Integrity Constraints in Data Exchange

Victor Gutiérrez-Basulto

Universitat Bremen

@ Universitat Bremen

Basic Notions

Embedded Dependencies: Definition and sub-classes

FOL sentences of the form:

p(x) =y ¥(x,y)

e ¢ is a conjunction (possibly empty) of relational atoms;

e 7 is a conjunction of relational atoms and equality atoms.

Three important sub-classes:

Full Dependency is a dependency that has no existential quantifiers.
Equality-Generating Dependency (EGD) allows only for equality atoms in .

Tuple-Generating Dependency (TGD) allows only for relational atoms in).

@ Universitat Bremen

Schema Mappings

-

—
/ Schema S, / / Schema S, /
L L
Provide:

High-Level & Declarative relationship between two schemas

Trade-Off:

Expressive vs Simple

Specification Language:
Use a well-behaved fragment of FOL

w Universitat Bremen

Data Exchange Setting with tgds and egds
[FKMP 03]

Schema mapping M = (S, T, X4 U3;) such that
e X is a set of source to target tgds

e >, is a set of target tgds and target egds

@ Universitat Bremen

Composing Schema Mappings

Mj, Mas
iV B
/ Schema S, / / Schema S, / / Schema S; /
Mjs
Given = (Sl, SQ, 212) and = (SQ, Sg, 223) derive
a schema mapping = (S1,S3, ¥13)

that is equivalent to the successive application of M;5 and Mg

M3 is a composition of M;5 and Mog
Mi3 = Mz 0 Mag

@ Universitat Bremen

Semantics of Composition

A relationship between instances:
Every schema mapping M = (S, T,) defines
Inst(M) = {(I,) | (1.]) = %}

A Formal Definition [FKPTO05]

A schema mapping M3 is a composition of M5 and Ms3 if

II]St(Mlg) = II]St(MlQ)) IIlSt(M23), i.e.,

<Ila IS) |: 213

if and only if
there exists IQ S.t. <Il,I2> IZ 212 and <12,13> ’: 213.

@ Universitat Bremen

Issues in Composition of Schema Mappings

Closure of Schemma Mapping Language under Composition:
M5 and Msg are specified by sets of formulas of some logic L.

Is M5 o Ms3 definable in L7

s-t tgds [FKPTO05]
The language of s-t tgds is not closed under composition

SO tgds [FKPTO05]
well-behaved fragment of second-order logic that extends
s-t tgds with Skolem functions.

@ Universitat Bremen

SO-tgds: Definition

Let S be a source schema and T be a target schema

A second-order tuple-generating dependency (SO-tgd)
is a formula of the form

Ay . I (VX1 (1 = Y1) A e A (VXp(on — ¥n)), where

e Each f; is a function symbol
e Each o; is a conjunction of atoms from S and equalities over terms

e Each v; is a conjunction of atoms from T

@ Universitat Bremen

Some Results [FKPTO05]

Closed under Composition:

e The composition of two SO-tgds is definable by a SO-tgd

e Every SO tgd is the

composition of finitely many finite sets of s-t tgds.

e Hence, SO tgds are the “right” language for the composition of s-t tgds

@ Universitat Bremen

Example [FKPTO05]

212 .

Ve (Emp(e) — dImlgr, (e,m)))
223 .

VeVm (Mgr, (e,m) — Mgr(e,m))
Ve (Mgr, (e,e) — SelfMgr(e)))

f (Ve(Emp(e) — Mgr(e,f(e))) A
Ve (Emp(e) A (e = f(e)) — SelfMgr(e)))

Beyond
source to target

&
Back to FO

Main Features

Prev. Work [FKPT 05]:
tgds & SO tgds.

Both source to target

SOtgds as a result of the composition

Motivation

Allow Schema Constraints

Deployment of composition in current DB systems

w Universitat Bremen

Mapping Languages

(VCQg) FullD-mappings
Given by Full Dependencies

(VCQ™) ED-mappings
Given by Embedded Dependencies

(SkKVCQ™) SkED-mappings
Given by Second-Order Constraints

Without equality:
(VCQp) FullTGD
(VCQ) TGD

w Universitat Bremen

Composing Embedded Dependencies

1. Skolemize ED-mappings to get SKED-mappings;

2. SKED-axiomatization of all the SKED constraints

that hold in the composition;

3. de-Skolemize the SKED-axiomatization to get a ED-mapping

A difference:
The composition in [FKPT 05] is given by second-order constraints

@ Universitat Bremen

Basic Questions

1. Is L closed under composition?

2. If not:
Is there a decision procedure to determine whether

the composition of two £-mappings is a L-mapping?

Note:
Whenever a result holds for a class without equality
it also holds for the corresponding class with equality

@ Universitat Bremen

Full Dependencies

Definability & Closure:
There are YCQqp-mappings whose composition is not an FO-mapping.
In particular, YVCQq is not closed under composition

212 18 R(:c,y) — S(:C? y)
S(z,y), 5y, 2) = S(x,y)
223 1S S(CL‘, y) — T(:C7 y)

R(LC, Ul)? R(Ula U2)7 <o 7R(Ui—la U’i)? R(via y) — T(ajvy)

No finite set expresses: tc(R) C T

w Universitat Bremen

Full Dependencies

Undecidability:
Checking whether the composition of two VCQy-mappings is a
VCQop-mapping is undecidable. In fact, coRE-hard

Reduction from the Post Correspondence Problem

@ Universitat Bremen

Full Dependencies: Other Results

1. Necessary and sufficient (but uncomputable) conditions

for composition of FullTGDs (the same for YCQ™).

2. Algorithms that compute the composition of

Full TGD-mappings when these conditions are satisfied.

3. Definition of sub-classes of VCQqy and VCQ,

that are closed under composition.

@ Universitat Bremen

Full Dependencies: A Main Theorem

Theorem 1: If the VCQ -mappings M2, M3 are given by (S1,S2,312) and
(SQ, Sg, 223) with 2123 = 212 U 223 and Slg = Sl U Sg,
then the following are equivalent:

1. There is a finite set of constraints >13 C VCQ, over the signature S;3 s.t.
M = M12 o) Mlg IS given by (Sl, Sg, 213).

2. There is a finite set of constraints >3 C VCQ, over the signature S;3 s.t.

DC(VCQq , X123)[s,,= DC(VCQq , X13)

3. There is a k s.t. for every £ over Sq3 satisfying X123 F £ there is a deduction
of £ from X153 using at most k So-resolutions.

@ Universitat Bremen

Full Dependencies: Composition

Procedure: FullD-COMPOSE (X2, >53), when it terminates, computes
the deductive closure of > 5 L >55 then,
restrict to constraints not refering to So

Correctness:
Under the hypotheses of Theorem 1, FULLD-COMPOSE (X712, Y23),
whenever it terminates, yields X3 s.t My o Ms3 is given by

(Sla S3J 213)

@ Universitat Bremen

Size?

FullDCOMPOSE may produce a result that is exponential
In the size of the input

Yi2is R(z,y),R(y,z) = S(x,y)
R(x,y), R(z,z),— S(x,y)

2153 1S (:Caul):"‘) (uk—lay) _>T($,y)
For each S(u,v), we can substitute either

R(u,v), R(v,u) or R(u,v), R(v,v)

Then, 2 constraints in the composition My o M.

@ Universitat Bremen

FULLDCOMPOSE:Termination

Y1g 1S R(x,y) = S(x,y
(z,y),5(y,2) = 5(x,y)

Rz,), R(y, 2) = R(x, 2)
2i93 18 (2, y) = T(z,y)
FULL Dependency: R(z,y), R(y,z) — R(z, 2)

R(z,y) — T(x,y)

Termination: If recursion over atoms in Sy is disallowed,
then FULLD-COMPOSE (3212, Y23) terminates and therefore
M5 0 Moz is a FULLD-mapping

@ Universitat Bremen

Second-Order Dependencies

Why?:
Handle existential quantifiers in a ED-dependency,
first convert ED constraints into SKED constraints

Composition:
Necessary and sufficient (but uncomputable) conditions
similar to the ones for FULLD-mappings

SKCOMPOSE:
Analogous to FULLDCOMPOSE but operating on SKED constraints

@ Universitat Bremen

Embedded Dependencies

Procedure ED-COMPOSE (X2, ¥23)

1.

@ Universitat Bremen

/

|5 = SKOLEMIZE (X;2)
53 := SKOLEMIZE (X23)

. 3, := SKED -COMPOSE(X,,, 3,

Return DE-SKOLEMIZE (X 3)

DE-SKOLEMIZE

Intuition:

1. Put constraints in the input in to a for where they are the obvious

result of Skolemization. Some steps:

e Check for cycles
e Check for repeated function symbols
e Align variables

2. Reverse the Skolemization in the obvious way.

e Combine Dependencies

e Function symbols are actually replaced by existentially variables

@ Universitat Bremen

Some Results

Theorem: If DE-SKOLEMIZE (X) succeeds on input > C SKED giving
>, then
 C EDand X' =X

Theorem: DE-SKOLEMIZE may produce a result that is
exponential in the size of the input

Why?

Combine Dependencies

@ Universitat Bremen

Combine Dependencies

Input: R(z,y) = S(z, f(2,9)), S(f(x,9),y)
R(x,y) — JuS(x,u), S(u,v)

R(may)au — f(:l?,y)

— S
R(a:,y),u:f(:c’y) — S

T, u)
(u, y)

1st attemp R(ajjy) — HuS(iju)
R(z,y) — FuS(u,y)

@ Universitat Bremen

Combine Dependencies

Input: R(z,y) = S(z, f(2,9)), S(f(x,9),y)
R(x,y) — JuS(x,u), S(u,v)

R(xz,y),u="f(x,y) — S(x,u)
R(z,y),u=1f(xy) — S(uy)
2nd attemp
R(x,y),u="Ff(xy) — S(z,u)
R(z,y),u==f(xy) — S(u,y)
R(z,y),u="f(x,y) — S(z,u),S(u,y)

@ Universitat Bremen

Exponential unavoidable

Theorem 3 sequences of TGD-mappings M, and MJX, given
Y%, and X5, s.t.

o TGD-composition MF, o MX, grows exponentially

o SkTGD-composition ME, o MY, grows linearly

in the size of X%, U X¥,

@ Universitat Bremen

Proof

Y1218 Ro(z) — Jy Sy (x,y)
R; (ZU) — g,(ﬂj)

Yoz is So(z,y), 5 (x) = Ti(y)

SKTGD-composition ME, := M¥, o M%,. Given by ¥,

Ro(z),y = f(x), Ri(z) — T;(y)

TGD-composition: DESKOLEMIZE(X%,). Given by X%,
Ro(x), Rz(x) — JyTz(y)

where Rz(aj) = /\iezRi(m)
@ Universitat Bremen

We can not do better

MZ¥, cannot be expressed by any (S1,S3,%) ¥ C TGD with | ¥ |< 2F~1

Inexpressibility tool

Characterize constraints in terms of monotonicity
e Consider X over o and Ag over 0. Ag = X

e Add more tuples to some relation in Ag ~ A;
e Truth value flips or stay the same

e Keep adding tuples Ag,..., A,,...

e The truth values of X form segments: Positive and Negative

@ Universitat Bremen

e Example: (true, true, false, false, true) for a chain of structure
(A07 Al: AZ; AB; A4)

e To Characterize >, count the maximal number of

negativ segments in any chain.
e |If the number is finite, > iIs n monotonic and nonmonotonic othw.

Charaterize a class of constraints, we study the monotonocity
properties of its constituent sentences

Example: 3 = {R(x) — 3y S(y)} is 1-monotonic
o R+ 0 —S—S 7 0
® (@7 @)7 (Ra @), (Rh S)

e (R,()) belongs to the only negative segment
@ Universitat Bremen

source to target
but
with Target Constraints

Composition: Back to the standard setting?

Back to Standard Mappings:
Schema mapping M = (S, T, X U ¥;) such that

e X is aset of s-t tgds

e >, is a set of target tgds and target egds

Target tgds:
In particular, weakly acyclic t-tgds

What is the right language to express the composition
of standard schemma mappings?

SO Tgds:
Is the language of SO tgds the right one to
compose standard schema mappings?

@ Universitat Bremen

SO tgds are NOT enough

Let M12 = (81,823212722) and M23 — (827 837223)’

g
o
|

= {P(z,y) = R(z,y);
Yo = A{R(z,y) NR(x,2) > y==z}

{R(z,y) = T(z,y)}

N
[\)
w

1

Pl — {(1,2), (1,3)}, A I3 of S3 s.t. (11,13) € Myo o Mo3,

I, does not have any solutions under M.

@ Universitat Bremen

Extra help

source & target constraints

21
213

||
=
T
A~~~
8 8
NN
~
—~
i3
s
——

Is the language of SO tgds + s & t-constraints is the right language?

There are standard mappings M5 and Ms3 s.t Mqo 0 Mss
cannot by specified by an SO tgd, an arbitrary set of target constraints
and an arbitrary set of source constraints

@ Universitat Bremen

Proof: Notion of Locality

Reminder:

e Notions of locality have been used to prove

results for FO.

e FO logic cannot express properties that involve no

trivial recursive computations

Standard Steps

Notion of Locality for Data Transformation [ABFL 04]
e For every st-gd mapping, the canonical transformation is local [ABFL 04]

e [he composition is not local

@ Universitat Bremen

source-to-target SO schema mappings

An extension SO tgds:
st SO dependency extend SO tgds by allowing equalities
in the conclusions

SO standard Mapping:
A schema mapping where the constraints consists of

e A st SO tgd

e A set of target tgds and target egds

@ Universitat Bremen

SO standard schema mappings is the right language

1. The composition of two standard SO schema mappings is equivalent

a standard schema mapping

2. The composition of a finite number standard SO schema mappings

Is equivalent a standard schema mapping

3. Every standard SO schema mappings is equivalent

to the composition of finete number of standard schema mappings

Key for 1. To simulate the atomic formula C'(z,y) introduce
the equality fo(xz,y) = go(z,y)

@ Universitat Bremen

Nested Terms

SO tgds and st SO dependencies can have nested terms.
These can be difficult to work with and understand

Example:

flg(x), h(f(z,y))) = g(f(z,h(y)))

premise of a SO tgd or in the premise/conclusion of a st SO dependecy

Unnested
It is better to work with unnested SO tgds and unnested st SO dependencies

@ Universitat Bremen

Obvious way to DENEST doesn’t work

Nested SO tgd

3f3g¥(2)V(y)(P(z,y)) A (flg9(z) = y)) = Q(f(x),9(y)))

Obvious way to Denest
339V () (y)V(2)((P(z,y)) A(g(x) = 2)) A (f(2) = y) = Q(f(x),9(y)))

Unsafe
The variable z does not appear in an atomic formula in the premise

w Universitat Bremen

Denesting Results

Every st-SO dependency is equivalent to an unnested st-SO dependency

Every SO tgd is equivalent to an unnested SO tgd

Collapsing Results: The composition of a finite number of
st tgd mappings is equivalent to the composition of two st tgd mappings

e The composition is specified by an SO tgd

e Such SO tgd is equivalent to an unnested one

o [FKPT 05]
Every schema mapping specified by an SO tgd of depth r

is equivalent to a composition of 4+ 1 st tgds

CHASE for ST-SO Dependencies

Chasable:
st SO schema mappings have a chase that terminates in Polynomial time

Challenge: While computing the solution this chase needs to
keep track of constantly changing values of functions

Previous Work
Two terms are treated as equal if they are sintactically identical.
Example: A premise containing the atom f(z) = g(y)

Now: SO egd part may force f(0) and g(1) to be equal

@ Universitat Bremen

References

[ABFL 04] M. Arenas, P. Barceld, R. Fagin, and L. Libkin. Locally Consis-
tent Transformations and Query Answering in Data Exchange. In Proceedings of
the 23rd ACM Symposium on Principles of Database Systems, PODS04, pages
229-240, 2004.

[FKPT 05] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Compos-
ing schema mappings: Second-order dependencies to the rescue. ACM Trans.
Database Syst., 30(4):994-1055, 2005.

[INBM 05] A. Nash, P. A. Bernstein, and S. Melnik. Composition of Map-
pings Given by Embedded Dependencies. In Proceedings of the 24th ACM Sym-
posium on Principles of Database Systems, PODS05, pages 172-183, 2005.

Thank You!

