
Resolving Inconsistencies and Redundancies in
Declarative Process Models
Claudio Di Ciccio, Fabrizio Maria Maggi, Marco Montali and Jan Mendling

8th International Workshop on Enterprise Modeling and
Information Systems Architectures (EMISA 2017)
Essen, Germany

claudio.di.ciccio@wu.ac.at

Di Ciccio, C., Maggi, F. M., Montali, M.,

Mendling, J. (2017). Resolving inconsistencies

and redundancies in declarative process

models. Information Systems, 64, 425–446.

https://doi.org/10.1016/j.is.2016.09.005

Foreword

(Declarative) process discovery

Declarative constraints as automata

SEITE 2

Process discovery

SEITE 3

?

Event log Process model

Mining flexible processes

Declarative process discovery

SEITE 5

?

Objective: understanding the
constraints that best define
the allowed behaviour of the
process behind the event log

Declarative modelling of
processes

 Init(c)

 c is always the first executed activity

 End(d)

 d is always the last executed activity

 RespondedExistence(a,b)

 If a is executed, b has to be executed

 Response(a,b)

 If a is executed, b has to be executed
afterwards

 ChainResponse(a,b)

 If a is executed, b has to be executed
immediately afterwards

 Precedence(a,b)

 If b is executed, a must have been executed
beforehand

 ChainPrecedence(a,b)

 If b is executed, a has to be executed
immediately beforehand

 NotChainSuccession(a,b)

 If a is executed, b cannot be executed
immediately afterwards

SEITE 6

 Usage of constraints

 “Open model”

 Declare

 state-of-the-art language

Subsumption hierarchy of
relation Declare templates

SEITE 7

Mining declarative processes:
ingredients

“Submit draft”,
“Write deliverable”,
“Organise agenda”,
…

SEITE 8

a,
b,
c,
…

Activities Process alphabet

Event log Declarative constraint templates

Mining declarative processes

RespondedExistence(a,b) ?

RespondedExistence(a,c) ?

…
Response(a,b) ?

Response(a,c) ?

…

SEITE 9

• Support:
fraction of cases fulfilling the constraint

• Confidence:
support scaled by fraction of traces in
which the activation occurs

• Interest factor:
confidence scaled by fraction of traces in
which the target occurs

Support Conf. I.F.

Mining declarative processes

RespondedExistence(a,b) ?

RespondedExistence(a,c) ?

…
Response(a,b) ?

Response(a,c) ?

…

SEITE 10

Support Conf. I.F.

Mining declarative processes

RespondedExistence(a,b) 

RespondedExistence(a,c) ?

…
Response(a,b) ?

Response(a,c) 

…

SEITE 11

Support Conf. I.F.

Mining declarative processes

RespondedExistence(a,b) 

RespondedExistence(a,c) ?

…
Response(a,b) 

Response(a,c) 

…

SEITE 12

Support Conf. I.F.

Mining declarative processes

RespondedExistence(a,b) 

RespondedExistence(a,c) ?

…
Response(a,b) 

Response(a,c) 

…

SEITE 13

Support Conf. I.F.

Mining declarative processes

RespondedExistence(a,b) 

RespondedExistence(a,c) 

…
Response(a,b) 

Response(a,c) 

…

SEITE 14

Support Conf. I.F.

Mining declarative processes

RespondedExistence(a,b)

RespondedExistence(a,c) 

and

Response(a,b) 

Response(a,c)

and

…

SEITE 15

From constraints-based model
to FSA

RespondedExistence(a,b)

RespondedExistence(a,c) 

and

Response(a,b) 

Response(a,c)

and

…

SEITE 16

[^a]*((a.*b.*)|(b.*a.*))*[^a]* [^a]*(a.*c)*[^a]*



Regular
Expression

Deterministic
Finite
State

Automaton

To be kept in mind

RespondedExistence(a,b)

RespondedExistence(a,c) 

and

Response(a,b) 

Response(a,c)

and

…

SEITE 17

[^a]*((a.*b.*)|(b.*a.*))*[^a]* [^a]*(a.*c)*[^a]*



Regular
Expression

Deterministic
Finite
State

Automaton

So far, so good

What is the problem?

SEITE 18

While mining a real-life log…

 Support threshold: 0.85

 Confidence threshold: 0.25

 Interest factor threshold: 0.25

SEITE 19

While mining a real-life log…

SEITE 20

Time to challenge the X

SEITE 21



Time to challenge the X

Loading…

SEITE 22

The result

SEITE 23

The problems
1) inconsistency

 When support threshold is lower than 100%,
constraints can be valid through most of the log, though being in conflict

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

 Support threshold: 0.7

• a is always the first
 Init(a)

• c is always the last
 End(c)

• In 6 cases over 8 (75%), a and c do not directly follow each other
 NotChainSuccession(a,c)

• In 5 cases over 7 (71.143%), b and c do not directly follow each other
 NotChainSuccession(b,c)

SEITE 24

The problems
1) inconsistency

 When support threshold is lower than 100%,
constraints can be valid through most of the log, though being in conflict

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

 Support threshold: 0.7

• a is always the first
 Init(a)

• c is always the last
 End(c)

• In 6 cases over 8 (75%), a and c do not directly follow each other
 NotChainSuccession(a,c)

• In 5 cases over 7 (71.143%), a and b do not directly follow each other
 NotChainSuccession(b,c)

 Question: what can be done right before c?
 inconsistency!

SEITE 25

The problems
1) inconsistency

 When support threshold is lower than 100%,
constraints can be valid through most of the log, though being in conflict

 How to trust a discovery algorithm that can return inconsistent models?

SEITE 26

The problems
2) redundancy

 Many constraints may be fulfilled 100% of times yet not add a bit of
information to other already discovered ones

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

• a is always the first
 Init(a)

• c is always the last
 End(c)

• Before c, a precedes
 Precedence(a,c)

• Before b, a precedes
 Precedence(a,b)

• After a, c eventually follows
 Response(a,c)

• After b, c eventually follows
 Response(b,c)

SEITE 27

The problems
2) redundancy

 Many constraints may be fulfilled 100% of times yet not add a bit of
information to other already discovered ones

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

• a is always the first
 Init(a)

• c is always the last
 End(c)

• Before c, a precedes
 Precedence(a,c)

• Before b, a precedes
 Precedence(a,b)

• After a, c eventually follows
 Response(a,c)

• After b, c eventually follows
 Response(b,c)

SEITE 28

Of course! a is always the first

The problems
2) redundancy

 Many constraints may be fulfilled 100% of times yet not add a bit of
information to other already discovered ones

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

• a is always the first
 Init(a)

• c is always the last
 End(c)

• Before c, a precedes
 Precedence(a,c)

• Before b, a precedes
 Precedence(a,b)

• After a, c eventually follows
 Response(a,c)

• After b, c eventually follows
 Response(b,c)

SEITE 29

Of course! a is always the first

Of course! c is always the last

 Question: can't we avoid stating the obvious?
 redundancy!

The problems
2) redundancy

 Many constraints may be fulfilled 100% of times yet not add a bit of
information to other already discovered ones

 How to reduce the number of unnecessary returned constraints?

SEITE 30

The solution

Automata-product monoid

SEITE 31

Algebraic structure with
composition operator ()
holding the properties of

 commutativity

 associativity

and bearing

 identity element

 and absorbing element

The solution

Automata-product monoid

SEITE 32

Rules of the game

SEITE 33

 Intersect the product
automaton with the
newly visited constraints,
one at a time


Init(a) Participation(b)

=

Product automaton

In
it
(a

)

P
a
rt

ic
ip

a
ti
o
n
(b

)

 Intersect the product
automaton with the
newly visited constraints,
one at a time

Rules of the game

SEITE 34

ChainPrecedence(a,b)

C
h
a
in

P
re

c
e
d
e
n
c
e
(a

,b
)

In
it
(a

)

P
a
rt

ic
ip

a
ti
o
n
(b

)

Product automaton

Exploiting formal properties

 We take advantage of

1. associativity

 allows for "storage" of
results

SEITE 35 Product automaton


ChainPrecedence(a,b)

Old product automaton

=

Exploiting formal properties

 We take advantage of

1. associativity

 allows for "storage" of
results

2. commutativity

 allows for priority sorting
of constraints

SEITE 36 Product automaton

Exploiting formal properties

 We take advantage of

1. associativity

 allows for "storage" of
results

2. commutativity

 allows for priority sorting
of constraints

SEITE 37 Product automaton

Playing the game

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

SEITE 38 Product automaton

Playing the game

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

SEITE 39 Product automaton

Playing the game

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

SEITE 40 Product automaton

Inconsistency!

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

 Conflict:

SEITE 41 Product automaton

Inconsistency!

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

 Conflict:

 The product automaton
becomes

(empty language)

SEITE 42

R
e
s
p
o
n
s
e
(a

,b
)

R
e
s
p
o
n
s
e
(b

,a
)

Inconsistency!

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

 Conflict:

 The product automaton
becomes

(empty language)

SEITE 43

Inconsistency!

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

 Conflict:

 Remove the constraint, in
case

SEITE 44

Redundancy!

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

 Redundancy:

SEITE 45

Redundancy!

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

 Redundancy:

 The new product
automaton accepts the
same strings as before
(language inclusion)

SEITE 46

R
e
s
p
o
n
s
e
(a

,c
)

E
n
d
(c

)

Redundancy!

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

 Redundancy:

 The new product
automaton accepts the
same strings as before
(language inclusion)

SEITE 47

Redundancy!

 Newly visited constraints
add information to the
knowledge on the process
model if they reduce the
number of possible traces
(accepted strings)

 Redundancy:

 Remove the constraint, in
case

SEITE 48

Objectives

 Remove inconsistencies

 Minimise redundancies

 Analyse each constraint
once

SEITE 49

The solution:
Inconsistency detection

 Rationale:
1. How to find inconsistencies among constraints?

 Use the automaton-based model for constraints

 Does the cross-product automaton recognise the empty
language?

2. How to search the inconsistencies?

 Exploit:

a) The product operation between automata

b) The sorting of Declare templates

 Guideline:
 Preserve the most meaningful constraints

 The sorting prioritises constraints

SEITE 50

The solution:
Redundancy detection

 Rationale:
1. How to find redundancies among constraints?

 Use the automaton-based model for constraints

 Does the cross-product automata recognise the same
language as before?

2. How to search the inconsistencies?

 Exploit:

a) The product operation between automata

b) The sorting of Declare templates

 Guideline:
 Preserve the most meaningful constraints

 The sorting prioritises constraints

SEITE 51

Conclusion

Which were the conflicting constraints in the log?

How does the redundancy removal perform?

What is more in the paper?

Limitations and future work

SEITE 53

Which were the conflicting
constraints in the log?

1. NotSuccession(send meeting, organize agenda)

2. NotChainSuccession(send draft, send deliverable)

3. Succession(send draft, submit report)

SEITE 54

SEITE 55

Redundancy reduction

SEITE 56

Conclusions, limitations and
future work

We have presented an algorithm which automatically finds
inconsistencies and redundancies in mined Declare models

 The checks are purely based on operations over automata (remember: monoids)

 http://github.com/cdc08x/minerful

More in the paper:
 The order in which the constraints are checked deeply affects the returned result

 Comparative studies prove different sorting strategies to affect

 computation time

 fitness of the returned model

 size

Limitations:
 Performances are heavily affected by the interplay of constraints

Future work:
 Users/analysts involvement

 http://www.promtools.org/prom6/nightly

SEITE 57

http://github.com/cdc08x/minerful
http://www.promtools.org/prom6/nightly

Resolving Inconsistencies and Redundancies in
Declarative Process Models

Claudio Di Ciccio, Fabrizio Maria Maggi, Marco Montali and Jan Mendling

8th International Workshop on Enterprise Modeling and

Information Systems Architectures (EMISA 2017)

Essen, Germany

claudio.di.ciccio@wu.ac.at

Di Ciccio, C., Maggi, F. M., Montali, M.,

Mendling, J. (2017). Resolving inconsistencies

and redundancies in declarative process

models. Information Systems, 64, 425–446.

https://doi.org/10.1016/j.is.2016.09.005

Extra slides deck

Resolving Inconsistencies and Redundancies in
Declarative Process Models

Claudio Di Ciccio, Fabrizio Maria Maggi, Marco Montali and Jan Mendling

8th International Workshop on Enterprise Modeling and

Information Systems Architectures (EMISA 2017)

Essen, Germany

claudio.di.ciccio@wu.ac.at

Di Ciccio, C., Maggi, F. M., Montali, M.,

Mendling, J. (2017). Resolving inconsistencies

and redundancies in declarative process

models. Information Systems, 64, 425–446.

https://doi.org/10.1016/j.is.2016.09.005

Computational time complexity

