MISALIGNMENT SYMPTOM DETECTION
with XML-based Enterprise Architecture Model Analysis

Dóra Őri

Novel Directions Talk
CAiSE’17 – EMISA 2017
12-13 June, 2017
AGENDA

- Motivation and Problem Statement
AGENDA

- Motivation and Problem Statement
- Purpose of the Study and Research Questions
AGENDA

- Motivation and Problem Statement
- Purpose of the Study and Research Questions
- Research Methodology
AGENDA

- Motivation and Problem Statement
- Purpose of the Study and Research Questions
- Research Methodology
- Conclusions
MOTIVATION
MOTIVATION

- The need for strategic alignment and in growing enterprise complexity
MOTIVATION

- The need for strategic alignment and in growing enterprise complexity

- Use IT effectively to achieve business goals
- The ability of IT to create business value
- Bridge the gap between business and IT
- Integrate IT to business strategy, mission and goals
MOTIVATION

- The need for strategic alignment and in growing enterprise complexity
- The role of misalignment analysis in achieving alignment
MOTIVATION

- The need for strategic alignment and in growing enterprise complexity
- The role of misalignment analysis in achieving alignment

Misalignment Classification
- Organ
- Symptom
- Sign
- Syndrome
- Etiology

Misalignment Management
- Diagnosis (detection)
- Therapy (correction)
- Prophylaxis (prevention)

Misalignment Assessment Framework using a Medical Science Analogy (Carvalho and Sousa, 2008)
MOTIVATION

- The need for strategic alignment and in growing enterprise complexity
- The role of misalignment analysis in achieving alignment
- The capability of EAM for (mis)alignment assessment
MOTIVATION

- The need for strategic alignment and in growing enterprise complexity
- The role of misalignment analysis in achieving alignment
- The capability of EAM for (mis)alignment assessment
MOTIVATION

- The need for strategic alignment and in growing enterprise complexity
- The role of misalignment analysis in achieving alignment
- The capability of EAM for (mis)alignment assessment
PROBLEM STATEMENT

Assessing strategic alignment from the perspective of strategic misalignment

Misalignment assessment by misalignment symptom detection

Enterprise architecture-based misalignment assessment

The relevance of EA analysis methods
Purpose of the Study

Main Goal

To analyse **strategic misalignment** between the business dimension and information systems dimension

Research Objectives
PURPOSE OF THE STUDY

<table>
<thead>
<tr>
<th>MAIN GOAL</th>
<th>To analyse strategic misalignment between the business dimension and information systems dimension</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RESEARCH OBJECTIVES</th>
<th>RO1: What are the typical symptoms of misalignment according to the operation of the SAM model?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RO2: How to transform misalignment symptoms into formally analysable statements?</td>
</tr>
<tr>
<td></td>
<td>RO3: What are the formal analysis methods of detecting misalignment symptoms in enterprise architecture models?</td>
</tr>
</tbody>
</table>
RESEARCH QUESTIONS

RQ1 • Which misalignment symptoms can be detected via enterprise architecture assessment?

RQ2 • Which dimensions and domains are needed to examine in an EA model to detect misalignment symptoms?

RQ3 • How do EA models manifest different misalignment symptoms?

RQ4 • With which methods can we explore the different misalignment symptoms in EA models?
CONSTRUCTION OF THE RESEARCH
CONSTRUCTION OF THE RESEARCH

Research Design | The interactive model by Maxwell
Research Design | The interactive model by Maxwell

Research Purposes — **Conceptual Context**

Research Questions — **Validity**

Research Methods

THE INTERACTIVE MODEL OF RESEARCH DESIGN BY MAXWELL (1996)
CONSTRUCTION OF THE RESEARCH

Research Design | The interactive model by Maxwell
Framework Building | Design Science Research
CONSTRUCTION OF THE RESEARCH

Research Design | The interactive model by Maxwell
Framework Building | Design Science Research

The Process Map of DSR Methodology (Peffers et al., 2007)
CONSTRUCTION OF THE RESEARCH

Research Design | The interactive model by Maxwell
Framework Building | Design Science Research
Empirical Validation | Case Study Research
CONSTRUCTION OF THE RESEARCH

Research Design | The interactive model by Maxwell

Framework Building | Design Science Research

Empirical Validation | Case Study Research

The Process of Case Study Research (Yin, 2013)

Motivation and Problem Statement **Purpose of the Study and RQs** **Construction of the Research** **Conclusions**
CONSTRUCTION OF THE RESEARCH

Research Design | The interactive model by Maxwell
Framework Building | Design Science Research
Empirical Validation | Case Study Research
RESEARCH FRAMEWORK

Concept Categorization | Review of related concepts
Concept Categorization | Review of related concepts

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Application</th>
<th>RQ Asgmt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of Business and IT Areas</td>
<td>The most important organizational areas to review before proceeding alignment assessments</td>
<td>RQ2</td>
</tr>
<tr>
<td>Means of Symptom Analysis</td>
<td>Symptom description and classification approaches</td>
<td>RQ1, RQ4</td>
</tr>
<tr>
<td>Means of Model Overview</td>
<td>EA-based architecture domain and SAM domain overview</td>
<td>RQ2, RQ3</td>
</tr>
<tr>
<td>Means of Model Analysis</td>
<td>Possible alignment domain matching techniques, architecture domain matching techniques and EA analysis types</td>
<td>RQ4</td>
</tr>
<tr>
<td>Supportive Concept Frameworks</td>
<td>Supportive concept frameworks for EA alignment methods</td>
<td>RQ4</td>
</tr>
<tr>
<td>Potential Directions for Implementation</td>
<td>Potential directions for implementation</td>
<td>RQ3, RQ4</td>
</tr>
</tbody>
</table>
RESEARCH FRAMEWORK

Concept Categorization | Review of related concepts
Conceptual Design | The 3-layer research model
RESEARCH FRAMEWORK

Concept Categorization | Review of related concepts

Conceptual Design | The 3-layer research model

Misalignment Layer » RQ1, RQ2
- Construction and formal description of misalignment symptoms
 - Domain Matching | Symptom Classification | Pattern Generation

EA Model Layer » RQ3
- Preparing the underlying EA models for the misalignment symptom detection
 - Model Transformation | Artifact Definition | Model Export

Analysis Layer » RQ4
- Implementation details of the proposed research
 - Rule Construction | Rule Testing | Output Generation
RESEARCH FRAMEWORK

- **Concept Categorization** | Review of related concepts
- **Conceptual Design** | The 3-layer research model
- **Proposed Research Methodology** | Operation of the framework
RESEARCH FRAMEWORK

Concept Categorization | Review of related concepts
Conceptual Design | The 3-layer research model
Proposed Research Methodology | Operation of the framework

THE CONSTRUCTION OF EA-BASED MISALIGNMENT DETECTION FRAMEWORK
RESEARCH FRAMEWORK

Concept Categorization | Review of related concepts
Conceptual Design | The 3-layer research model
Proposed Research Methodology | Operation of the framework

A FRAMEWORK FOR IDENTIFYING SYMPTOMS FOR EA SCOPE ANALYSIS

- Code
- Alignment perspective
- Alignment type
- Symptom definition
- Literature reference
- Sign, presence
- Occurrence, presence in EA model
- Containing EA model
- Occurrence on model entity level
- Other necessary sources for investigation

A FRAMEWORK FOR DETECTING MISALIGNMENT SYMPTOMS IN EA SCOPE

SYMPTOM CATEGORIZATION

- Code
- Symptom definition
- Suitable EA analysis to detect the symptom
- Occurrence, presence in EA model
- Containing EA model
 - In organisational model structure
- Occurrence on model entity level
 - In organisational model structure
- Occurrence in XML-based model export
- Occurrence on model entity level in XML export
- XML-based query
- Query in Schematron language

Motivation and Problem Statement | Purpose of the Study and RQs | Construction of the Research | Conclusions
Concept Categorization | Review of related concepts
Conceptual Design | The 3-layer research model
Proposed Research Methodology | Operation of the framework
Formal Implementation | Rule-based XML validation on semi-structured data – Schematron-based assertion queries
DELIMITATIONS OF THE STUDY

Conceptual limitations

• Not for alignment maturity assessment
• Not for soft alignment characteristics (e.g. organizational culture)
• Not all misalignment phenomena can be detected via EA assessment (e.g. culture or shared values)
• Undocumented symptoms cannot be identified with the framework
• Not misalignment correction and prevention, only detection
• Not other classification schemes, except the symptom-based approach

Methodological limitations

• Not cross-sectional case studies
Query types

- Symptoms in which the presence or lack of the certain types of attributes has to be investigated.
- Symptoms in which the cardinality of certain connection types has to be analysed.
- Symptoms in which more models have to be compared.
- Symptoms in which more model variants have to be analysed and compared during the progression of the project.

Symptom validation

- The proposed research does not provide the potential for matching the EA models under review with an ideal model.
- The preliminary validation of misalignment symptoms cannot be done due to the specific follow-up interpretations of misalignment phenomena at test organisations.
FUTURE WORK
FUTURE WORK

Extensions of the framework
- Additional alignment perspectives
- Analysis of S.C.03 symptoms
- Expansion of misalignment symptom catalogues and EA analysis collections
FUTURE WORK

Extensions of the framework

- Additional alignment perspectives
- Analysis of S.C.03 symptoms
- Expansion of misalignment symptom catalogues and EA analysis collections

A tool-independent, automated implementation of the framework
Extensions of the framework

- Additional alignment perspectives
- Analysis of S.C.03 symptoms
- Expansion of misalignment symptom catalogues and EA analysis collections

A tool-independent, automated implementation of the framework

Validation on more complex EA model environments
FUTURE WORK

Extensions of the framework
- Additional alignment perspectives
- Analysis of S.C.03 symptoms
- Expansion of misalignment symptom catalogues and EA analysis collections

A tool-independent, automated implementation of the framework

Validation on more complex EA model environments

Examining the goodness of fit of the framework with pre-defined fit measures
Extensions of the framework
- Additional alignment perspectives
- Analysis of S.C.03 symptoms
- Expansion of misalignment symptom catalogues and EA analysis collections

A tool-independent, automated implementation of the framework

Validation on more complex EA model environments

Examining the goodness of fit of the framework with pre-defined fit measures

The dynamic nature of symptom detection
FUTURE WORK

Extensions of the framework
- Additional alignment perspectives
- Analysis of S.C.03 symptoms
- Expansion of misalignment symptom catalogues and EA analysis collections

A tool-independent, automated implementation of the framework

Validation on more complex EA model environments

Examining the goodness of fit of the framework with pre-defined fit measures

The dynamic nature of symptom detection

Generation of Description Logic statements to open the door to ontology-based analysis
CONCLUSIONS

CONTRIBUTION

A formal approach for EA-based misalignment assessment

Formal rule testing and XML validation in complex EA models

Recommending artifacts and EA analysis types to misalignment symptoms

SIGNIFICANCE

The compound of methods for EA-based misalignment assessment

(Mis)alignment assessment in a complex EA model structure

The combination of theoretical foundation and algorithmic implementation
Assessing the state of alignment/misalignment in an organisation

Looking for misalignment symptoms in enterprise architecture models

Identifying inaccurate mappings between architecture layers

MISALIGNMENT SYMPTOM DETECTION with XML-based Enterprise Architecture Model Analysis

THANK YOU FOR YOUR ATTENTION!

DóRA ŐRI

DOri@informatika.uni-corvinus.hu
REFERENCES

