View-Based Query Processing

Paolo Guagliardo
KRDB Research Centre
Free University of Bozen-Bolzano, Italy

11 November 2010

Outline

Introduction

Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion

Outline

```
Introduction
Basic definitions and notation
Different settings for view-based query processing
View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting Losslessness
Determinacy and rewriting
Queries determined by views
Completeness of rewritings
```

Conclusion

View-based query processing

Definition and motivation

> The problem of computing the answer to a query based on a set of views

Application areas:

- query optimisation
find a "better" query providing the same answer
- data warehousing
select which views to materialise
- data integration
check whether relevant queries can be answered
using only a given set of sources
- security and privacy
ensure that the views do not provide enough information to answer the sensitive queries

Preliminaries and notation

A relational structure \mathcal{I} over a finite alphabet of relation symbols is a pair $\left(\Delta^{\mathcal{I}}, .^{\mathcal{I}}\right)$, where

- $\Delta^{\mathcal{I}}$ is a domain of objects
- \mathcal{I}^{I} is a function associating each relation symbol r with a set of k-tuples of objects, with k the arity of r

A query is a function from relational structures to sets of tuples of a certain arity

Preliminaries and notation

A relational structure \mathcal{I} over a finite alphabet of relation symbols is a pair $\left(\Delta^{\mathcal{I}}, V^{\mathcal{I}}\right)$, where
$-\Delta^{\mathcal{I}}$ is a domain of objects

- ${ }^{\mathcal{I}}$ is a function associating each relation symbol r with a set of k-tuples of objects, with k the arity of r

A query is a function from relational structures to sets of tuples of a certain arity
$\mathcal{R} \quad$ finite alphabet of symbols (database signature)
D a relational structure over \mathcal{R} (database)
$\mathcal{V} \quad$ finite set of view symbols not in \mathcal{R}
$V^{\mathcal{R}} \quad$ formula defining $V \in \mathcal{V}$ (in terms of the symbols in \mathcal{R})
E a relational structure over \mathcal{V}, called a \mathcal{V}-extension

Semistructured data

Semistructured database

- a finite directed graph with edges labelled by elements of a finite alphabet \mathcal{R}
- represented as a finite relational structure \mathbf{D} over the set \mathcal{R} of binary relation symbols

Semistructured data

Semistructured database

- a finite directed graph with edges labelled by elements of a finite alphabet \mathcal{R}
- represented as a finite relational structure \mathbf{D} over the set \mathcal{R} of binary relation symbols

Regular Path Query (RPQ)

- a binary query defined in terms of a regular language over \mathcal{R}
- the answer $Q(\mathbf{D})$ to an RPQ Q over a database \mathbf{D} is the set of pairs of objects connected in \mathbf{D} by a sequence of (directed) edges forming a word in $\mathcal{L}(Q)$

Semistructured data

Semistructured database

- a finite directed graph with edges labelled by elements of a finite alphabet \mathcal{R}
- represented as a finite relational structure \mathbf{D} over the set \mathcal{R} of binary relation symbols

Regular Path Query (RPQ)

- a binary query defined in terms of a regular language over \mathcal{R}
- the answer $Q(\mathbf{D})$ to an RPQ Q over a database \mathbf{D} is the set of pairs of objects connected in \mathbf{D} by a sequence of (directed) edges forming a word in $\mathcal{L}(Q)$

Two-way Regular Path Query (2RPQ)

- an RPQ extended with backward navigation of database edges

Answering, rewriting and losslessness

Two main approaches to view-based query processing:

- Query answering

Compute the tuples satisfying the query in all databases consistent with the views (certain answers)

- Query rewriting

Reformulate the query in terms of the views, then evaluate the rewriting over the view extensions

Answering, rewriting and losslessness

Two main approaches to view-based query processing:

- Query answering

Compute the tuples satisfying the query in all databases consistent with the views (certain answers)

- Query rewriting

Reformulate the query in terms of the views, then evaluate the rewriting over the view extensions

Related issue:

- Losslessness

Determine whether there is information loss

- w.r.t. query answering
- w.r.t. query rewriting

Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion

Assumptions on the views

Let \mathbf{D} be a database and let $\mathcal{V}^{\mathcal{R}}(\mathbf{D})$ be the \mathcal{V}-extension \mathbf{E} such that $V(\mathbf{E})=V^{\mathcal{R}}(\mathbf{D})$ for each $V \in \mathcal{V}$

A \mathcal{V}-extension \mathbf{E} is

- sound w.r.t. \mathbf{D} iff $\quad \mathbf{E} \subseteq \mathcal{V}^{\mathcal{R}}(\mathbf{D})$
- exact w.r.t. D iff $\quad \mathbf{E}=\mathcal{V}^{\mathcal{R}}(\mathbf{D})$

Certain answers

The certain answers to Q under sound views \mathcal{V} w.r.t. a \mathcal{V}-extension \mathbf{E} is the set of all tuples t such that $t \in Q(\mathbf{D})$ for every database \mathbf{D} w.r.t. which \mathbf{E} is sound

$$
\operatorname{cert}_{Q, \mathcal{V}}^{\text {sound }}(\mathbf{E})=\bigcap\left\{Q(\mathbf{D}) \mid \text { for all } \mathbf{D} \text { s.t. } \mathbf{E} \subseteq \mathcal{V}^{\mathcal{R}}(\mathbf{D})\right\}
$$

The certain answers to Q under exact views \mathcal{V} w.r.t. a \mathcal{V}-extension \mathbf{E} is the set of all tuples t such that $t \in Q(\mathbf{D})$ for every database \mathbf{D} for which $\mathbf{E}=\mathcal{V}^{\mathcal{R}}(\mathbf{D})$

$$
\operatorname{cert}_{Q, \mathcal{V}}^{\text {exact }}(\mathbf{E})=\bigcap\left\{Q(\mathbf{D}) \mid \text { for all } \mathbf{D} \text { s.t. } \mathbf{E}=\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right\}
$$

Rewriting

Definition

Q_{rw} is a rewriting of a query Q under sound views \mathcal{V} iff for every database \mathbf{D} and every \mathcal{V}-extension \mathbf{E} s.t. $\mathbf{E} \subseteq \mathcal{V}^{\mathcal{R}}(\mathbf{D})$

$$
Q_{\mathrm{rw}}(\mathbf{E}) \subseteq Q(\mathbf{D})
$$

Definition
Q_{rw} is a rewriting of a query Q under exact views \mathcal{V} iff for every database \mathbf{D}

$$
Q_{\mathrm{rw}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right) \subseteq Q(\mathbf{D})
$$

Rewriting

Definition

Q_{rw} is a rewriting of a query Q under sound views \mathcal{V} iff for every database \mathbf{D} and every \mathcal{V}-extension \mathbf{E} s.t. $\mathbf{E} \subseteq \mathcal{V}^{\mathcal{R}}(\mathbf{D})$

$$
Q_{\mathrm{rw}}(\mathbf{E}) \subseteq Q(\mathbf{D})
$$

Definition
Q_{rw} is a rewriting of a query Q under exact views \mathcal{V} iff for every database D

$$
Q_{\mathrm{rw}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right) \subseteq Q(\mathbf{D})
$$

The above definitions are equivalent when the language used for expressing the rewritings is monotonic

Rewriting

Definition

Q_{rw} is a rewriting of a query Q under sound views \mathcal{V} iff for every database \mathbf{D} and every \mathcal{V}-extension \mathbf{E} s.t. $\mathbf{E} \subseteq \mathcal{V}^{\mathcal{R}}(\mathbf{D})$

$$
Q_{\mathrm{rw}}(\mathbf{E}) \subseteq Q(\mathbf{D})
$$

Definition
Q_{rw} is a rewriting of a query Q under exact views \mathcal{V} iff for every database D

$$
Q_{\mathrm{rw}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right) \subseteq Q(\mathbf{D})
$$

The above definitions are equivalent when the language used for expressing the rewritings is monotonic

Exact rewriting if the subset inclusion is an equality

Maximally contained rewritings

Let \mathcal{L}_{r} be a query class in which rewritings are expressed

Definition

A rewriting $Q_{\mathrm{rw}} \in \mathcal{L}_{\mathrm{r}}$ of Q under sound views \mathcal{V} is \mathcal{L}_{r}-maximal iff every other rewriting $Q_{r w}^{\prime} \in \mathcal{L}_{\mathrm{r}}$ of Q is s.t. for each database \mathbf{D} and each \mathcal{V}-extension $\mathbf{E} \subseteq \mathcal{V}^{\mathcal{R}}(\mathbf{D})$

$$
Q_{\mathrm{rw}}(\mathbf{E}) \not \subset Q_{\mathrm{rw}}^{\prime}(\mathbf{E})
$$

Definition

A rewriting $Q_{r w} \in \mathcal{L}_{r}$ of Q under exact views \mathcal{V} is \mathcal{L}_{r}-maximal iff every other rewriting $Q_{\mathrm{rw}}^{\prime} \in \mathcal{L}_{\mathrm{r}}$ of Q is s.t. for each database \mathbf{D}

$$
Q_{\mathrm{rw}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right) \not \subset Q_{\mathrm{rw}}^{\prime}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)
$$

Outline

Introduction
 Basic definitions and notation
 Different settings for view-based query processing

View-based query processing in semistructured data Rewriting of regular expressions
Relationship between answering and rewriting Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion

Problem

Given a regular expression E_{0} and a finite set $\mathcal{E}=\left\{E_{1}, \ldots, E_{k}\right\}$ of regular expressions, re-express (if possible) E_{0} in terms of E_{1}, \ldots, E_{k}

Rewriting of regular expressions

Problem

Given a regular expression E_{0} and a finite set $\mathcal{E}=\left\{E_{1}, \ldots, E_{k}\right\}$ of regular expressions, re-express (if possible) E_{0} in terms of E_{1}, \ldots, E_{k}

Solution

1. Construct a deterministic automaton A_{d} accepting $\mathcal{L}\left(E_{0}\right)$
2. Construct an automaton A^{\prime} accepting exactly those words that are not in any rewriting of E_{0}
3. the complement of A^{\prime} is the maximal rewriting of E_{0} w.r.t. \mathcal{E}

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

Rewriting of regular expressions

Rewriting of $a \cdot(c+b \cdot a)^{*}$ in terms of $\left\{a, a \cdot c^{*} \cdot b, c\right\}$, with $\operatorname{re}\left(e_{1}\right)=a, \operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$ and $\operatorname{re}\left(e_{3}\right)=c$

The rewriting is $R=e_{2}{ }^{*} \cdot e_{1} \cdot e_{3}{ }^{*}$ and $\exp (R)=\left(a \cdot c^{*} \cdot b\right)^{*} \cdot a \cdot c^{*}$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

- A_{1} for re $\left(e_{1}\right)=a$

- A_{2} for $\operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$

- A_{3} for $\operatorname{re}\left(e_{3}\right)=b$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

- A_{1} for $\mathrm{re}\left(e_{1}\right)=a$

- A_{2} for $\operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$

- A_{3} for $\operatorname{re}\left(e_{3}\right)=b$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

- A_{1} for re $\left(e_{1}\right)=a$

- A_{2} for $\operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$

- A_{3} for $\operatorname{re}\left(e_{3}\right)=b$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

- A_{1} for re $\left(e_{1}\right)=a$

- A_{2} for $\operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$

- A_{3} for $\operatorname{re}\left(e_{3}\right)=b$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

- A_{1} for $\mathrm{re}\left(e_{1}\right)=a$

- A_{2} for $\operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$

- A_{3} for $\operatorname{re}\left(e_{3}\right)=b$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

- A_{1} for re $\left(e_{1}\right)=a$

- A_{2} for $\operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$

- A_{3} for $\operatorname{re}\left(e_{3}\right)=b$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

- A_{1} for $\mathrm{re}\left(e_{1}\right)=a$

- A_{2} for $\operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$

- A_{3} for $\operatorname{re}\left(e_{3}\right)=b$

Rewriting of regular expressions

Exactness of rewritings

Definition A rewriting R of E_{0} is exact if $\mathcal{L}(\exp (R))=\mathcal{L}\left(E_{0}\right)$

- A_{1} for re $\left(e_{1}\right)=a$

- A_{2} for $\operatorname{re}\left(e_{2}\right)=a \cdot c^{*} \cdot b$

- A_{3} for $\operatorname{re}\left(e_{3}\right)=b$

$\Rightarrow R$ is an exact rewriting of E_{0} iff $\mathcal{L}\left(A_{d} \cap \bar{B}\right)=\varnothing$

Rewriting of regular expressions

Complexity results

Complexity of the proposed method:

- Generation of the maximal rewriting
- Existence of an exact rewriting

2EXPTIME
2EXPSPACE

Rewriting of regular expressions

Complexity results

Complexity of the proposed method:

- Generation of the maximal rewriting
- Existence of an exact rewriting

2EXPTIME
2EXPSPACE

EXPSPACE-complete
2EXPSPACE-complete

Rewriting of regular expressions

Complexity results

Complexity of the proposed method:

- Generation of the maximal rewriting
- Existence of an exact rewriting

2EXPTIME
2EXPSPACE

Complexity of the decision problem:

- Existence of a nonempty rewriting
- Existence of an exact rewriting

EXPSPACE-complete
2EXPSPACE-complete
\Rightarrow The method is essentially optimal

Outline

Introduction
Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion

Answering and rewriting

Most work focused on conjunctive queries
\Rightarrow no distinction between answering and rewriting
Query rewriting \equiv Query answering

The maximal rewriting computes the certain answers

Answering and rewriting

Most work focused on conjunctive queries
\Rightarrow no distinction between answering and rewriting

$$
\text { Query rewriting } \equiv \text { Query answering }
$$

The maximal rewriting computes the certain answers

Difference between answering and rewriting can be pointed out in the context of RPQs in semistructured databases
[Calvanese et al., 2007]

Relationship between answering and rewriting

$$
\begin{aligned}
& Q=a \cdot c+b \cdot d \\
& \mathcal{V}=\left\{V_{1}, V_{2}, V_{3}\right\}, \text { with } V_{1}^{\mathcal{R}}=a, V_{2}^{\mathcal{R}}=b, V_{3}^{\mathcal{R}}=c+d
\end{aligned}
$$

- The RPQ-maximal rewriting of Q is empty

Relationship between answering and rewriting

$$
\begin{aligned}
& Q=a \cdot c+b \cdot d \\
& \mathcal{V}=\left\{V_{1}, V_{2}, V_{3}\right\}, \text { with } V_{1}^{\mathcal{R}}=a, V_{2}^{\mathcal{R}}=b, V_{3}^{\mathcal{R}}=c+d
\end{aligned}
$$

- The RPQ-maximal rewriting of Q is empty
- $\operatorname{cert}_{Q, \mathcal{V}}=\left\{(x, y) \mid \exists z \cdot V_{1}(x, z) \wedge V_{2}(x, z) \wedge V_{3}(z, y)\right\}$

Relationship between answering and rewriting

$$
\begin{aligned}
& Q=a \cdot c+b \cdot d \\
& \mathcal{V}=\left\{V_{1}, V_{2}, V_{3}\right\}, \text { with } V_{1}^{\mathcal{R}}=a, V_{2}^{\mathcal{R}}=b, V_{3}^{\mathcal{R}}=c+d
\end{aligned}
$$

- The RPQ-maximal rewriting of Q is empty
- $\operatorname{cert}_{Q, \mathcal{V}}=\left\{(x, y) \mid \exists z \cdot V_{1}(x, z) \wedge V_{2}(x, z) \wedge V_{3}(z, y)\right\}$

Rewriting ignores that V_{1} and V_{2} connect the same pair of objects, while answering takes it into account

Relationship between answering and rewriting

$$
\begin{aligned}
& Q=a \cdot c+b \cdot d \\
& \mathcal{V}=\left\{V_{1}, V_{2}, V_{3}\right\}, \text { with } V_{1}^{\mathcal{R}}=a, V_{2}^{\mathcal{R}}=b, V_{3}^{\mathcal{R}}=c+d
\end{aligned}
$$

- The RPQ-maximal rewriting of Q is empty
- $\operatorname{cert}_{Q, \mathcal{V}}=\left\{(x, y) \mid \exists z \cdot V_{1}(x, z) \wedge V_{2}(x, z) \wedge V_{3}(z, y)\right\}$

Rewriting ignores that V_{1} and V_{2} connect the same pair of objects, while answering takes it into account
\Rightarrow Query answering is more precise than query rewriting (can match non-linear patterns in a database)

Outline

Introduction

Basic definitions and notation

Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion

Losslessness w.r.t. query answering

Is the information content of a set of views sufficient to answer completely a given query?

Definition
A set of view \mathcal{V} is said to be lossless w.r.t. a query Q, if for every database \mathbf{D} we have

$$
Q(\mathbf{D})=\operatorname{cert}_{Q, \mathcal{V}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)
$$

Losslessness w.r.t. query rewriting

Definition (Exactness)
Q_{rw} is an exact rewriting of Q w.r.t. \mathcal{V}
if for every database \mathbf{D} we have

$$
Q(\mathbf{D})=Q_{\mathrm{rw}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)
$$

Losslessness w.r.t. query rewriting

Definition (Exactness)
Q_{rw} is an exact rewriting of Q w.r.t. \mathcal{V}
if for every database \mathbf{D} we have

$$
Q(\mathbf{D})=Q_{\mathrm{rw}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)
$$

Definition (Perfectness)
Q_{rw} is a perfect rewriting of Q w.r.t. \mathcal{V}
if for every database \mathbf{D} we have

$$
\operatorname{cert}_{Q, \mathcal{V}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)=Q_{\mathrm{rw}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)
$$

Losslessness in the context of 2RPQs

```
        Q a 2RPQ
    V a set of 2RPQ views
Q max me 2RPQ-maximal rewriting of Q w.r.t. }\mathcal{V
```

For every database \mathbf{D},

$$
Q_{\mathrm{rw}}^{\max }\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right) \subseteq \operatorname{cert}_{Q, \mathcal{V}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right) \subseteq Q(\mathbf{D})
$$

- \mathcal{V} lossless w.r.t. Q
\Rightarrow no loss related to answering the query based on a set of views

\square

Losslessness in the context of 2RPQs

```
        Q a 2RPQ
    V a set of 2RPQ views
Q max the 2RPQ-maximal rewriting of Q w.r.t. V
```

For every database D,

$$
Q_{\mathrm{rw}}^{\max }\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)=\operatorname{cert}_{Q, \mathcal{V}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right) \subseteq Q(\mathbf{D})
$$

- $Q_{\mathrm{rw}}^{\max }$ perfect
\Rightarrow no loss due to the rewriting
- V lossless w.r.t. Q
\Rightarrow no loss related to answering the query based on a set of views
-Q max

Losslessness in the context of 2RPQs

```
        Q a 2RPQ
    V a set of 2RPQ views
Qmax the 2RPQ-maximal rewriting of Q w.r.t. }\mathcal{V
```

For every database D,

$$
Q_{\mathrm{rw}}^{\max }\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right) \subseteq \operatorname{cert}_{Q, \mathcal{V}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)=Q(\mathbf{D})
$$

\Rightarrow no loss due to the rewriting

- \mathcal{V} lossless w.r.t. Q
\Rightarrow no loss related to answering the query based on a set of views

Losslessness in the context of 2RPQs

```
    Q a 2RPQ
    V a set of 2RPQ views
Qmax the 2RPQ-maximal rewriting of Q w.r.t. }\mathcal{V
```

For every database D,

$$
Q_{\mathrm{rw}}^{\max }\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)=\operatorname{cert}_{Q, \mathcal{V}}\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)=Q(\mathbf{D})
$$

\Rightarrow no loss due to the rewriting

- V lossless w.r.t. Q
\Rightarrow no loss related to answering the query based on a set of views
- $Q_{\mathrm{rw}}^{\max }$ exact, that is, $Q_{\mathrm{rw}}^{\max }\left(\mathcal{V}^{\mathcal{R}}(\mathbf{D})\right)=Q(\mathbf{D})$
\Rightarrow perfectness of the rewriting + losslessness of the views

Outline

```
Introduction
    Basic definitions and notation
    Different settings for view-based query processing
View-based query processing in semistructured data
    Rewriting of regular expressions
    Relationship between answering and rewriting
    Losslessness
```

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion

Determinacy and rewriting

\mathcal{V} determines Q (denoted $\mathcal{V} \rightarrow Q$) iff

$$
\mathcal{V}^{\mathcal{R}}\left(\mathbf{D}_{1}\right)=\mathcal{V}^{\mathcal{R}}\left(\mathbf{D}_{2}\right) \text { implies } Q\left(\mathbf{D}_{1}\right)=Q\left(\mathbf{D}_{2}\right)
$$

Determinacy and rewriting

\mathcal{V} determines Q (denoted $\mathcal{V} \rightarrow Q$) iff

$$
\mathcal{V}^{\mathcal{R}}\left(\mathbf{D}_{1}\right)=\mathcal{V}^{\mathcal{R}}\left(\mathbf{D}_{2}\right) \text { implies } Q\left(\mathbf{D}_{1}\right)=Q\left(\mathbf{D}_{2}\right)
$$

If Q has an exact rewriting Q_{rw} under exact views \mathcal{V}, then $\mathcal{V} \rightarrow Q$

- converse in general does not hold

Determinacy and rewriting

\mathcal{V} determines Q (denoted $\mathcal{V} \rightarrow Q$) iff

$$
\mathcal{V}^{\mathcal{R}}\left(\mathbf{D}_{1}\right)=\mathcal{V}^{\mathcal{R}}\left(\mathbf{D}_{2}\right) \text { implies } Q\left(\mathbf{D}_{1}\right)=Q\left(\mathbf{D}_{2}\right)
$$

If Q has an exact rewriting Q_{rw} under exact views \mathcal{V}, then $\mathcal{V} \rightarrow Q$

- converse in general does not hold
\mathcal{L}_{\checkmark} view language (for defining views)
\mathcal{L}_{q} query language (for querying the database)
\mathcal{L}_{r} rewriting language (for expressing rewritings)

We say that \mathcal{L}_{r} is complete for \mathcal{L}_{V}-to- \mathcal{L}_{q} rewritings iff \mathcal{L}_{r} can be used to rewrite $Q \in \mathcal{L}_{\mathrm{q}}$ using views \mathcal{V} defined in \mathcal{L}_{V} whenever $\mathcal{V} \rightarrow Q$

Determinacy and rewriting

Questions:

- For $Q \in \mathcal{L}_{\mathrm{q}}$ and views \mathcal{V} with definitions in \mathcal{L}_{v}, is it decidable whether $\mathcal{V} \rightarrow Q$?
- Is \mathcal{L}_{q} complete for \mathcal{L}_{v}-to- \mathcal{L}_{q} rewritings?
- If not, how to extend \mathcal{L}_{q} in order express such rewritings?

Two cases:

restricted finite database instances only
unrestricted possibly infinite databases

Query languages considered:
FO first-order logic
CQ conjunctive queries
UCQ unions of conjunctive queries

Deciding determinacy

Theorem
If satisfiability in \mathcal{L}_{q} or validity in \mathcal{L}_{v} is undecidable, then it is also undecidable whether $\mathcal{V} \rightarrow Q$ where $Q \in \mathcal{L}_{q}$ and \mathcal{V} is a set of views defined in \mathcal{L}_{v}

Deciding determinacy

Theorem
If satisfiability in \mathcal{L}_{q} or validity in \mathcal{L}_{V} is undecidable, then it is also undecidable whether $\mathcal{V} \rightarrow Q$ where $Q \in \mathcal{L}_{q}$ and \mathcal{V} is a set of views defined in \mathcal{L}_{v}

Corollary

Determinacy is undecidable whenever queries or view definitions are expressed in FO

Outline

```
Introduction
    Basic definitions and notation
    Different settings for view-based query processing
View-based query processing in semistructured data
    Rewriting of regular expressions
    Relationship between answering and rewriting
    Losslessness
```

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion

Determinacy: undecidable (corollary in previous slide)

In the unrestricted case, FO is complete for FO-to-FO rewritings

- does not hold with finite database instances

Determinacy: undecidable (corollary in previous slide)

In the unrestricted case, FO is complete for FO-to-FO rewritings

- does not hold with finite database instances

Theorem
Any language complete for FO-to-FO rewritings for finite instances must express all computable queries

UCQ queries and views

Determinacy: undecidable
Decidable whether a UCQ can be rewritten using a UCQ in terms of a set of views expressed as UCQs
\Rightarrow UCQ is not complete for UCQ-to-UCQ rewritings (otherwise contradiction to undecidability of determinacy)

UCQ queries and views

Determinacy: undecidable
Decidable whether a UCQ can be rewritten using a UCQ in terms of a set of views expressed as UCQs
\Rightarrow UCQ is not complete for UCQ-to-UCQ rewritings (otherwise contradiction to undecidability of determinacy)

Theorem
Any language complete for UCQ-to-CQ rewritings must express non-monotonic queries

- Proof in the next slide

UCQ queries and views

Proof.
Let $\mathcal{R}=\{P, R\}$ with P, R unary, and let $\mathcal{V}=\left\{V_{1}, V_{2}\right\}$ with

$$
V_{1}^{\mathcal{R}}(x)=\exists u \cdot R(u) \wedge P(x) \quad ; \quad V_{2}^{\mathcal{R}}(x)=R(x) \vee P(x)
$$

Let $Q(x)=P(x)$.

UCQ queries and views

Proof.

Let $\mathcal{R}=\{P, R\}$ with P, R unary, and let $\mathcal{V}=\left\{V_{1}, V_{2}\right\}$ with

$$
V_{1}^{\mathcal{R}}(x)=\exists u \cdot R(u) \wedge P(x) \quad ; \quad V_{2}^{\mathcal{R}}(x)=R(x) \vee P(x)
$$

Let $Q(x)=P(x)$. Then, $\mathcal{V} \rightarrow Q$ because

- If $R(\mathbf{D}) \neq \varnothing$, then $Q(\mathbf{D})=V_{1}(\mathbf{D})$
- If $R(\mathbf{D})=\varnothing$, then $Q(\mathbf{D})=V_{2}(\mathbf{D})$

UCQ queries and views

Proof.

Let $\mathcal{R}=\{P, R\}$ with P, R unary, and let $\mathcal{V}=\left\{V_{1}, V_{2}\right\}$ with

$$
V_{1}^{\mathcal{R}}(x)=\exists u \cdot R(u) \wedge P(x) \quad ; \quad V_{2}^{\mathcal{R}}(x)=R(x) \vee P(x)
$$

Let $Q(x)=P(x)$. Then, $\mathcal{V} \rightarrow Q$ because

- If $R(\mathbf{D}) \neq \varnothing$, then $Q(\mathbf{D})=V_{1}(\mathbf{D})$
- If $R(\mathbf{D})=\varnothing$, then $Q(\mathbf{D})=V_{2}(\mathbf{D})$

Let \mathbf{D}_{1} such that $P\left(\mathbf{D}_{1}\right)=\{a, b\}$ and $R\left(\mathbf{D}_{1}\right)=\varnothing$
\mathbf{D}_{2} such that $P\left(\mathbf{D}_{2}\right)=\{a\}$ and $R\left(\mathbf{D}_{1}\right)=\{b\}$

UCQ queries and views

Proof.

Let $\mathcal{R}=\{P, R\}$ with P, R unary, and let $\mathcal{V}=\left\{V_{1}, V_{2}\right\}$ with

$$
V_{1}^{\mathcal{R}}(x)=\exists u \cdot R(u) \wedge P(x) \quad ; \quad V_{2}^{\mathcal{R}}(x)=R(x) \vee P(x)
$$

Let $Q(x)=P(x)$. Then, $\mathcal{V} \rightarrow Q$ because

- If $R(\mathbf{D}) \neq \varnothing$, then $Q(\mathbf{D})=V_{1}(\mathbf{D})$
- If $R(\mathbf{D})=\varnothing$, then $Q(\mathbf{D})=V_{2}(\mathbf{D})$

Let \mathbf{D}_{1} such that $P\left(\mathbf{D}_{1}\right)=\{a, b\}$ and $R\left(\mathbf{D}_{1}\right)=\varnothing$
\mathbf{D}_{2} such that $P\left(\mathbf{D}_{2}\right)=\{a\}$ and $R\left(\mathbf{D}_{1}\right)=\{b\}$
$V_{1}\left(\mathbf{D}_{1}\right)=\varnothing \subseteq\{a\}=V_{1}\left(\mathbf{D}_{2}\right)$ and $V_{2}\left(\mathbf{D}_{1}\right)=\{a, b\}=V_{2}\left(\mathbf{D}_{2}\right)$ but $Q\left(\mathbf{D}_{1}\right)=\{a, b\} \nsubseteq\{a\}=Q\left(\mathbf{D}_{2}\right)$

UCQ queries and views

Proof.

Let $\mathcal{R}=\{P, R\}$ with P, R unary, and let $\mathcal{V}=\left\{V_{1}, V_{2}\right\}$ with

$$
V_{1}^{\mathcal{R}}(x)=\exists u \cdot R(u) \wedge P(x) \quad ; \quad V_{2}^{\mathcal{R}}(x)=R(x) \vee P(x)
$$

Let $Q(x)=P(x)$. Then, $\mathcal{V} \rightarrow Q$ because

- If $R(\mathbf{D}) \neq \varnothing$, then $Q(\mathbf{D})=V_{1}(\mathbf{D})$
- If $R(\mathbf{D})=\varnothing$, then $Q(\mathbf{D})=V_{2}(\mathbf{D})$

Let \mathbf{D}_{1} such that $P\left(\mathbf{D}_{1}\right)=\{a, b\}$ and $R\left(\mathbf{D}_{1}\right)=\varnothing$
\mathbf{D}_{2} such that $P\left(\mathbf{D}_{2}\right)=\{a\}$ and $R\left(\mathbf{D}_{1}\right)=\{b\}$
$V_{1}\left(\mathbf{D}_{1}\right)=\varnothing \subseteq\{a\}=V_{1}\left(\mathbf{D}_{2}\right)$ and $V_{2}\left(\mathbf{D}_{1}\right)=\{a, b\}=V_{2}\left(\mathbf{D}_{2}\right)$ but $Q\left(\mathbf{D}_{1}\right)=\{a, b\} \nsubseteq\{a\}=Q\left(\mathbf{D}_{2}\right)$
\Rightarrow the mapping that associates each query extension $Q(\mathbf{D})$ to the corresponding extension $\mathcal{V}^{\mathcal{R}}(\mathbf{D})$ is non-monotonic $\quad \square$

CQ queries and views

Determinacy: open problem
Decidable whether a CQ can be rewritten as a CQ in terms of a set of views defined by means of CQs

Completeness of CQ for CQ-to-CQ rewritings would imply decidability of determinacy

CQ queries and views

Determinacy: open problem
Decidable whether a CQ can be rewritten as a CQ in terms of a set of views defined by means of CQs

Completeness of CQ for CQ-to-CQ rewritings would imply decidability of determinacy

Unfortunately CQ is not complete for CQ-to-CQ rewritings

- a path query $P_{n}(x, y)$ on a binary relation R returns the pairs $\langle x, y\rangle$ for which there is an R-path of length n from x to y
- $\left\{P_{3}, P_{4}\right\} \rightarrow P_{5}$ because P_{5} has the FO rewriting

$$
P_{5}(x, y) \equiv \exists z\left[P_{4}(x, z) \wedge \forall v\left(P_{3}(v, z) \rightarrow P_{4}(v, y)\right)\right]
$$

but P_{5} has no CQ rewriting in terms of P_{3} and P_{4}

Guarded fragment (GF)

Fragment of FOL consisting of only quantified formulas of the form

$$
\forall \bar{x}(G(\bar{x}, \bar{y}) \rightarrow \phi(\bar{x}, \bar{y}))
$$

where G is a relation symbol and $\phi(\bar{x}, \bar{y})$ is guarded as well

Key restriction: all free variable occurring in $\phi(\bar{x}, \bar{y})$ must also occur in the guard $G(\bar{x}, \bar{y})$

Guarded fragment (GF)

Fragment of FOL consisting of only quantified formulas of the form

$$
\forall \bar{x}(G(\bar{x}, \bar{y}) \rightarrow \phi(\bar{x}, \bar{y}))
$$

where G is a relation symbol and $\phi(\bar{x}, \bar{y})$ is guarded as well

Key restriction: all free variable occurring in $\phi(\bar{x}, \bar{y})$ must also occur in the guard $G(\bar{x}, \bar{y})$

Not expressible in GF

- that a relation is transitive
- that a relation is a partial function

Guarded fragment (GF)

Fragment of FOL consisting of only quantified formulas of the form

$$
\forall \bar{x}(G(\bar{x}, \bar{y}) \rightarrow \phi(\bar{x}, \bar{y}))
$$

where G is a relation symbol and $\phi(\bar{x}, \bar{y})$ is guarded as well

Key restriction: all free variable occurring in $\phi(\bar{x}, \bar{y})$ must also occur in the guard $G(\bar{x}, \bar{y})$

Not expressible in GF

- that a relation is transitive
- that a relation is a partial function
\Rightarrow Views defined in GF always consist of sub-tuples of a relation in the database

Packed fragment (PF)

Useful generalisation of the guarded fragment allowing for safe products as guards

$$
G\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{k=1, \ldots, m} \exists \bar{y} A_{k}(\bar{x}, \bar{y})
$$

which for every pair of free variables x_{i}, x_{j} with $i \neq j$ has an atom A_{k} in which x_{i}, x_{j} both occur free

Packed fragment (PF)

Useful generalisation of the guarded fragment allowing for safe products as guards

$$
G\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{k=1, \ldots, m} \exists \bar{y} A_{k}(\bar{x}, \bar{y})
$$

which for every pair of free variables x_{i}, x_{j} with $i \neq j$ has an atom A_{k} in which x_{i}, x_{j} both occur free

- transitivity and functionality not expressible in PF
- "until" operator of temporal logic in PF but not in GF

Packed fragment (PF)

Useful generalisation of the guarded fragment allowing for safe products as guards

$$
G\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{k=1, \ldots, m} \exists \bar{y} A_{k}(\bar{x}, \bar{y})
$$

which for every pair of free variables x_{i}, x_{j} with $i \neq j$ has an atom A_{k} in which x_{i}, x_{j} both occur free

- transitivity and functionality not expressible in PF
- "until" operator of temporal logic in PF but not in GF

Properties (same as GF)

- validity problem is 2EXPTIME-complete
- every satisfiable formula is satisfiable on a finite model

No difference between unrestricted and finite case (because of the finite model property)

Determinacy: 2EXPTIME-complete

PF is complete for PF-to-PF rewritings

No difference between unrestricted and finite case (because of the finite model property)

Determinacy: 2EXPTIME-complete

PF is complete for PF-to-PF rewritings

Restriction to packed (U)CQs:

- PCQ is complete for PCQ-to-PCQ rewritings
- UPCQ is complete for UPCQ-to-UPCQ rewritings

Outline

Introduction

Basic definitions and notation
Different settings for view-based query processing

View-based query processing in semistructured data
Rewriting of regular expressions
Relationship between answering and rewriting
Losslessness

Determinacy and rewriting
Queries determined by views
Completeness of rewritings

Conclusion

Summary I

Two main approaches to view-based query processing:

- answering aims at finding the certain answers (answers to the query in all databases consistent with the views)
- rewriting aims at reformulating the query in terms of the views and then evaluating the rewritten query over the view extensions

Query rewriting is an approximation of query answering

Characterised when no loss of information occurs
w.r.t. rewriting and w.r.t. quality of views

Summary II

Given a set of views and a query expressed in a language \mathcal{L}
Determinacy
Decide whether the views determine the answer to the query

Completeness of rewritings

Can \mathcal{L} be used for rewriting the query in terms of the views whenever the latter determine the answer to the former?

Language \mathcal{L}	Determinacy	Complete for \mathcal{L}-to- \mathcal{L} rewritings?
FO	undecidable	YES (unrestricted) NO (finite)
UCQ	undecidable	NO
CQ	open	NO
PF	2EXPTIME-complete	YES

References

围 Calvanese，D．，De Giacomo，G．，Lenzerini，M．，and Vardi，M．Y．（2002）． Rewriting of regular expressions and regular path queries． Journal of Computer and System Sciences，64（3）：443－465．
围 Calvanese，D．，De Giacomo，G．，Lenzerini，M．，and Vardi，M．Y．（2007）． View－based query processing：On the relationship between rewriting， answering and losslessness．
Theoretical Computer Science，371（3）：169－182．
風 Marx，M．（2007）．
Queries determined by views：pack your views． In Proceedings of PODS＇07，pages 23－30，New York，NY，USA．ACM．
围 Nash，A．，Segoufin，L．，and Vianu，V．（2010）．
Views and queries：Determinacy and rewriting．
ACM Trans．Database Syst．，35（3）：1－41．

