
Mining Projects from
(Un)Structured Data

Project mining

Saimir Bala, WU (Vienna University of Economics and Business)

12 JUNE 2017

 You the manager of a software development company

 You are applying best practices, established project management
guidelines and tools

But…

 What is really going on in your software development project?

 Why are deadlines not met? Why are the costs superior to the planned?

 Why is does the your software product require more maintenance than
what you thought?

PAGE 2

Motivation

 Software processes are carried out in a project-oriented fashion

 Goal is a release of a software product

 Artifact-centric processes

 Software development methodology (e.g., Scrum, Waterfall)

 Artifacts are tracked by means of Version Control Systems

 Should follow best practices (e.g. Principles of good modularization)

PAGE 3

About software projects

Q: How can we help the manager to gain transparency on the
software project?

PAGE 4

Project-Oriented Business Processes

Project-Oriented Classic Processes

Plan (e.g. Gantt, PERT) Process Model (e.g. Petri Net,
BPMN)

One time (fixed goal and
resources)

Recursive, Cyclic

Single instance Many instances

Workpackages, Modules, Units Activities

Subworkpackages, Submodules Suprocesses

PAGE 5

Project-Oriented vs. Classic Business
Processes

Project-Oriented Classic Processes

Plan (e.g. Gantt, PERT) Process Model (e.g. Petri Net,
BPMN)

One time (fixed goal and
resources)

Recursive, Cyclic

Single instance Many instances

Workpackages, Modules, Units Activities

Subworkpackages, Submodules Suprocesses

PAGE 6

Project-Oriented vs. Classic Business
Processes

?

 Software projects are supported by
a variety of tools

 Examples

 Project management, Bug-tracking

 Development

 Dependency management

 Testing

 Continuous integration

 Documentation

 Version Control System

PAGE 7

Software Projects Data

PAGE 8

State of the Art: Activity Mining

Kindler et al. 2006

PAGE 9

State of the Art: Dotted Chart

Song and van der Aalst. 2007

PAGE 10

State of the Art: Evolution Storylines

Ogawa and Ma 2010

PAGE 11

State of the Art: Visual Software Analytics

Wettel and Lanza 2007

Identification of the
problem

Objectives of the
artifact

Artifact Development

DemonstrationEvaluationCommunication

PAGE 12

Methodology: DSR

Peffers 2007

Mining the Real Gantt Chart

PAGE 13

Mining the Gantt Chart of a Project

14

Example from the SHAPE project

“pm” work package

“example” work package

single events within files

Associated
information:

1. User
2. Type of change

3. Comment

Project structure

Activity inferred from single events
1. Threshold based

2. Activated when a tree node in
the

project structure is collapsed
3. Decomposed when node is

expanded
15

Indicators

 Data from the VCS

 Authors

 Files

 Type of change, Etc

 Coverage, i.e. work-intensity

the ratio between active working periods (i.e., the time spans of activities)
and the total work package duration

 Expected active time between commits (tc)

average work speed (commit frequency) during active times

16

 The following assumptions are made:

1. Meaningful file structure

 Project participants organize the files in a representative (e.g., spatially
separating documentation from testing into different folders).

2. Regular commits

 Project participants systematically commit their changes in the VCS

3. Descriptive comments.

 Project participants write descriptive comments that allow others members
to understand the changes made to the software

PAGE 17

Assumptions

Resource Classification from
Commit Messages

18

PAGE 19

Resource Classification from Commit
Messages

Developer

PAGE 20

Resource Classification from Commit
Messages: Developer vs. Tester

Tester

PAGE 21

Learning Decision Trees from Projects

Mining Hidden Work
Dependencies

22

PAGE 23

Artifact Evolution as Time Series

Are they similar?

Correlation!

PAGE 25

Characterization of Projects wrt
Dependencies

 Bala, S., Cabanillas, C., Mendling, J., Rogge-Solti, A., Polleres, A.: Mining
Project-Oriented Business Processes. In: BPM. pp. 425–440 (2015).

 Agrawal, K., Aschauer, M., Thonhofer, T., Tomsich, N., Bala, S., Rogge-
Solti, A.: Resource Classification from Version Control System Logs. In:
EDOC Workshops (2016).

 Bala, S., Havur, G., Sperl, S., Steyskal, S., Haselböck, A., Mendling, J.,
Polleres, A.: SHAPEworks: A BPMS Extension for Complex Process
Management. In: BPM (Demos). pp. 50–55. (2016).

 Bala, S., Revoredo, K., Mendling, J., Santoro, F.: Uncovering the Hidden
Co-Evolution in the Work History of Software Projects. In: BPM. 2017
(conditionally accepted)

PAGE 26

Publications

Identification of the
problem

Objectives of the
artifact

Artifact Development

DemonstrationEvaluationCommunication

PAGE 27

Next steps

Peffers 2007

Identification of the
problem

Objectives of the
artifact

Artifact Development

DemonstrationEvaluationCommunication

PAGE 28

Next steps

Peffers 2007

Identification of the
problem

Objectives of the
artifact

Artifact Development

DemonstrationEvaluationCommunication

PAGE 29

Next steps

Peffers 2007

DEPARTMENT OF INFORMATION SYSTEMS
AND OPERATIONS
INSTITUTE FOR INFORMATION BUSINESS

Welthandelsplatz 1, D2/1.026
1020 Vienna, Austria

M.SC. SAIMIR BALA

T +43-1-313 36-5304
F +43-1-313 36-905304
saimir.bala@wu.ac.at
www.wu.ac.at

PAGE 32

Questions?

Backup slides

PAGE 33

PAGE 34

Data Model for SQL Querying VCS logs

Mining the Real Gantt Chart

PAGE 35

Mining the Gantt Chart of a Project

36

Example from the SHAPE project

“pm” work package

“example” work package

single events within files

Associated
information:

1. User
2. Type of change

3. Comment

Project structure

Activity inferred from single events
1. Threshold based

2. Activated when a tree node in
the

project structure is collapsed
3. Decomposed when node is

expanded
37

Indicators

 Data from the VCS

 Authors

 Files

 Type of change, Etc

 Coverage, i.e. work-intensity

the ratio between active working periods (i.e., the time spans of activities)
and the total work package duration

 Expected active time between commits (tc)

average work speed (commit frequency) during active times

38

 The following assumptions are made:

1. Meaningful file structure

 Project participants organize the files in a representative (e.g., spatially
separating documentation from testing into different folders).

2. Regular commits

 Project participants systematically commit their changes in the VCS

3. Descriptive comments.

 Project participants write descriptive comments that allow others members
to understand the changes made to the software

PAGE 39

Assumptions

Some Real World Projects

Project Description Commits Users Files Duration tc coverage

Opendata bot Open Data AT Assistant: Data

Pioneers Create Camp project
28 1 3507 16 0 100.00%

MiningVCS Gantt chart visualization of projects 84 1 111 61 1.9 87.00%

MSR paper Writing a conference paper 35 2 78 44 12.8 70.00%

Progit2 Pro Git 2nd Edition 1292 134 955 481 118.6 60.00%

GHDiscovery GitHub Activities Discovery

repository.
11 1 97 29 6.6 53.00%

SHAPE Joint research project on railway

automation
624 13 6470 1127 21.8 38.00%

papers from

siemens

Repository form Siemens to keep

track of paper writing processes
649 5 1791 1853 26.4 23.00%

Facebook-ads-

java-sdk

Java SDK for Facebook Ads APIs 38 8 428 324 18.2 22.00%

Biglist-of-

naughty-strings

Strings which have a high probability

of causing issues when used as user-

input data.

202 60 15 530 53.3 10.00%

We set the aggregation threshold to 7 days (i.e. two events belong to the same activity
only if their temporal distance is one week or less)

40

Open-Data Helper Bot

 Open Data AT
Assistant: Data
Pioneers Create Camp
project

 Helps search for an
open dataset

 28 commits, 1 user
3507 files, 16 days

 0 tc, 100% coverage

41

Mining VCS Software

 This software project

 84 commits, 1 user, 111 files, 62 days

 tc 1.9 hours, coverage 87%

42

MSR Paper

 Preparation of a conference paper

 35 commits, 2 users, 78 files, 44 days

 12.8 tc, 70% coverage

43

Book Writing Project

 Progit book 2nd edition

 1292 commits, 134 users, 955 files, 481 days

 tc 118.6 hours, coverage 60%

44

Students Project: Disovering Github
Activities

 Student class project
 1 user, 72 files, duration

29 days
 tc 8.8 hours, coverage

59%
45

SHAPE Project

 Joint research project on railway
automation

 6470 files, 13 users, duration 1127
days

 tc 21.8 hours, coverage = 38%

46

Writing Papers Project (from Industry)

 Repository for papers writing process taken from
SHAPE project

 649 commits, 5 users, 1791 files, 1853 days duration
 tc 26.4 hours, coverage 23%

47

Facebook ads java sdk

 Java development kit for Facebook ads
 38 commits, 8 users, 428 files, 324 days
 18.2 tc, 22% coverage

48

Big List of Naughty Strings

 An evolving list of strings which have a high probability of causing issues when used as
user-input data.

 202 commits, 15 files, 51 users, 531 days
 tc 53.3 hours, coverage 10%

No activities found in the subdirectories, i.e. no continuous work for in the same
subdirectory within the given aggregation threshold

49

Uncovering the Hidden Co-
Evolution in the Work
History of Software Projects

PAGE 50

PAGE 51

Requirements

 How can we use data generated
from the software project to help
gaining transparency on the status
and work history?

R1 (Extract the work history)

•Discover the process of how artifacts
evolve in the project as a labeled set of
steps

R2 (Uncover Work-Related
Dependencies)

•Identify that parts of the work are
connected to other parts  co-
evolution of two artifacts?

R3 (Measure Dependencies)

•How strongly depend two artifacts on
one another?

PAGE 52

State of the Art

MSR

• Mostly solving R2
(Uncover work-
related
dependencies and
R3 (Measure
dependencies)

• Zaidman et al.
2008,
Zimmerman et al.
2008, D‘Ambros
et al. 2009,
Lindeberg et al.
2016

Process Mining

• Mostly addressing
R1 (Extract the
work history)

• Kindler et al.
2006, Goncalves
et al. 2011,
Poncin et al.
2011, Bala et al.
2015

Visualization

• No approach
addressing R1,
R2, and R3
simultaneously

• Voinea and Telea
2006, Ripley et
al. 2007, Greene
and Fischer 2015

PAGE 53

Approach

 How to capture events?

 How to obtain the work history from the events?

 What are important informations we need to consider in order to identify
dependencies?

 How to analyze the data?

 How to measure work-dependency?

PAGE 54

Challenges

 The following assumptions are made:

1. Meaningful file structure

 Project participants organize the files in a representative (e.g., spatially
separating documentation from testing into different folders).

2. Regular commits

 Project participants systematically commit their changes in the VCS

3. Descriptive comments.

 Project participants write descriptive comments that allow others members
to understand the changes made to the software

PAGE 55

Assumptions

PAGE 56

Concepts

Artifact
evolution

• Changes made to an artifact during
its lifetime, meaured in Lines of Code

Dependency
• High similarity in the evolution of two

software artifacts

PAGE 57

Metrics

Degree
of Co-

Evolution

•Strength of the connection.
A value in the interval [0,1],
where 1 is the highest
degree of co-evolution

File
Distance

•Distance between two files
in the file tree. Equal to the
length of the path traversing
the least common ancestor.

Generate events
from software
repository data
into a log file

Preprocess log
data

Compute artifact
evolution

Compute
Dependencies

Compute Metrics
Select set of

highly dependent
& distant files

Potential wok-
dependencies

PAGE 58

Method

PAGE 59

Computing Dependencies

Are they similar?

Correlation!

PAGE 60

Results

PAGE 61

Co-Evolution versus Distance

PAGE 62

Characterization of Projects wrt
Dependencies

PAGE 63

Zipf law on real projects: 100%

Camunda Operationcode Caret

PAGE 64

Zipf law on real projects: top 80%

Camunda Operationcode Caret

PAGE 65

Zipf law on real projects: top 50%

Camunda Operationcode Caret

PAGE 66

Stories

Are they similar?

 Mining project-oriented business process is difficult

 Provide hints for the project manager

 Work dependencies not easy to be seen without analysing the work
history

 Future work:

 Improve method for comparting time series

 Semantic analysis of process labels

PAGE 67

Conlusion

