
View-Based Query Processing

Paolo Guagliardo

KRDB Research Centre
Free University of Bozen-Bolzano, Italy

11 November 2010

KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION
MEETS DATABASES



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



1/29

View-based query processing
Definition and motivation

The problem of computing the answer to a query
based on a set of views

Application areas:

I query optimisation
find a “better” query providing the same answer

I data warehousing
select which views to materialise

I data integration
check whether relevant queries can be answered
using only a given set of sources

I security and privacy
ensure that the views do not provide enough information
to answer the sensitive queries



2/29

Preliminaries and notation

A relational structure I over a finite alphabet of relation symbols
is a pair (∆I , ·I), where

I ∆I is a domain of objects

I ·I is a function associating each relation symbol r
with a set of k-tuples of objects, with k the arity of r

A query is a function from relational structures
to sets of tuples of a certain arity

R finite alphabet of symbols (database signature)
D a relational structure over R (database)

V finite set of view symbols not in R
V R formula defining V ∈ V (in terms of the symbols in R)
E a relational structure over V, called a V-extension



2/29

Preliminaries and notation

A relational structure I over a finite alphabet of relation symbols
is a pair (∆I , ·I), where

I ∆I is a domain of objects

I ·I is a function associating each relation symbol r
with a set of k-tuples of objects, with k the arity of r

A query is a function from relational structures
to sets of tuples of a certain arity

R finite alphabet of symbols (database signature)
D a relational structure over R (database)

V finite set of view symbols not in R
V R formula defining V ∈ V (in terms of the symbols in R)
E a relational structure over V, called a V-extension



3/29

Semistructured data

Semistructured database

I a finite directed graph
with edges labelled by elements of a finite alphabet R

I represented as a finite relational structure D
over the set R of binary relation symbols

Regular Path Query (RPQ)

I a binary query defined in terms of a regular language over R
I the answer Q(D) to an RPQ Q over a database D

is the set of pairs of objects connected in D
by a sequence of (directed) edges forming a word in L(Q)

Two-way Regular Path Query (2RPQ)

I an RPQ extended with backward navigation of database edges



3/29

Semistructured data

Semistructured database

I a finite directed graph
with edges labelled by elements of a finite alphabet R

I represented as a finite relational structure D
over the set R of binary relation symbols

Regular Path Query (RPQ)

I a binary query defined in terms of a regular language over R
I the answer Q(D) to an RPQ Q over a database D

is the set of pairs of objects connected in D
by a sequence of (directed) edges forming a word in L(Q)

Two-way Regular Path Query (2RPQ)

I an RPQ extended with backward navigation of database edges



3/29

Semistructured data

Semistructured database

I a finite directed graph
with edges labelled by elements of a finite alphabet R

I represented as a finite relational structure D
over the set R of binary relation symbols

Regular Path Query (RPQ)

I a binary query defined in terms of a regular language over R
I the answer Q(D) to an RPQ Q over a database D

is the set of pairs of objects connected in D
by a sequence of (directed) edges forming a word in L(Q)

Two-way Regular Path Query (2RPQ)

I an RPQ extended with backward navigation of database edges



4/29

Answering, rewriting and losslessness

Two main approaches to view-based query processing:

I Query answering

Compute the tuples satisfying the query in all databases
consistent with the views (certain answers)

I Query rewriting

Reformulate the query in terms of the views,
then evaluate the rewriting over the view extensions

Related issue:

I Losslessness
Determine whether there is information loss

I w.r.t. query answering

I w.r.t. query rewriting



4/29

Answering, rewriting and losslessness

Two main approaches to view-based query processing:

I Query answering

Compute the tuples satisfying the query in all databases
consistent with the views (certain answers)

I Query rewriting

Reformulate the query in terms of the views,
then evaluate the rewriting over the view extensions

Related issue:

I Losslessness
Determine whether there is information loss

I w.r.t. query answering

I w.r.t. query rewriting



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



5/29

Assumptions on the views

Let D be a database and let VR(D) be the V-extension E
such that V (E) = V R(D) for each V ∈ V

A V-extension E is

I sound w.r.t. D iff E ⊆ VR(D)

I exact w.r.t. D iff E = VR(D)



6/29

Certain answers

The certain answers to Q under sound views V w.r.t. a V-extension E
is the set of all tuples t such that t ∈ Q(D)
for every database D w.r.t. which E is sound

certsoundQ,V (E) =
⋂{

Q(D) | for all D s.t. E ⊆ VR(D)
}

The certain answers to Q under exact views V w.r.t. a V-extension E
is the set of all tuples t such that t ∈ Q(D)
for every database D for which E = VR(D)

certexactQ,V (E) =
⋂{

Q(D) | for all D s.t. E = VR(D)
}



7/29

Rewriting

Definition
Qrw is a rewriting of a query Q under sound views V iff
for every database D and every V-extension E s.t. E ⊆ VR(D)

Qrw(E) ⊆ Q(D)

Definition
Qrw is a rewriting of a query Q under exact views V iff
for every database D

Qrw

(
VR(D)

)
⊆ Q(D)

The above definitions are equivalent
when the language used for expressing the rewritings is monotonic

Exact rewriting if the subset inclusion is an equality



7/29

Rewriting

Definition
Qrw is a rewriting of a query Q under sound views V iff
for every database D and every V-extension E s.t. E ⊆ VR(D)

Qrw(E) ⊆ Q(D)

Definition
Qrw is a rewriting of a query Q under exact views V iff
for every database D

Qrw

(
VR(D)

)
⊆ Q(D)

The above definitions are equivalent
when the language used for expressing the rewritings is monotonic

Exact rewriting if the subset inclusion is an equality



7/29

Rewriting

Definition
Qrw is a rewriting of a query Q under sound views V iff
for every database D and every V-extension E s.t. E ⊆ VR(D)

Qrw(E) ⊆ Q(D)

Definition
Qrw is a rewriting of a query Q under exact views V iff
for every database D

Qrw

(
VR(D)

)
⊆ Q(D)

The above definitions are equivalent
when the language used for expressing the rewritings is monotonic

Exact rewriting if the subset inclusion is an equality



8/29

Maximally contained rewritings

Let Lr be a query class in which rewritings are expressed

Definition
A rewriting Qrw ∈ Lr of Q under sound views V is Lr-maximal iff
every other rewriting Q′rw ∈ Lr of Q is s.t. for each database D
and each V-extension E ⊆ VR(D)

Qrw(E) 6⊂ Q′rw(E)

Definition
A rewriting Qrw ∈ Lr of Q under exact views V is Lr-maximal iff
every other rewriting Q′rw ∈ Lr of Q is s.t. for each database D

Qrw

(
VR(D)

)
6⊂ Q′rw

(
VR(D)

)



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



9/29

Rewriting of regular expressions [Calvanese et al., 2002]

Problem

Given a regular expression E0

and a finite set E = {E1, . . . , Ek} of regular expressions,
re-express (if possible) E0 in terms of E1, . . . , Ek

Solution

1. Construct a deterministic automaton Ad accepting L(E0)

2. Construct an automaton A′ accepting exactly those words
that are not in any rewriting of E0

3. the complement of A′ is the maximal rewriting of E0 w.r.t. E



9/29

Rewriting of regular expressions [Calvanese et al., 2002]

Problem

Given a regular expression E0

and a finite set E = {E1, . . . , Ek} of regular expressions,
re-express (if possible) E0 in terms of E1, . . . , Ek

Solution

1. Construct a deterministic automaton Ad accepting L(E0)

2. Construct an automaton A′ accepting exactly those words
that are not in any rewriting of E0

3. the complement of A′ is the maximal rewriting of E0 w.r.t. E



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1

, e2

e3

e1

, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1

, e2

e3

e1

, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1

, e2

e3

e1

, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1

, e2

e3

e1

, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1

, e2

e3

e1

, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1

, e2

e3

e1, e2

, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1

, e2

e3

e1, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1

, e2

e3

e1, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1, e2

e3

e1, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1, e2

e3

e1, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1, e2

e3

e1, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



10/29

Rewriting of regular expressions next

Rewriting of a · (c+ b · a)∗ in terms of {a, a · c∗ · b, c},
with re(e1) = a, re(e2) = a · c∗ · b and re(e3) = c

q0

q1

q2

b, c

a

a

b

c

a, b, c

Ad

q0

q1

q2

q0

q2

e3

e1

e1, e2

e3

e1, e2, e3

e2

A′

The rewriting is R = e2
∗ · e1 · e3∗ and exp(R) = (a · c∗ · b)∗ · a · c∗



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

A′

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

A′

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

A′

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

A′

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

A′

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

A′

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

A′

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

B

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



11/29

Rewriting of regular expressions back

Exactness of rewritings

Definition A rewriting R of E0 is exact if L
(
exp(R)

)
= L(E0)

I A1 for re(e1) = a
a

I A2 for re(e2) = a · c∗ · b

a

c

b

I A3 for re(e3) = b

b

q0

q1

e1

e2

e3

a

b

q2

a

c

b

B

⇒ R is an exact rewriting of E0 iff L(Ad ∩B) = ∅



12/29

Rewriting of regular expressions
Complexity results

Complexity of the proposed method:

I Generation of the maximal rewriting 2EXPTIME

I Existence of an exact rewriting 2EXPSPACE

Complexity of the decision problem:

I Existence of a nonempty rewriting EXPSPACE-complete

I Existence of an exact rewriting 2EXPSPACE-complete

⇒ The method is essentially optimal



12/29

Rewriting of regular expressions
Complexity results

Complexity of the proposed method:

I Generation of the maximal rewriting 2EXPTIME

I Existence of an exact rewriting 2EXPSPACE

Complexity of the decision problem:

I Existence of a nonempty rewriting EXPSPACE-complete

I Existence of an exact rewriting 2EXPSPACE-complete

⇒ The method is essentially optimal



12/29

Rewriting of regular expressions
Complexity results

Complexity of the proposed method:

I Generation of the maximal rewriting 2EXPTIME

I Existence of an exact rewriting 2EXPSPACE

Complexity of the decision problem:

I Existence of a nonempty rewriting EXPSPACE-complete

I Existence of an exact rewriting 2EXPSPACE-complete

⇒ The method is essentially optimal



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



13/29

Answering and rewriting

Most work focused on conjunctive queries
⇒ no distinction between answering and rewriting

Query rewriting ≡ Query answering

The maximal rewriting computes the certain answers

Difference between answering and rewriting can be pointed out
in the context of RPQs in semistructured databases

[Calvanese et al., 2007]



13/29

Answering and rewriting

Most work focused on conjunctive queries
⇒ no distinction between answering and rewriting

Query rewriting ≡ Query answering

The maximal rewriting computes the certain answers

Difference between answering and rewriting can be pointed out
in the context of RPQs in semistructured databases

[Calvanese et al., 2007]



14/29

Relationship between answering and rewriting

Q = a · c+ b · d
V =

{
V1, V2, V3

}
, with V R1 = a, V R2 = b, V R3 = c+ d

I The RPQ-maximal rewriting of Q is empty

I certQ,V =
{

(x, y) | ∃z.V1(x, z) ∧ V2(x, z) ∧ V3(z, y)
}

x z y

V1
a

V2

b

V3

c+ d

Rewriting ignores that V1 and V2 connect the same pair of objects,
while answering takes it into account

⇒ Query answering is more precise than query rewriting
(can match non-linear patterns in a database)



14/29

Relationship between answering and rewriting

Q = a · c+ b · d
V =

{
V1, V2, V3

}
, with V R1 = a, V R2 = b, V R3 = c+ d

I The RPQ-maximal rewriting of Q is empty

I certQ,V =
{

(x, y) | ∃z.V1(x, z) ∧ V2(x, z) ∧ V3(z, y)
}

x z y

V1
a

V2

b

V3

c+ d

Rewriting ignores that V1 and V2 connect the same pair of objects,
while answering takes it into account

⇒ Query answering is more precise than query rewriting
(can match non-linear patterns in a database)



14/29

Relationship between answering and rewriting

Q = a · c+ b · d
V =

{
V1, V2, V3

}
, with V R1 = a, V R2 = b, V R3 = c+ d

I The RPQ-maximal rewriting of Q is empty

I certQ,V =
{

(x, y) | ∃z.V1(x, z) ∧ V2(x, z) ∧ V3(z, y)
}

x z y

V1
a

V2

b

V3

c+ d

Rewriting ignores that V1 and V2 connect the same pair of objects,
while answering takes it into account

⇒ Query answering is more precise than query rewriting
(can match non-linear patterns in a database)



14/29

Relationship between answering and rewriting

Q = a · c+ b · d
V =

{
V1, V2, V3

}
, with V R1 = a, V R2 = b, V R3 = c+ d

I The RPQ-maximal rewriting of Q is empty

I certQ,V =
{

(x, y) | ∃z.V1(x, z) ∧ V2(x, z) ∧ V3(z, y)
}

x z y

V1
a

V2

b

V3

c+ d

Rewriting ignores that V1 and V2 connect the same pair of objects,
while answering takes it into account

⇒ Query answering is more precise than query rewriting
(can match non-linear patterns in a database)



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



15/29

Losslessness w.r.t. query answering

Is the information content of a set of views sufficient
to answer completely a given query?

Definition
A set of view V is said to be lossless w.r.t. a query Q,
if for every database D we have

Q(D) = certQ,V
(
VR(D)

)



16/29

Losslessness w.r.t. query rewriting

Definition (Exactness)

Qrw is an exact rewriting of Q w.r.t. V
if for every database D we have

Q(D) = Qrw

(
VR(D)

)

Definition (Perfectness)

Qrw is a perfect rewriting of Q w.r.t. V
if for every database D we have

certQ,V
(
VR(D)

)
= Qrw

(
VR(D)

)



16/29

Losslessness w.r.t. query rewriting

Definition (Exactness)

Qrw is an exact rewriting of Q w.r.t. V
if for every database D we have

Q(D) = Qrw

(
VR(D)

)
Definition (Perfectness)

Qrw is a perfect rewriting of Q w.r.t. V
if for every database D we have

certQ,V
(
VR(D)

)
= Qrw

(
VR(D)

)



17/29

Losslessness in the context of 2RPQs

Q a 2RPQ
V a set of 2RPQ views

Qmax
rw the 2RPQ-maximal rewriting of Q w.r.t. V

For every database D,

Qmax
rw

(
VR(D)

)
⊆ certQ,V

(
VR(D)

)
⊆ Q(D)

I Qmax
rw perfect

⇒ no loss due to the rewriting

I V lossless w.r.t. Q

⇒ no loss related to answering the query based on a set of views

I Qmax
rw exact, that is, Qmax

rw

(
VR(D)

)
= Q(D)

⇒ perfectness of the rewriting + losslessness of the views



17/29

Losslessness in the context of 2RPQs

Q a 2RPQ
V a set of 2RPQ views

Qmax
rw the 2RPQ-maximal rewriting of Q w.r.t. V

For every database D,

Qmax
rw

(
VR(D)

)
= certQ,V

(
VR(D)

)
⊆ Q(D)

I Qmax
rw perfect

⇒ no loss due to the rewriting

I V lossless w.r.t. Q

⇒ no loss related to answering the query based on a set of views

I Qmax
rw exact, that is, Qmax

rw

(
VR(D)

)
= Q(D)

⇒ perfectness of the rewriting + losslessness of the views



17/29

Losslessness in the context of 2RPQs

Q a 2RPQ
V a set of 2RPQ views

Qmax
rw the 2RPQ-maximal rewriting of Q w.r.t. V

For every database D,

Qmax
rw

(
VR(D)

)
⊆ certQ,V

(
VR(D)

)
= Q(D)

I Qmax
rw perfect

⇒ no loss due to the rewriting

I V lossless w.r.t. Q

⇒ no loss related to answering the query based on a set of views

I Qmax
rw exact, that is, Qmax

rw

(
VR(D)

)
= Q(D)

⇒ perfectness of the rewriting + losslessness of the views



17/29

Losslessness in the context of 2RPQs

Q a 2RPQ
V a set of 2RPQ views

Qmax
rw the 2RPQ-maximal rewriting of Q w.r.t. V

For every database D,

Qmax
rw

(
VR(D)

)
= certQ,V

(
VR(D)

)
= Q(D)

I Qmax
rw perfect

⇒ no loss due to the rewriting

I V lossless w.r.t. Q

⇒ no loss related to answering the query based on a set of views

I Qmax
rw exact, that is, Qmax

rw

(
VR(D)

)
= Q(D)

⇒ perfectness of the rewriting + losslessness of the views



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



18/29

Determinacy and rewriting

V determines Q (denoted V � Q) iff

VR(D1) = VR(D2) implies Q(D1) = Q(D2)

If Q has an exact rewriting Qrw under exact views V,
then V � Q

I converse in general does not hold

Lv view language (for defining views)

Lq query language (for querying the database)

Lr rewriting language (for expressing rewritings)

We say that Lr is complete for Lv-to-Lq rewritings iff
Lr can be used to rewrite Q ∈ Lq using views V defined in Lv
whenever V � Q



18/29

Determinacy and rewriting

V determines Q (denoted V � Q) iff

VR(D1) = VR(D2) implies Q(D1) = Q(D2)

If Q has an exact rewriting Qrw under exact views V,
then V � Q

I converse in general does not hold

Lv view language (for defining views)

Lq query language (for querying the database)

Lr rewriting language (for expressing rewritings)

We say that Lr is complete for Lv-to-Lq rewritings iff
Lr can be used to rewrite Q ∈ Lq using views V defined in Lv
whenever V � Q



18/29

Determinacy and rewriting

V determines Q (denoted V � Q) iff

VR(D1) = VR(D2) implies Q(D1) = Q(D2)

If Q has an exact rewriting Qrw under exact views V,
then V � Q

I converse in general does not hold

Lv view language (for defining views)

Lq query language (for querying the database)

Lr rewriting language (for expressing rewritings)

We say that Lr is complete for Lv-to-Lq rewritings iff
Lr can be used to rewrite Q ∈ Lq using views V defined in Lv
whenever V � Q



19/29

Determinacy and rewriting [Nash et al., 2010]

Questions:

I For Q ∈ Lq and views V with definitions in Lv,
is it decidable whether V � Q?

I Is Lq complete for Lv-to-Lq rewritings?
I If not, how to extend Lq in order express such rewritings?

Two cases:

restricted finite database instances only

unrestricted possibly infinite databases

Query languages considered:

FO first-order logic

CQ conjunctive queries

UCQ unions of conjunctive queries



20/29

Deciding determinacy

Theorem
If satisfiability in Lq or validity in Lv is undecidable,
then it is also undecidable whether V � Q
where Q ∈ Lq and V is a set of views defined in Lv

Corollary

Determinacy is undecidable
whenever queries or view definitions are expressed in FO



20/29

Deciding determinacy

Theorem
If satisfiability in Lq or validity in Lv is undecidable,
then it is also undecidable whether V � Q
where Q ∈ Lq and V is a set of views defined in Lv

Corollary

Determinacy is undecidable
whenever queries or view definitions are expressed in FO



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



21/29

FO queries and views skip

Determinacy: undecidable (corollary in previous slide)

In the unrestricted case, FO is complete for FO-to-FO rewritings

I does not hold with finite database instances

Theorem
Any language complete for FO-to-FO rewritings for finite instances
must express all computable queries



21/29

FO queries and views skip

Determinacy: undecidable (corollary in previous slide)

In the unrestricted case, FO is complete for FO-to-FO rewritings

I does not hold with finite database instances

Theorem
Any language complete for FO-to-FO rewritings for finite instances
must express all computable queries



22/29

UCQ queries and views

Determinacy: undecidable

Decidable whether a UCQ can be rewritten using a UCQ
in terms of a set of views expressed as UCQs

⇒ UCQ is not complete for UCQ-to-UCQ rewritings
(otherwise contradiction to undecidability of determinacy)

Theorem
Any language complete for UCQ-to-CQ rewritings
must express non-monotonic queries

I Proof in the next slide skip



22/29

UCQ queries and views

Determinacy: undecidable

Decidable whether a UCQ can be rewritten using a UCQ
in terms of a set of views expressed as UCQs

⇒ UCQ is not complete for UCQ-to-UCQ rewritings
(otherwise contradiction to undecidability of determinacy)

Theorem
Any language complete for UCQ-to-CQ rewritings
must express non-monotonic queries

I Proof in the next slide skip



23/29

UCQ queries and views

Proof.
Let R = {P,R} with P,R unary, and let V = {V1, V2} with

V R1 (x) = ∃u . R(u) ∧ P (x) ; V R2 (x) = R(x) ∨ P (x)

Let Q(x) = P (x).

Then, V � Q because

I If R(D) 6= ∅, then Q(D) = V1(D)

I If R(D) = ∅, then Q(D) = V2(D)

Let D1 such that P (D1) = {a, b} and R(D1) = ∅
D2 such that P (D2) = {a} and R(D1) = {b}

V1(D1) = ∅ ⊆ {a} = V1(D2) and V2(D1) = {a, b} = V2(D2)

but Q(D1) = {a, b} 6⊆ {a} = Q(D2)

⇒ the mapping that associates each query extension Q(D)
to the corresponding extension VR(D) is non-monotonic



23/29

UCQ queries and views

Proof.
Let R = {P,R} with P,R unary, and let V = {V1, V2} with

V R1 (x) = ∃u . R(u) ∧ P (x) ; V R2 (x) = R(x) ∨ P (x)

Let Q(x) = P (x). Then, V � Q because

I If R(D) 6= ∅, then Q(D) = V1(D)

I If R(D) = ∅, then Q(D) = V2(D)

Let D1 such that P (D1) = {a, b} and R(D1) = ∅
D2 such that P (D2) = {a} and R(D1) = {b}

V1(D1) = ∅ ⊆ {a} = V1(D2) and V2(D1) = {a, b} = V2(D2)

but Q(D1) = {a, b} 6⊆ {a} = Q(D2)

⇒ the mapping that associates each query extension Q(D)
to the corresponding extension VR(D) is non-monotonic



23/29

UCQ queries and views

Proof.
Let R = {P,R} with P,R unary, and let V = {V1, V2} with

V R1 (x) = ∃u . R(u) ∧ P (x) ; V R2 (x) = R(x) ∨ P (x)

Let Q(x) = P (x). Then, V � Q because

I If R(D) 6= ∅, then Q(D) = V1(D)

I If R(D) = ∅, then Q(D) = V2(D)

Let D1 such that P (D1) = {a, b} and R(D1) = ∅
D2 such that P (D2) = {a} and R(D1) = {b}

V1(D1) = ∅ ⊆ {a} = V1(D2) and V2(D1) = {a, b} = V2(D2)

but Q(D1) = {a, b} 6⊆ {a} = Q(D2)

⇒ the mapping that associates each query extension Q(D)
to the corresponding extension VR(D) is non-monotonic



23/29

UCQ queries and views

Proof.
Let R = {P,R} with P,R unary, and let V = {V1, V2} with

V R1 (x) = ∃u . R(u) ∧ P (x) ; V R2 (x) = R(x) ∨ P (x)

Let Q(x) = P (x). Then, V � Q because

I If R(D) 6= ∅, then Q(D) = V1(D)

I If R(D) = ∅, then Q(D) = V2(D)

Let D1 such that P (D1) = {a, b} and R(D1) = ∅
D2 such that P (D2) = {a} and R(D1) = {b}

V1(D1) = ∅ ⊆ {a} = V1(D2) and V2(D1) = {a, b} = V2(D2)

but Q(D1) = {a, b} 6⊆ {a} = Q(D2)

⇒ the mapping that associates each query extension Q(D)
to the corresponding extension VR(D) is non-monotonic



23/29

UCQ queries and views

Proof.
Let R = {P,R} with P,R unary, and let V = {V1, V2} with

V R1 (x) = ∃u . R(u) ∧ P (x) ; V R2 (x) = R(x) ∨ P (x)

Let Q(x) = P (x). Then, V � Q because

I If R(D) 6= ∅, then Q(D) = V1(D)

I If R(D) = ∅, then Q(D) = V2(D)

Let D1 such that P (D1) = {a, b} and R(D1) = ∅
D2 such that P (D2) = {a} and R(D1) = {b}

V1(D1) = ∅ ⊆ {a} = V1(D2) and V2(D1) = {a, b} = V2(D2)

but Q(D1) = {a, b} 6⊆ {a} = Q(D2)

⇒ the mapping that associates each query extension Q(D)
to the corresponding extension VR(D) is non-monotonic



24/29

CQ queries and views

Determinacy: open problem

Decidable whether a CQ can be rewritten as a CQ
in terms of a set of views defined by means of CQs

Completeness of CQ for CQ-to-CQ rewritings
would imply decidability of determinacy

Unfortunately CQ is not complete for CQ-to-CQ rewritings

I a path query Pn(x, y) on a binary relation R returns the pairs
〈x, y〉 for which there is an R-path of length n from x to y

I {P3, P4}� P5 because P5 has the FO rewriting

P5(x, y) ≡ ∃z
[
P4(x, z) ∧ ∀v

(
P3(v, z)→ P4(v, y)

)]
but P5 has no CQ rewriting in terms of P3 and P4



24/29

CQ queries and views

Determinacy: open problem

Decidable whether a CQ can be rewritten as a CQ
in terms of a set of views defined by means of CQs

Completeness of CQ for CQ-to-CQ rewritings
would imply decidability of determinacy

Unfortunately CQ is not complete for CQ-to-CQ rewritings

I a path query Pn(x, y) on a binary relation R returns the pairs
〈x, y〉 for which there is an R-path of length n from x to y

I {P3, P4}� P5 because P5 has the FO rewriting

P5(x, y) ≡ ∃z
[
P4(x, z) ∧ ∀v

(
P3(v, z)→ P4(v, y)

)]
but P5 has no CQ rewriting in terms of P3 and P4



25/29

Guarded fragment (GF)

Fragment of FOL consisting of only quantified formulas of the form

∀x
(
G(x, y)→ φ(x, y)

)
where G is a relation symbol and φ(x, y) is guarded as well

Key restriction: all free variable occurring in φ(x, y)
must also occur in the guard G(x, y)

Not expressible in GF

I that a relation is transitive

I that a relation is a partial function

⇒ Views defined in GF always consist of sub-tuples of a relation
in the database



25/29

Guarded fragment (GF)

Fragment of FOL consisting of only quantified formulas of the form

∀x
(
G(x, y)→ φ(x, y)

)
where G is a relation symbol and φ(x, y) is guarded as well

Key restriction: all free variable occurring in φ(x, y)
must also occur in the guard G(x, y)

Not expressible in GF

I that a relation is transitive

I that a relation is a partial function

⇒ Views defined in GF always consist of sub-tuples of a relation
in the database



25/29

Guarded fragment (GF)

Fragment of FOL consisting of only quantified formulas of the form

∀x
(
G(x, y)→ φ(x, y)

)
where G is a relation symbol and φ(x, y) is guarded as well

Key restriction: all free variable occurring in φ(x, y)
must also occur in the guard G(x, y)

Not expressible in GF

I that a relation is transitive

I that a relation is a partial function

⇒ Views defined in GF always consist of sub-tuples of a relation
in the database



26/29

Packed fragment (PF)

Useful generalisation of the guarded fragment
allowing for safe products as guards

G(x1, . . . , xn) =
∧

k=1,...,m

∃y Ak(x, y)

which for every pair of free variables xi, xj with i 6= j
has an atom Ak in which xi, xj both occur free

I transitivity and functionality not expressible in PF

I “until” operator of temporal logic in PF but not in GF

Properties (same as GF)

I validity problem is 2EXPTIME-complete

I every satisfiable formula is satisfiable on a finite model



26/29

Packed fragment (PF)

Useful generalisation of the guarded fragment
allowing for safe products as guards

G(x1, . . . , xn) =
∧

k=1,...,m

∃y Ak(x, y)

which for every pair of free variables xi, xj with i 6= j
has an atom Ak in which xi, xj both occur free

I transitivity and functionality not expressible in PF

I “until” operator of temporal logic in PF but not in GF

Properties (same as GF)

I validity problem is 2EXPTIME-complete

I every satisfiable formula is satisfiable on a finite model



26/29

Packed fragment (PF)

Useful generalisation of the guarded fragment
allowing for safe products as guards

G(x1, . . . , xn) =
∧

k=1,...,m

∃y Ak(x, y)

which for every pair of free variables xi, xj with i 6= j
has an atom Ak in which xi, xj both occur free

I transitivity and functionality not expressible in PF

I “until” operator of temporal logic in PF but not in GF

Properties (same as GF)

I validity problem is 2EXPTIME-complete

I every satisfiable formula is satisfiable on a finite model



27/29

PF queries and views [Marx, 2007]

No difference between unrestricted and finite case
(because of the finite model property)

Determinacy: 2EXPTIME-complete

PF is complete for PF-to-PF rewritings

Restriction to packed (U)CQs:

I PCQ is complete for PCQ-to-PCQ rewritings
I UPCQ is complete for UPCQ-to-UPCQ rewritings



27/29

PF queries and views [Marx, 2007]

No difference between unrestricted and finite case
(because of the finite model property)

Determinacy: 2EXPTIME-complete

PF is complete for PF-to-PF rewritings

Restriction to packed (U)CQs:

I PCQ is complete for PCQ-to-PCQ rewritings
I UPCQ is complete for UPCQ-to-UPCQ rewritings



Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion



28/29

Summary I

Two main approaches to view-based query processing:

I answering aims at finding the certain answers
(answers to the query in all databases consistent with the views)

I rewriting aims at reformulating the query in terms of the views
and then evaluating the rewritten query over the view extensions

Query rewriting is an approximation of query answering

Characterised when no loss of information occurs
w.r.t. rewriting and w.r.t. quality of views



29/29

Summary II

Given a set of views and a query expressed in a language L

Determinacy

Decide whether the views determine the answer to the query

Completeness of rewritings

Can L be used for rewriting the query in terms of the views
whenever the latter determine the answer to the former?

Language L Determinacy Complete for L-to-L rewritings?

FO undecidable YES (unrestricted) NO (finite)

UCQ undecidable NO

CQ open NO

PF 2EXPTIME-complete YES



References

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y. (2002).
Rewriting of regular expressions and regular path queries.
Journal of Computer and System Sciences, 64(3):443 – 465.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y. (2007).
View-based query processing: On the relationship between rewriting,
answering and losslessness.
Theoretical Computer Science, 371(3):169 – 182.

Marx, M. (2007).
Queries determined by views: pack your views.
In Proceedings of PODS ’07, pages 23–30, New York, NY, USA. ACM.

Nash, A., Segoufin, L., and Vianu, V. (2010).
Views and queries: Determinacy and rewriting.
ACM Trans. Database Syst., 35(3):1–41.


	Introduction
	Basic definitions and notation
	Different settings for view-based query processing

	View-based query processing in semistructured data
	Rewriting of regular expressions
	Relationship between answering and rewriting
	Losslessness

	Determinacy and rewriting
	Queries determined by views
	Completeness of rewritings

	Conclusion
	Appendix

