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Foreword

(Declarative) process discovery

Declarative constraints as automata
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Process discovery
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?

Event log Process model



Mining flexible processes



Declarative process discovery
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?

Objective: understanding the 
constraints that best define 
the allowed behaviour of the 
process behind the event log



Declarative modelling of
processes

 Init(c)

 c is always the first executed activity

 End(d)

 d is always the last executed activity

 RespondedExistence(a,b)

 If a is executed, b has to be executed

 Response(a,b)

 If a is executed, b has to be executed
afterwards

 ChainResponse(a,b)

 If a is executed, b has to be executed
immediately afterwards

 Precedence(a,b)

 If b is executed, a must have been executed
beforehand

 ChainPrecedence(a,b)

 If b is executed, a has to be executed
immediately beforehand

 NotChainSuccession(a,b)

 If a is executed, b cannot be executed
immediately afterwards
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 Usage of constraints

 “Open model”

 Declare

 state-of-the-art language



Subsumption hierarchy of
relation Declare templates
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Mining declarative processes:
ingredients

“Submit draft”,
“Write deliverable”,
“Organise agenda”,
…
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a,
b,
c,
…

Activities Process alphabet

Event log Declarative constraint templates



Mining declarative processes

RespondedExistence(a,b) ?

RespondedExistence(a,c) ?

…
Response(a,b) ?

Response(a,c) ?

…
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• Support:
fraction of cases fulfilling the constraint

• Confidence:
support scaled by fraction of traces in 
which the activation occurs

• Interest factor:
confidence scaled by fraction of traces in 
which the target occurs

Support Conf. I.F.



Mining declarative processes

RespondedExistence(a,b) ?

RespondedExistence(a,c) ?
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Response(a,b) ?

Response(a,c) ?
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Support Conf. I.F.



Mining declarative processes

RespondedExistence(a,b) 

RespondedExistence(a,c) ?

…
Response(a,b) ?

Response(a,c) 

…
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Support Conf. I.F.



Mining declarative processes

RespondedExistence(a,b) 

RespondedExistence(a,c) ?
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Response(a,b) 
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…
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Support Conf. I.F.
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Support Conf. I.F.



Mining declarative processes

RespondedExistence(a,b) 

RespondedExistence(a,c) 

…
Response(a,b) 

Response(a,c) 

…
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Support Conf. I.F.



Mining declarative processes

RespondedExistence(a,b)

RespondedExistence(a,c) 

and

Response(a,b) 

Response(a,c)

and

…
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From constraints-based model 
to FSA

RespondedExistence(a,b)

RespondedExistence(a,c) 

and

Response(a,b) 

Response(a,c)

and

…
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[^a]*((a.*b.*)|(b.*a.*))*[^a]* [^a]*(a.*c)*[^a]*



Regular
Expression

Deterministic
Finite
State

Automaton



To be kept in mind

RespondedExistence(a,b)

RespondedExistence(a,c) 

and

Response(a,b) 

Response(a,c)

and

…

SEITE 17

[^a]*((a.*b.*)|(b.*a.*))*[^a]* [^a]*(a.*c)*[^a]*



Regular
Expression

Deterministic
Finite
State

Automaton



So far, so good

What is the problem?
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While mining a real-life log…

 Support threshold: 0.85

 Confidence threshold: 0.25

 Interest factor threshold: 0.25
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While mining a real-life log…
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Time to challenge the X
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



Time to challenge the X

Loading…
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The result
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The problems
1) inconsistency

 When support threshold is lower than 100%,
constraints can be valid through most of the log, though being in conflict

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

 Support threshold: 0.7

• a is always the first
 Init(a)

• c is always the last
 End(c)

• In 6 cases over 8 (75%), a and c do not directly follow each other
 NotChainSuccession(a,c)

• In 5 cases over 7 (71.143%), b and c do not directly follow each other
 NotChainSuccession(b,c)
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The problems
1) inconsistency

 When support threshold is lower than 100%,
constraints can be valid through most of the log, though being in conflict

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

 Support threshold: 0.7

• a is always the first
 Init(a)

• c is always the last
 End(c)

• In 6 cases over 8 (75%), a and c do not directly follow each other
 NotChainSuccession(a,c)

• In 5 cases over 7 (71.143%), a and b do not directly follow each other
 NotChainSuccession(b,c)

 Question: what can be done right before c?
 inconsistency!
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The problems
1) inconsistency

 When support threshold is lower than 100%,
constraints can be valid through most of the log, though being in conflict

 How to trust a discovery algorithm that can return inconsistent models?
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The problems
2) redundancy

 Many constraints may be fulfilled 100% of times yet not add a bit of 
information to other already discovered ones

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

• a is always the first
 Init(a)

• c is always the last
 End(c)

• Before c, a precedes
 Precedence(a,c)

• Before b, a precedes
 Precedence(a,b)

• After a, c eventually follows
 Response(a,c)

• After b, c eventually follows
 Response(b,c)
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Of course! a is always the first



The problems
2) redundancy

 Many constraints may be fulfilled 100% of times yet not add a bit of 
information to other already discovered ones

 Example: an event log consists of two traces:

1. <a, b, a, b, a, b, c>

2. <a, b, a, b, a, c>

• a is always the first
 Init(a)

• c is always the last
 End(c)

• Before c, a precedes
 Precedence(a,c)

• Before b, a precedes
 Precedence(a,b)

• After a, c eventually follows
 Response(a,c)

• After b, c eventually follows
 Response(b,c)
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Of course! a is always the first

Of course! c is always the last

 Question: can't we avoid stating the obvious?
 redundancy!



The problems
2) redundancy

 Many constraints may be fulfilled 100% of times yet not add a bit of 
information to other already discovered ones

 How to reduce the number of unnecessary returned constraints?
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The solution

Automata-product monoid
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Algebraic structure with 
composition operator ( )
holding the properties of

 commutativity

 associativity

and bearing

 identity element

 and absorbing element



The solution

Automata-product monoid
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Rules of the game
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 Intersect the product 
automaton with the 
newly visited constraints, 
one at a time


Init(a) Participation(b)

=

Product automaton

In
it
(a

)

P
a
rt

ic
ip

a
ti
o
n
(b

)



 Intersect the product 
automaton with the 
newly visited constraints, 
one at a time

Rules of the game
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ChainPrecedence(a,b)

C
h
a
in

P
re

c
e
d
e
n
c
e
(a

,b
)

In
it
(a

)

P
a
rt

ic
ip

a
ti
o
n
(b

)

Product automaton



Exploiting formal properties

 We take advantage of

1. associativity

 allows for "storage" of 
results

SEITE 35 Product automaton


ChainPrecedence(a,b)

Old product automaton

=



Exploiting formal properties

 We take advantage of

1. associativity

 allows for "storage" of 
results

2. commutativity

 allows for priority sorting 
of constraints
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Exploiting formal properties

 We take advantage of

1. associativity

 allows for "storage" of 
results

2. commutativity

 allows for priority sorting 
of constraints
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Playing the game

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)
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Playing the game

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)
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Inconsistency!

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)

 Conflict:
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Inconsistency!

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)

 Conflict:

 The product automaton 
becomes

(empty language)
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Inconsistency!

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)

 Conflict:

 The product automaton 
becomes

(empty language)
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Inconsistency!

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)

 Conflict:

 Remove the constraint, in 
case
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Redundancy!

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)

 Redundancy:
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Redundancy!

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)

 Redundancy:

 The new product 
automaton accepts the 
same strings as before
(language inclusion)
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Redundancy!

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)

 Redundancy:

 The new product 
automaton accepts the 
same strings as before
(language inclusion)
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Redundancy!

 Newly visited constraints 
add information to the 
knowledge on the process 
model if they reduce the 
number of possible traces 
(accepted strings)

 Redundancy:

 Remove the constraint, in 
case
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Objectives

 Remove inconsistencies

 Minimise redundancies

 Analyse each constraint 
once
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The solution:
Inconsistency detection

 Rationale:
1. How to find inconsistencies among constraints?

 Use the automaton-based model for constraints

 Does the cross-product automaton recognise the empty 
language?

2. How to search the inconsistencies?

 Exploit:

a) The product operation between automata

b) The sorting of Declare templates

 Guideline:
 Preserve the most meaningful constraints

 The sorting prioritises constraints
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The solution:
Redundancy detection

 Rationale:
1. How to find redundancies among constraints?

 Use the automaton-based model for constraints

 Does the cross-product automata recognise the same 
language as before?

2. How to search the inconsistencies?

 Exploit:

a) The product operation between automata

b) The sorting of Declare templates

 Guideline:
 Preserve the most meaningful constraints

 The sorting prioritises constraints
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Conclusion

Which were the conflicting constraints in the log?

How does the redundancy removal perform?

What is more in the paper?

Limitations and future work
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Which were the conflicting 
constraints in the log?

1. NotSuccession(send meeting, organize agenda)

2. NotChainSuccession(send draft, send deliverable)

3. Succession(send draft, submit report)
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Redundancy reduction
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Conclusions, limitations and 
future work

We have presented an algorithm which automatically finds 
inconsistencies and redundancies in mined Declare models

 The checks are purely based on operations over automata (remember: monoids)

 http://github.com/cdc08x/minerful

More in the paper:
 The order in which the constraints are checked deeply affects the returned result

 Comparative studies prove different sorting strategies to affect

 computation time

 fitness of the returned model

 size

Limitations:
 Performances are heavily affected by the interplay of constraints

Future work:
 Users/analysts involvement

 http://www.promtools.org/prom6/nightly
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http://github.com/cdc08x/minerful
http://www.promtools.org/prom6/nightly
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Computational time complexity


