s.t.

$$\mathsf{DC}(\forall \mathsf{CQ}_0^=, \Sigma_{123})|_{\mathbf{S}_{13}} = \mathsf{DC}(\forall \mathsf{CQ}_0^=, \Sigma_{13})$$

3. There is a k s.t. for every ξ over \mathbf{S}_{13} satisfying $\Sigma_{123} \vdash \xi$ there is a deduction of ξ from Σ_{123} using at most k \mathbf{S}_2 -resolutions.

Full Dependencies: Composition

Procedure: FullD-COMPOSE $(\Sigma_{12}, \Sigma_{23})$, when it terminates, computes the deductive closure of $\Sigma_{12} \cup \Sigma_{23}$ then, restrict to constraints not referring to \mathbf{S}_2

Correctness:

Under the hypotheses of Theorem 1, FULLD-COMPOSE $(\Sigma_{12}, \Sigma_{23})$, whenever it terminates, yields Σ_{13} s.t $M_{12} \circ M_{23}$ is given by $(\mathbf{S}_1, \mathbf{S}_3, \Sigma_{13})$

Size?

FullDCOMPOSE may produce a result that is exponential in the size of the input

$$\Sigma_{12}$$
 is $R(x,y), R(y,x) \to S(x,y)$
 $R(x,y), R(x,x), \to S(x,y)$

$$\Sigma_{23}^k \text{ is } S(x, u_1), \dots, S(u_{k-1}, y) \to T(x, y)$$

For each S(u, v), we can substitute either

$$R(u,v), R(v,u)$$
 or $R(u,v), R(v,v)$

Then, 2^k constraints in the composition $M_{12} \circ M_{23}^k$.

FULLDCOMPOSE: Termination

$$\Sigma_{12}$$
 is $R(x,y) \to S(x,y)$ $S(x,y), S(y,z) \to S(x,y)$ $R(x,y), R(y,z) \to R(x,z)$ Σ_{23} is $S(x,y) \to T(x,y)$

FULL Dependency:

$$R(x,y), R(y,z) \rightarrow R(x,z)$$

 $R(x,y) \rightarrow T(x,y)$

Termination: If "non-trivial" recursion over atoms in \mathbf{S}_2 is disallowed, then FULLD-COMPOSE $(\Sigma_{12}, \Sigma_{23})$ terminates and therefore $M_{12} \circ M_{23}$ is a FULLD-mapping

Second-Order Dependencies

Why?:

Handle existential quantifiers in a ED-dependency, first convert ED constraints into SKED constraints

Composition:

Necessary and sufficient (but uncomputable) conditions similar to the ones for FULLD-mappings

SKCOMPOSE:

Analogous to FULLDCOMPOSE but operating on SkED constraints

Embedded Dependencies

Procedure ED-COMPOSE $(\Sigma_{12}, \Sigma_{23})$

- 1. $\Sigma'_{12} := \text{SKOLEMIZE } (\Sigma_{12})$
 - $\Sigma'_{23} := \text{SKOLEMIZE } (\Sigma_{23})$
- 2. $\Sigma'_{13} := \mathbf{SkED} \cdot \mathbf{COMPOSE}(\Sigma'_{12}, \Sigma'_{23})$
- 3. Return DE-SKOLEMIZE (Σ'_{13})

DE-SKOLEMIZE

Intuition:

- 1. Put constraints in the input in to a for where they are the obvious result of Skolemization. Some steps:
 - Check for cycles
 - Check for repeated function symbols
 - Align variables
- 2. Reverse the Skolemization in the obvious way.
 - Combine Dependencies
 - Function symbols are actually replaced by existentially variables

Some Results

Theorem: If DE-SKOLEMIZE (Σ) succeeds on input $\Sigma\subseteq \mathsf{SkED}$ giving Σ' , then

$$\Sigma'\subseteq \mathsf{ED} \mathsf{ and } \Sigma'\equiv \Sigma$$

Theorem: DE-SKOLEMIZE may produce a result that is exponential in the size of the input

Why?

Combine Dependencies

Combine Dependencies

Input:
$$R(x,y) \to S(x,f(x,y)), S(f(x,y),y)$$

 $R(x,y) \to \exists u \, S(x,u), S(u,v)$
 $R(x,y), u = f(x,y) \to S(x,u)$
 $R(x,y), u = f(x,y) \to S(u,y)$

Combine Dependencies

Input:
$$R(x,y) \to S(x, f(x,y)), S(f(x,y), y)$$

 $R(x,y) \to \exists u \, S(x,u), S(u,v)$
 $R(x,y), \mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \to S(x,u)$
 $R(x,y), \mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \to S(u,y)$

2nd attemp

$$R(x,y), \mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \rightarrow S(x,u)$$

 $R(x,y), \mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \rightarrow S(u,y)$
 $R(x,y), \mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \rightarrow S(x,u), S(u,y)$

Exponential unavoidable

Theorem \exists sequences of TGD-mappings M_{12}^k and M_{23}^k given Σ_{12}^k and Σ_{23}^k s.t.

- TGD-composition $M_{12}^k \circ M_{23}^k$ grows exponentially
- SkTGD-composition $M_{12}^k \circ M_{23}^k$ grows linearly

in the size of $\Sigma_{12}^k \cup \Sigma_{13}^k$

Proof

$$\Sigma_{12}$$
 is $R_0(x) \to \exists y \, S_0(x,y)$
 $R_i(x) \to S_i(x)$

$$\Sigma_{23}$$
 is $S_0(x,y), S_i(x) \to T_i(y)$

SKTGD-composition $M_{13}^k := M_{12}^k \circ M_{23}^k$. Given by Σ_{13}^k

$$R_0(x), \mathbf{y} = \mathbf{f}(\mathbf{x}), R_i(x) \to T_i(y)$$

TGD-composition: DESKOLEMIZE(Σ_{13}^k). Given by Σ'_{13}^k

$$R_0(x), R_Z(x) \to \exists y T_Z(y)$$

where
$$R_Z(x) := \wedge_{i \in Z} R_i(x)$$

We can not do better

 M_{13}^k cannot be expressed by any $(\mathbf{S}_1,\mathbf{S}_3,\Sigma)$ $\Sigma\subseteq TGD$ with $\mid\Sigma\mid<2^{k-1}$

Inexpressibility tool

Characterize constraints in terms of monotonicity

- Consider Σ over σ and A_0 over σ . $A_0 \models \Sigma$
- Add more tuples to some relation in $A_0 \rightsquigarrow A_1$
- Truth value flips or stay the same
- Keep adding tuples A_0, \ldots, A_n, \ldots
- ullet The truth values of Σ form segments: Positive and Negative

- Example: (true, true, false, false, true) for a chain of structure (A_0,A_1,A_2,A_3,A_4)
- To Characterize Σ , count the maximal number of negativ segments in any chain.
- If the number is finite, Σ is n *monotonic* and *nonmonotonic* othw.

Charaterize a class of constraints, we study the monotonocity properties of its constituent sentences

Example: $\Sigma = \{R(x) \rightarrow \exists y \, S(y)\}$ is 1-monotonic

- $R \neq \emptyset \rightarrow S \rightarrow S \neq \emptyset$
- $\bullet (\emptyset,\emptyset), (R,\emptyset), (R_1,S)$
- \bullet (R,\emptyset) belongs to the only negative segment

source to target but with Target Constraints

[Arenas, Fagin & Nash 10]

Composition: Back to the standard setting?

Back to Standard Mappings:

Schema mapping $M = (\mathbf{S}, \mathbf{T}, \Sigma_{st} \cup \Sigma_t)$ such that

- Σ_{st} is a set of s-t tgds
- Σ_t is a set of target tgds and target egds

Target tgds:

In particular, weakly acyclic t-tgds

What is the right language to express the composition of standard schemma mappings?

SO Tgds:

Is the language of SO tgds the right one to compose standard schema mappings?

SO tgds are NOT enough

Let
$$M_{12}=(\mathbf{S}_1,\mathbf{S}_2,\Sigma_{12},\Sigma_2)$$
 and $M_{23}=(\mathbf{S}_2,\mathbf{S}_3,\Sigma_{23})$,

$$\Sigma_{12} = \{ P(x,y) \to R(x,y) \}$$

$$\Sigma_{2} = \{ R(x,y) \land R(x,z) \to y = z \}$$

$$\Sigma_{23} = \{ R(x,y) \to T(x,y) \}$$

$$P^{I_1} = \{(1,2),(1,3)\}, \not\exists I_3 \text{ of } \mathbf{S}_3 \text{ s.t. } (I_1,I_3) \in M_{12} \circ M_{23},$$

 I_1 does not have any solutions under M_{12} .

Extra help

source & target constraints

$$\Sigma_1 = \{ P(x,y) \land P(x,z) \rightarrow y = z \}$$

$$\Sigma_{13} = \{ P(x,y) \rightarrow T(x,y) \}$$

Is the language of SO tgds + s & t-constraints is the right language?

Theorem: There are standard mappings M_{12} and M_{23} s.t $M_{12} \circ M_{23}$ cannot by specified by an SO tgd, an arbitrary set of target constraints and an arbitrary set of source constraints

Proof: Notion of Locality

Reminder:

- Notions of locality have been used to prove inexpressibility results for FO.
- FO logic cannot express properties that involve no trivial recursive computations

Standard Steps

- Provide a Notion of Locality:
 Notion of Locality for Data Transformation [ABFL 04]
- For every st-gd mapping, the canonical transformation is local [ABFL 04]
- The composition is not local

source-to-target SO schema mappings

An extension SO tgds:

st SO dependency extend SO tgds by allowing equalities in the conclusions

SO standard Mapping:

A schema mapping where the constraints consists of

- A st SO tgd
- A set of target tgds and target egds

SO standard schema mappings is the right language

Theorem 2:

- 1. The composition of two standard SO schema mappings is equivalent a standard schema mapping
- 2. The composition of a finite number standard SO schema mappings is equivalent a standard schema mapping
- 3. Every standard SO schema mappings is equivalent to the composition of finete number of standard schema mappings

Key for 1. To simulate the atomic formula C(x,y) introduce the equality $f_C(x,y) = g_C(x,y)$

Nested Terms

SO tgds and st SO dependencies can have nested terms. These can be difficult to work with and understand

Example:

$$f(g(x), h(f(x,y))) = g(f(x, h(y)))$$

premise of a SO tgd or in the premise/conclusion of a st SO dependecy

Unnested

It is better to work with unnested SO tgds and unnested st SO dependencies

Obvious way to DENEST doesn't work

Nested SO tgd

$$\exists f \exists g \forall (x) \forall (y) (P(x,y)) \land (f(g(x)=y)) \rightarrow Q(f(x),g(y)))$$

Obvious way to Denest

$$\exists f \exists g \forall (x) \forall (y) \forall (z) ((P(x,y)) \land (g(x)=z)) \land (f(z)=y) \rightarrow Q(f(x),g(y)))$$

Unsafe

The variable z does not appear in an atomic formula in the premise

Denesting Results

Theorem:

Every st-SO dependency is equivalent to an unnested st-SO dependency

Theorem:

Every SO tgd is equivalent to an unnested SO tgd

Collapsing Results: The composition of a finite number of st tgd mappings is equivalent to the composition of two st tgd mappings

- The composition is specified by an SO tgd
- Such SO tgd is equivalent to an unnested one
- Lemma [FKPT 05]

Every schema mapping specified by an SO tgd of depth r is equivalent to a composition of r+1 st tgds

CHASE for ST-SO Dependencies

Chasable:

st SO schema mappings have a chase that terminates in Polynomial time

Challenge: While computing the solution this chase needs to keep track of constantly changing values of functions

Previous Work

Two terms are treated as equal if they are sintactically identical.

Example: A premise containing the atom f(x) = g(y)

Now: SO egd part may force f(0) and g(1) to be equal

References

[ABFL 04] M. Arenas, P. Barceló, R. Fagin, and L. Libkin. Locally Consistent Transformations and Query Answering in Data Exchange. *In Proceedings of the 23rd ACM Symposium on Principles of Database Systems, PODS04*, pages 229-240, 2004.

[**FKPT 05**] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing schema mappings: Second-order dependencies to the rescue. *ACM Trans. Database Syst.*, 30(4):994-1055, 2005.

[NBM 05] A. Nash, P. A. Bernstein, and S. Melnik. Composition of Mappings Given by Embedded Dependencies. In *Proceedings of the 24th ACM Symposium on Principles of Database Systems*, *PODS05*, pages 172-183, 2005.

Thank You!