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 You the manager of a software development company

 You are applying best practices, established project management 
guidelines and tools

But…

 What is really going on in your software development project?

 Why are deadlines not met? Why are the costs superior to the planned?

 Why is does the your software product require more maintenance than 
what you thought?
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Motivation



 Software processes are carried out in a project-oriented fashion

 Goal is a release of a software product

 Artifact-centric processes

 Software development methodology (e.g., Scrum, Waterfall)

 Artifacts are tracked by means of Version Control Systems

 Should follow best practices (e.g. Principles of good modularization)
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About software projects

Q: How can we help the manager to gain transparency on the 
software project?
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Project-Oriented Business Processes



Project-Oriented Classic Processes

Plan (e.g. Gantt, PERT) Process Model (e.g. Petri Net, 
BPMN)

One time (fixed goal and 
resources)

Recursive, Cyclic

Single instance Many instances

Workpackages, Modules, Units Activities

Subworkpackages, Submodules Suprocesses
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Project-Oriented vs. Classic Business 
Processes
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Project-Oriented vs. Classic Business 
Processes

?



 Software projects are supported by 
a variety of tools

 Examples

 Project management, Bug-tracking

 Development

 Dependency management

 Testing

 Continuous integration

 Documentation

 Version Control System
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Software Projects Data
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State of the Art: Activity Mining

Kindler et al. 2006
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State of the Art: Dotted Chart

Song and van der Aalst. 2007
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State of the Art: Evolution Storylines

Ogawa and Ma 2010
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State of the Art: Visual Software Analytics

Wettel and Lanza 2007



Identification of the 
problem

Objectives of the 
artifact

Artifact Development

DemonstrationEvaluationCommunication
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Methodology: DSR

Peffers 2007



Mining the Real Gantt Chart
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Mining the Gantt Chart of a Project
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Example from the SHAPE project

“pm” work package

“example” work package

single events within files

Associated 
information:

1. User
2. Type of change

3. Comment

Project structure

Activity inferred from single events
1. Threshold based

2. Activated when a tree node in 
the

project structure is collapsed
3. Decomposed when node is 

expanded
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Indicators

 Data from the VCS

 Authors

 Files 

 Type of change, Etc

 Coverage, i.e. work-intensity

the ratio between active working periods (i.e., the time spans of activities) 
and the total work package duration

 Expected active time between commits (tc)

average work speed (commit frequency) during active times
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 The following assumptions are made:

1. Meaningful file structure

 Project participants organize the files in a representative (e.g., spatially 
separating documentation from testing into different folders). 

2. Regular commits

 Project participants systematically commit their changes in the VCS

3. Descriptive comments. 

 Project participants write descriptive comments that allow others members 
to understand the changes made to the software
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Assumptions



Resource Classification from 
Commit Messages
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Resource Classification from Commit 
Messages



Developer
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Resource Classification from Commit 
Messages: Developer vs. Tester

Tester
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Learning Decision Trees from Projects



Mining Hidden Work 
Dependencies
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Artifact Evolution as Time Series

Are they similar?

Correlation!
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Characterization of Projects wrt 
Dependencies
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Questions?



Backup slides
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Data Model for SQL Querying VCS logs



Mining the Real Gantt Chart
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Mining the Gantt Chart of a Project
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Example from the SHAPE project

“pm” work package

“example” work package

single events within files

Associated 
information:
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project structure is collapsed
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Indicators

 Data from the VCS

 Authors

 Files 

 Type of change, Etc

 Coverage, i.e. work-intensity

the ratio between active working periods (i.e., the time spans of activities) 
and the total work package duration

 Expected active time between commits (tc)

average work speed (commit frequency) during active times
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 The following assumptions are made:

1. Meaningful file structure

 Project participants organize the files in a representative (e.g., spatially 
separating documentation from testing into different folders). 

2. Regular commits

 Project participants systematically commit their changes in the VCS

3. Descriptive comments. 

 Project participants write descriptive comments that allow others members 
to understand the changes made to the software
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Assumptions



Some Real World Projects

Project Description Commits Users Files Duration tc coverage

Opendata bot Open Data AT Assistant: Data 

Pioneers Create Camp project
28 1 3507 16 0 100.00%

MiningVCS Gantt chart visualization of projects 84 1 111 61 1.9 87.00%

MSR paper Writing a conference paper 35 2 78 44 12.8 70.00%

Progit2 Pro Git 2nd Edition 1292 134 955 481 118.6 60.00%

GHDiscovery GitHub Activities Discovery 

repository.
11 1 97 29 6.6 53.00%

SHAPE Joint research project on railway 

automation
624 13 6470 1127 21.8 38.00%

papers from 

siemens

Repository form Siemens to keep 

track of paper writing processes
649 5 1791 1853 26.4 23.00%

Facebook-ads-

java-sdk

Java SDK for Facebook Ads APIs 38 8 428 324 18.2 22.00%

Biglist-of-

naughty-strings

Strings which have a high probability 

of causing issues when used as user-

input data.

202 60 15 530 53.3 10.00%

We set the aggregation threshold to 7 days (i.e. two events belong to the same activity 
only if their temporal distance is one week or less)
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Open-Data Helper Bot

 Open Data AT 
Assistant: Data 
Pioneers Create Camp 
project

 Helps search for an 
open dataset

 28 commits, 1 user 
3507 files, 16 days

 0 tc, 100% coverage
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Mining VCS Software

 This software project

 84 commits, 1 user, 111 files, 62 days

 tc 1.9 hours, coverage 87%
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MSR Paper

 Preparation of a conference paper

 35 commits, 2 users, 78 files, 44 days

 12.8 tc, 70% coverage
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Book Writing Project

 Progit book 2nd edition

 1292 commits, 134 users, 955 files, 481 days

 tc 118.6 hours, coverage 60%
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Students Project: Disovering Github 
Activities

 Student class project
 1 user, 72 files, duration 

29 days
 tc 8.8 hours, coverage 

59%
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SHAPE Project

 Joint research project on railway 
automation

 6470 files, 13 users, duration 1127 
days

 tc 21.8 hours, coverage = 38%
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Writing Papers Project (from Industry)

 Repository for papers writing process taken from 
SHAPE project

 649 commits, 5 users, 1791 files, 1853 days duration
 tc 26.4 hours, coverage 23%
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Facebook ads java sdk

 Java development kit for Facebook ads
 38 commits, 8 users, 428 files, 324 days 
 18.2 tc, 22% coverage
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Big List of Naughty Strings

 An evolving list of strings which have a high probability of causing issues when used as 
user-input data. 

 202 commits, 15 files, 51 users, 531 days
 tc 53.3 hours, coverage 10%

No activities found in the subdirectories, i.e.  no continuous work for in the same 
subdirectory within the given aggregation threshold
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Uncovering the Hidden Co-
Evolution in the Work 
History of Software Projects
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Requirements

 How can we use data generated 
from the software project to help 
gaining transparency on the status 
and work history?

R1 (Extract the work history)

•Discover the process of how artifacts 
evolve in the project as a labeled set of 
steps

R2 (Uncover Work-Related 
Dependencies)

•Identify that parts of the work are 
connected to other parts  co-
evolution of two artifacts?

R3 (Measure Dependencies)

•How strongly depend two artifacts on 
one another?
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State of the Art

MSR

• Mostly solving R2 
(Uncover work-
related 
dependencies and 
R3 (Measure 
dependencies)

• Zaidman et al. 
2008, 
Zimmerman et al. 
2008, D‘Ambros 
et al. 2009, 
Lindeberg et al. 
2016

Process Mining

• Mostly addressing 
R1 (Extract the 
work history)

• Kindler et al. 
2006, Goncalves 
et al. 2011, 
Poncin et al. 
2011, Bala et al. 
2015

Visualization

• No approach 
addressing R1, 
R2, and R3 
simultaneously

• Voinea and Telea 
2006, Ripley et 
al. 2007, Greene 
and Fischer 2015
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Approach



 How to capture events?

 How to obtain the work history from the events?

 What are important informations we need to consider in order to identify 
dependencies?

 How to analyze the data?

 How to measure work-dependency?
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Challenges



 The following assumptions are made:

1. Meaningful file structure

 Project participants organize the files in a representative (e.g., spatially 
separating documentation from testing into different folders). 

2. Regular commits

 Project participants systematically commit their changes in the VCS

3. Descriptive comments. 

 Project participants write descriptive comments that allow others members 
to understand the changes made to the software
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Assumptions
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Concepts

Artifact 
evolution

• Changes made to an artifact during 
its lifetime, meaured in Lines of Code

Dependency
• High similarity in the evolution of two 

software artifacts
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Metrics

Degree 
of Co-

Evolution

•Strength of the connection. 
A value in the interval [0,1], 
where 1 is the highest 
degree of co-evolution

File 
Distance

•Distance between two files 
in the file tree. Equal to the 
length of the path traversing 
the least common ancestor.



Generate events 
from software 
repository data 
into a log file

Preprocess log 
data

Compute artifact 
evolution

Compute 
Dependencies

Compute Metrics
Select set of 

highly dependent 
& distant files

Potential wok-
dependencies
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Method
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Computing Dependencies

Are they similar?

Correlation!
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Results
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Co-Evolution versus Distance
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Characterization of Projects wrt 
Dependencies
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Zipf law on real projects: 100%

Camunda Operationcode Caret



PAGE 64

Zipf law on real projects: top 80%

Camunda Operationcode Caret
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Zipf law on real projects: top 50%

Camunda Operationcode Caret
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Stories

Are they similar?



 Mining project-oriented business process is difficult

 Provide hints for the project manager

 Work dependencies not easy to be seen without analysing the work 
history

 Future work:

 Improve method for comparting time series

 Semantic analysis of process labels
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Conlusion


